
QUALITY MEASUREMENT MODEL FOR
REQUIREMENTS ENGINEERING FLOSS TOOLS

María Pérez, Edumilis Méndez, Kenyer Domínguez and Luis E. Mendoza
Processes and Systems Department, LISI, Simón Bolívar University, PO Box 89000, Caracas 1080-A, Venezuela

Keywords: Software Quality, Requirements Engineering, FLOSS, Quality Model.

Abstract: The goal of delivering a suitable or quality software product increases the properly definition of system
requirements. Requirements Engineering (RE) is the process of discovering, refining, modeling and
specifying software requirements. In addition to the trend of using Free/Libre Open Source Software
(FLOSS) tools, we should consider their strengths and weaknesses towards in the light of a suitable RE.
This article is aimed at proposing a quality measurement model for RE FLOSS tools and supporting their
selection process. Characteristics selected for its evaluation include Functionality, Maintainability and
Usability. This model was applied to four FLOSS tool and assessed for completeness, accuracy and
relevance to establish which FLOSS tools support RE, either totally or partially, thus making it useful for
Small and Medium-sized Enterprises.

1 INTRODUCTION

Selecting FLOSS tools that support for
Requirements Engineering (RE) is challenging, as
tools must support all RE stages and validate that the
features characterizing this type of software are fully
met. Such premise has led us to evaluate the tools
quality by means of a quality model that allows
determining the fulfillment of requirements.

For this research, we used and instantiated the
systemic quality model (MOSCA) (Mendoza et. al,
2005). This model is based on ISO 9126 (ISO/IEC
9126, 2001), the Dromey Quality Model (Dromey,
1995), and the Goal-Question-Metrics (GQM)
paradigm (Basili et. al, 2001). The instantiation
proposed herein includes software attributes, such as
Functionality, Usability and Maintainability, and
establishes 129 new metrics for a total of 210
metrics, to evaluate FLOSS tools supporting RE.
Four tools were selected: Open Source Requirement
Management Tool (OSRMT), StarUML, Use Case
Maker (UCM) and OpenOME; the four being open
tools with Free Software licenses.

This article consists of 7 sections. First and
second sections present the introduction and the
methodology applied in this research, respectively.
Third section describes MOSCA. Fourth section
introduces the quality model proposed for FLOSS
tools supporting RE. Fifth section describes the
model application and results obtained. Lastly, sixth

section presents our conclusions and
recommendations.

2 METHODOLOGY

For this work, we used the Systemic Methodological
Framework for Information Systems research (Pérez
et. al, 2004), based on DESMET (Kitchenham,
1996) methodology and the research-action method
(Baskerville, 1999). The action-research method is
developed in five phases: diagnosing, action
planning, taking action, evaluating, and specifying
learning (Baskerville, 1999), whereas DESMET
methodology is used to supplement the model
evaluation. This methodology suggests 9 evaluation
methods, among which the case study feature
analysis (Kitchenham, 1996) was applied herein. In
addition, the GQM approach was included, in order
to evaluate software in a quality improvement
context (Basili et. al, 2001).

3 SYSTEMIC QUALITY MODEL

The purpose of the systemic quality model is to
measure systemic quality at a software developing
organization (Rincón et. al, 2005) and assess
Information Systems quality by integrating the

249Pérez M., Méndez E., Dominguez K. and Mendoza L. (2010).
QUALITY MEASUREMENT MODEL FOR REQUIREMENTS ENGINEERING FLOSS TOOLS .
In Proceedings of the 12th International Conference on Enterprise Information Systems - Information Systems Analysis and Specification, pages
249-254
DOI: 10.5220/0002905402490254
Copyright c© SciTePress

Table 1: Functionality characteristics.

Characteristic Definition and Rationale
Suitability
(FUN 1)

The capability of a software product to provide an adequate group of functions according to
user specific tasks and objectives. In this research, tool functions should be adapted to satisfy
RE needs. The tool must cover all functional needs.

Interoperability
(FUN 3)

The capability of a software product to interact with one or more specified systems. The RE
tool can use or provide functionalities from/to other systems. Also, it must relate to
subsequent stages in the Software Engineering process.

Correctness
(FUN 5)

It is divided into three categories related to computing, completeness and consistency
capabilities. The violation of any of such properties may generate software without the
functionality level expected. Tools supporting RE must generate complete and consistent
requirements.

Table 2: Sub-characteristics proposed for Functionality of FLOSS tools supporting RE.

Sub-characteristic Description
Diagrams
(FUN 1.1)

The capability of the tool to represent RE related models through diagrams associated with a
modeling language, such as UML.

Documentation
(FUN 1.2)

The capability of the tool to provide mechanisms necessary to generate related documentation.

Classification
(FUN 1.3)

The capability of the tool to classify requirements associated with a software project.

Phase support
(FUN 1.4)

The capability of the tool to provide support to the different RE phases.

Consistent
(FUN 5.1)

The capability of the tool to verify that dependency relations among requirements, diagrams
generated from others, change traceability, among other characteristics, be consistent.

quality models of the product and development
process (Alfonso et al, 2008). MOSCA consists of
four levels, namely:

• Level 0. Dimensions. Includes the internal
and contextual aspects of the process, and the
internal ad contextual aspects of the product.

• Level 1: Categories. Consists of eleven (11)
categories, six (6) belonging to the product
and five (5) to the development process.

• Level 2: Characteristics. Each category has
a set of characteristics that define key areas to
achieve, assure and control product and
process quality.

• Level 3: Metrics. For each characteristic,
there is a series of metrics to measure
systemic quality; total metrics are 715.

MOSCA evaluates the software product in
accordance with international standards, given that
the aforementioned categories agree with the
characteristics of ISO 9126 (ISO/IEC 9126, 2001),
established to assure the quality of the software
product to be evaluated.

Mendoza et. al (2005) introduced an algorithm to
evaluate software quality using MOSCA, which will
be instantiated in the context of SQM for the
purpose of this research.

4 QUALITY MODEL PROPOSAL

The Systemic quality model (MOSCA) established

the selection of three out of the 6 Product
Perspective categories, one being Functionality. The
other two categories selected are Usability, because
the tool enables requirements management in a
simple and easy manner and provides an interface
that is appealing to users; and Maintainability,
because this a FLOSS tool and should allow
obtaining documentation to get access to
information required for making changes and
maintenance. Based on prior works of Pessagno et.
al (2008) and Alfonso et. al (2008), a sub-group of
characteristics was selected for each category; also,
a sub-set of metrics was selected for this sub-group,
and in certain cases, it was necessary to add new
metrics. Find below an explanation to each category
and criteria used for selecting these characteristics.

4.1 Functionality

Functionality is the capability of the software
product to provide functions which meet stated and
implied needs when the software is used under
specified conditions (ISO/IEC 9126, 2001). It is
essential that a RE tool meet the functional
requirements expected from a software product. The
characteristics selected for this category are
described in Table 1.

To fulfill the requisites necessary to represent
RE phases, new sub-characteristics were added, and
are presented in Table 2.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

250

Table 3: Usability characteristics.

Characteristic Definition and Rationale
Understandability
(USA 1)

The capability of a software product to enable the user software understanding and use. The RE
supporting tool must provide the required use easiness to the team in charge of eliciting and
managing requirements.

Learnability
(USA 2)

The capability of a software product to enable the user learning and performance of basic
operations. The RE tool must provide the user with use forms and enable it to learn how to operate
them.

Graphic interface
(USA 3)

The capability of a software product to be appealing to users. The RE tool interface must be
comfortable enough to manage requirements in a user-friendly environment.

Operability
(USA 4)

The capability of a software product to enable the user operation and control thereof. The user
should count on all facilities to operate and control the RE tool.

Self-descriptive
(USA 11)

A structural form is deemed self descriptive when its purpose is evidenced in the name of the
modules and when labels have meanings that refer to the application context. If the RE tool is self-
descriptive, the tool-user interaction will be easily achieved.

Table 4: Sub-characteristics proposed for Usability of FLOSS tools supporting RE.

Sub-characteristics Description
Ergonomics
(USA 1.1)

The capability of a tool interface to enable tool-user interaction.

Error control
(USA 4.1)

The capability of a tool to enable user recovery from system errors.

Documentation
(USA 4.2)

The tool’s documented functionalities.

Table 5: Maintainability characteristics.

Characteristic Definition and Rationale
Analyzability
(MAB 1)

The capability of a software product to be diagnosed for software error or
failure. The RE tool should be easy to diagnosed, as this will determine the
selection of parts susceptible of upgrades.

Changeability
(MAB 2)

The capability of a software product to enable the implementation or
improvement of new/existing functionalities. Changeability is an essential
characteristic of the RE tool subject to modifications; it allows adding
modifications suggested by developers.

Stability
(MAB 3)

The capability of a software product to avoid unexpected effects upon
functionality modifications. The RE tool subject to modifications must keep its
stability upon change implementation.

Coupling
(MAB 5)

The lowest possible coupling level is pursued as it enables software changes.
The RE tool is required to count on simple module interconnection to make
code modification much easier.

Cohesive
(MAB 6)

It is desirable that all elements be closely linked to each other and contributes
to meet the objective. The RE tool should have all its elements duly linked to
achieve simple and desirable operation.

Software maturity attributes
(MAB 8)

The group of features associated to age and use of the tool. The RE tool must
ensure that all modifications made in the future will not affect its quality.

4.2 Usability

Usability is the capability of the software product to
be understood, learned, used and attractive to the
user, when used under specified conditions
(ISO/IEC 9126, 2001), The RE tool should enable
requirements management in a simple and easy
manner and provide an interface that is appealing to
users. Table 3 shows the characteristics selected for
this category.

Table 4 shows the sub-characteristics added to
the original model and their corresponding
description.

4.3 Maintainability

Maintainability is the capability of the software
product to be modified. Modifications may include
corrections, improvements or adaptation of the
software to changes in environment, and in
requirements and functional specifications (ISO/IEC
9126, 2001), Because the tool subject to
modification is a FLOSS tool, it should enable the
obtaining of documentation to get access to the
information required to make changes and
maintenance. The characteristics selected for this

QUALITY MEASUREMENT MODEL FOR REQUIREMENTS ENGINEERING FLOSS TOOLS

251

Table 6: Sub-characteristics proposed for Maintainability of FLOSS tools supporting RE.

Sub-characteristic Description
Code readability
(MAB 1.1)

The capability of the source code to be read by any developer, even if not belonging to the project team.

Modification
(MAB 1.2)

The capability of the source code to be modified.

License
(MAB 2.1)

It refers to the tool license properties. A FLOSS tool license should count on 4 user freedoms, freedom to
have access to the source code, freedom to modify the code, freedom to copy the code, and freedom to
distribute the code.

Services
(MAB 3.1)

The support, consulting, and training services provided by the tool development community.

Adoption
(MAB 8.1)

The level of tool acceptance at the market among individuals and companies.

Table 7: The results obtained from the evaluation.

Category Feature Sub-feature StarUML OSRMT UCM OpenOME

Functionality

Suitability Suitability 60% 100% 60% 60%
Diagrams 40% 0% 0% 80%
Documentation 50% 0% 18.75% 11.11%
Classification 40.90% 69.69% 62.50% 47.82%
Phase support 43.75% 30.76% 28.57% 26.66%

Interoperability Interoperability 16.66%% 0% 37.50% 20%
Correctness Consistent 37.50% 71.42% 57.14% 14.28%

Functionality percentage 0% 14.29% 0% 14.29%

Usability

Understandability Understandability 100% 83.33% 100% 100%
Ergonomics 100% 100% 100% 100%

Learnability Learnability 50% 0% 100% 0%
Graphic interface Graphic interface 100% 100% 100% 100%

Operability Operability 80% 90% 80% 100%
Error control 100% 100% 0% 100%
Documentation 100% 100% 20% 100%

Self-descriptive Self-descriptive 100% 100% 100% 100%
Usability percentage 87.50% 87.50% 75.00% 87.50%

Maintainability Analyzability Analyzability 100% 100% 100% 100%
Code readability 100% 100% 100% 100%
Modification 100% 100% 100% 100%

Changeability Changeability 100% 100% 100% 100%
License 100% 100% 83.33% 100%

Stability Stability 100% 100% 100% 100%
Services 50% 50% 50% 100%

Coupling Coupling 100% 100% 100% 100%
Cohesive Cohesive 100% 100% 100% 100%

Software maturity
attributes

Software maturity attributes 66.66% 50% 83.33% 66.66%
Adoption 100% 80% 60% 80%

 Maintainability percentage 81.82% 81.82% 81.82% 90.91%
 Quality level Null Null Null Null

category are described in Table 5.Table 6 shows all
sub-characteristics added to this category. MOSCA
instantiation for FLOSS tools supporting
Requirements Engineering presents 210 metrics, of
which 129 are new metrics (127 for Functionality, 1
for Usability, and 1 for Maintainability).

5 INSTATIATION APPLICATION
AND RESULTS ANALYSIS

MOSCA instantiation was applied to four tools:

Open Source Requirement Management Tool
(OSRMT), StarUML, Use Case Maker (UCM) and
OpenOME, the four being open tools with Free
Software licenses. From these tools, StarUML is
considered and Analysis and Design tool, but may
also show other characteristics such as RE supply.
Also, StarUML allows for automatic generation of
the use case specification document.

OpenOME incorporates an improved version of
OME (a modeling and analysis tool oriented towards
goals and agents that provides connection between
requirements/specifications development and

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

252

architectonic design, and i*modeling support, which
is a framework suggesting an approach oriented
towards RE goals and agents), with other RE
supporting tools oriented to goals, agents, and
aspects. The results obtained from the evaluation are
detailed in the Table 7.

In sum, approximately 64 hours were incurred for
instantiation application. The process was performed
as follows: the tools’ most recent versions were
downloaded from the corresponding development
community website and installed. Then, applications
were run one by one and verified for metrics
compliance. For evaluation of Maintainability
metrics, we reviewed current information and
documentation at the official tool website.
Information required for software qualification could
not be found for some metrics; therefore in these
cases, a minimum punctuation was awarded (1).

For the Stability feature in the Maintainability
category, where no security patches were founds, the
formula was deemed a ratio (patches solved/patches
found) expressed in percentage values; 100% was
awarded.
The results obtained for the Functionality category:
StarUML obtained 0%, OSRMT 14.29%, UCM 0%,
and OpenOME 14.29%. According to the MOSCA
algorithm, none met the level of acceptance
required, which is 75%. Regarding results obtained
for Usability, all four tools exceeded the 75%
required. OpenOME, StarUML and OSRMT
obtained the highest punctuation at 87.50%,
followed by UCM with 75%. Lastly, for
Maintainability, all 4 tools exceeded 75%,
OpenOME with 90.91%, followed by StarUML,
OSRMT and UCM with 81.82%.
Given that none of the 4 tools met the minimum
satisfaction percentage required for Functionality,
they qualified as null quality tools. Nevertheless,
these four tools are above 75% for Usability and
Maintainability. According to the MOSCA
algorithm, when Functionality results do not reach
75%, the evaluation is suspended, but in this case, as
we are evaluating FLOSS tools, there is the
possibility of adding new functionalities to the tools,
as opposed to proprietary software tools, which do
not allow for modifications. Therefore, we are free
to choose a tool and subject it to any improvement
relating to the characteristics deemed appropriate for
our research. The selected tool was UCM, a tool
developed in C# language. It should be noted that
results presentation goes beyond the scope of this
article and will be addressed in future works.

6 CONCLUSIONS

This work proposes an instantiation of the MOSCA
model to measure the quality of FLOSS-based
software engineering tools supporting RE, which
should be easy to use and modify. This model was
applied to Open Source Requirement Management
Tool (OSRMT), StarUML, Use Case Maker (UCM)
and OpenOME, to prove the model usability and
select the most suitable tool to be modified in the
near future. In this case, the tool selected was Use
Case Maker. MOSCA may be adapted to any RE
tools with specific characteristics and may be used
by Small and Medium-sized Enterprises (SMEs) for
tool evaluation purposes.

ACKNOWLEDGEMENTS

This research has been financed by FONACIT
Venezuela, Project G-2005000165. Special thanks
to A. Sevilla.

REFERENCES

Alfonso, O., Domínguez, K, Rivas, L., Perez, M.,
Mendoza, L., & Ortega, M. (2008). Quality
Measurement Model for Analysis and Design Tools
based on FLOSS. 19th Australian Software
Engineering Conference (ASWEC 2008). Libro:
"Proceedings of the 19th Australian Software
Engineering Conference (ASWEC 2008)". Vol. 1. pp.
258 - 267

Perth, Australia. Basili, V., Caldiera, G. y Rombach, H.,
“The Goal Question Metric Approach”, en: Marciniak,
J. J. (ed.), Encyclopedia of Software Engineering,
Wiley, pp. 528–532, 2001.

Baskerville, R., “Investigating Information Systems with
Action Research”, Communications of the Association
for Information Systems, vol. 2, nº 19, pp. 1-32, 1999.

Dromey, G., “A Model for Software Product Quality”,
IEEE Transactions on Software Engineering, vol. 21,
nº 2, pp. 146-162, 1995.

ISO/IEC 9126-1, Software Engineering. Product Quality.
Part 1: Quality Model, ISO, 2001.

Kitchenham, B., “Evaluating Software Engineering
Methods and Tools. Part 1: The Evaluation Context
and Evaluation Methods”, ACM Software Engineering
Notes, vol. 21, nº 1, pp. 11- 14, 1996.

Mendoza, L., Pérez, M. y Grimán, A., “Prototipo de
modelo sistémico de calidad (MOSCA) del software”,
Computación y Sistemas, vol. 8, nº 3, pp. 196-217,
2005.

Pessagno, L., Domínguez, K., Rivas, L., Pérez, M.,
Mendoza, L., & Mendez, E. (2008). Modelo de
calidad para herramientas FLOSS que dan apoyo al
modelado de procesos del negocio. X Jornadas sobre

QUALITY MEASUREMENT MODEL FOR REQUIREMENTS ENGINEERING FLOSS TOOLS

253

Innovación y Calidad del Software (JICS), September.
Madrid.

Pérez, M., Grimán, A., Mendoza, L. y Rojas, T., “A
Systemic Methodological Framework for IS
Research”, Proceedings of the Tenth Americas
Conference on Information Systems AMCIS. New
York (USA), pp. 4.374-4.383, 2004.

Rincón, G., Mendoza, L. & Pérez, M. 2004. Guía para la
Adaptación de un Modelo Genérico de Calidad de
Software. IV Jornadas Iberoamericanas en Ingeniería
de Software e Ingeniería del Conocimiento - JIISIC,
Madrid, España.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

254

