
MODELING DATA INTEROPERABILITY FOR E-SERVICES

José C. Delgado
Instituto Superior Tecnico, Technical University of Lisbon, Av. Cavaco Silva, Porto Salvo, Portugal

Keywords: Service interoperability, Service modeling, Structural conformance.

Abstract: In global, distributed systems, services evolve independently and there is no dichotomy between compile
and run-time. This has severe consequences. Static data typing cannot be assumed. Data typing by name and
reference semantics become meaningless. Garbage collection cannot be used in this context and (references
to) services can fail temporarily at one time or another. Classes, inheritance and instantiation also don’t
work, because there is no coordinated global compile-time. This paper proposes a service interoperability
model based on structural conformance to solve these problems. The basic modeling entity is the resource,
which can be described by structure and by behavior (service). We contend that this model encompasses and
unifies layers found separate in alternative models, in particular Web Services and RESTful services.

1 INTRODUCTION

Complex and distributed information systems are
typically built by code in a general purpose
programming language, such as Java or C#, wrapped
into Web Services and orchestrated by a process
based workflow language such as BPEL.

Distributed data interoperability has been a
recurring issue, with XML and Web Services based
solutions as the main answers to this problem.
Higher levels of interoperability have been identified
(Tolk, 2006) in the context of the semantic web.

However, XML is essentially a text-based
serialization format, conceived mostly as an
extensible, customizable and self-describable way of
specifying documents, both in content and structure
(schema), and not a general purpose structured data
format designed for e-service interoperability.
Binary data is still treated in a separate, special way.

The relevance and widespread use attained in
just a few years by web browsing, intrinsically user
driven, was enough to justify the option of designing
XML as an evolution of HTML (maintaining text-
based markup) in what browsing and hypermedia
document description is concerned.

E-services and their interoperability, in the same
line of thought, became aligned with XML and built
on top of it, by using SOAP and the WS-* stack.
Unfortunately, this has introduced a level of
complexity and overheads that have motivated the
appearance of alternatives and variants, such as

REST (Pautasso, 2009) and WOA (Thies and
Vossen, 2009), in an attempt to build simpler and
more efficient systems.

This paper considers the original problem,
service interoperability, and draws a model of the
requisites it should comply with. This model is then
compared with the canonic XML-based solutions
available on the market today and the advantages of
this model analyzed.

2 THE PROBLEM

2.1 Data Interoperability

Although we commonly use the term semantic web,
ontologies are increasingly used and defined,
researchers identify several levels of interoperability
(Tolk, 2006) and knowledge transfer is a popular
term (in April 2010, Google Scholar was able to
retrieve more than 80,000 entries), the fact is that in
the end interoperability boils down to data. All the
other levels must build on top of it.

If a service wants to share information or
knowledge with another, it can’t. What it must do is
to produce data from its context, pack it into a
message and send it to the other service, which must
reinterpret it in its own context. If the ontology is not
the same, the information retrieved and the resulting
knowledge (or belief) will be different from the
original. But common ontologies can only be

271C. Delgado J. (2010).
MODELING DATA INTEROPERABILITY FOR E-SERVICES.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Information Systems Analysis and Specification, pages
271-276
DOI: 10.5220/0002907902710276
Copyright c© SciTePress

established cooperatively by data communication, so
no entity can be certain that the message it sends
gets correctly understood.

This can only be done by prior agreement
between the programmers of both services, using
some other form of communication. In fact, the set
of primitive data types used in a message format can
be considered the lowest common agreed ontology.
Both parties need to know what a byte sequence is to
exchange at low level a group of bytes, even without
further meaning. This paper does not tackle higher
levels of service interoperability (e.g., semantics).

2.2 Problems in Distributed Services

When programming one application, programmers
have the luxury of compiling the entire source
program at the same time (separate compilation is
just an optimization that avoids compiling modules
that do not depend on some change). In other words,
the life cycles of all the services contained in that
application are synchronized. Figure 1 illustrates a
typical life cycle of a service, with two loops. If
evaluation (according to some KPIs) is not
satisfactory, the cycle is restarted. If there is a
change, a new version is built (and the current
finalized). If the strategy finds that the service is not
worthwhile changing, it is eliminated.

Figure 1: Typical lifecycle of a service.

In global, distributed systems, services evolve
independently and there is no dichotomy between
compile and run-time. The system is always in run-
time and the interface of a service (and even its
location, through migration) can change at any time
without warning.

This has severe consequences. Static data typing
cannot be assumed. In fact, data typing by name and
reference semantics, usually basic programming
features, become meaningless. Reliable garbage
collection becomes much more difficult to achieve
in this context and (references to) services can fail
temporarily at one time or another. Classes,

inheritance and instantiation also don’t work,
because there is no globally coordinated compile-
time. How can we cope with such an environment?

3 AN INTEROPERABILITY
MODEL

This section presents a simple model, adequate for
distributed systems and reflecting our idea of what
service data interoperability should be based on.

3.1 Structure

We use structured models to capture the essential
aspects of structured entities of the real world, in
which change is the only constant. Therefore,
services must be prepared and agile to cope with
changes. The best way of achieving this is to have a
model that resembles reality as close as possible, so
that a small change in reality translates into a small
change in the model. An entity can be modeled by:

 Behavior only (black box approach, described
exclusively by how it reacts to stimuli from
the outside world);

 Structure only (its behavior depends entirely
on the interaction behavior resulting from its
internal component entities and how they are
interconnected);

 Both structure and behavior.

The main structuring paradigm is composition
(in the UML sense). One entity can only be part of
another, in a tree-based structuring hierarchy. An
entity can reference another outside its context, but
with the reference as one of its component entities.

 Behavior as a reaction to stimuli implies
interaction. In the context of e-services, our model
assumes discrete stimuli in the form of electronic
messages, which are entities in their own right and
under the same model. To interact, two entities must
be directly connected at some interaction point or
have a third one (that acts as a channel) connecting
directly to both. The channel can support
addressability, when it connects to many entities, but
this is a mechanism built on top of the basic
interaction model.

We use the term resource to broadly designate
the entities that are part of this model and service to
designate the behavior exhibited by a resource at an
interaction point. From the outside, a service appears
to be a non-structured resource with one interaction
point. A structured resource is a collection of

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

272

resources that, when expanded, yields a tree of
structured resources with services at the leaves.

Figure 2 illustrates the structure in this model.
Each resource can be described as a black box in
terms of behavior (the set of messages it is able to
respond to at the interaction points and
corresponding reactions) or structure (its component
resources, including internal connections that allow
private component resources to interact without
making them visible externally).

Figure 2: Example of structural modeling. Black dots are
the interaction points.

Figure 3 depicts the UML conceptual resource
metamodel (there are actually no classes involved).
A simple resource has no structure (just the service)
and is described only by its behavior, specified as a
set of operations.

Figure 3: Conceptual resource metamodel.

A structured resource is a collection of member
(component) resources, accessible from the
containing resource given its index (position) in the
collection. Some can also be associated with a name
and accessed by it. Members are the interaction
points in Figure 2. A visibility (public/private)

mechanism can be added to specify which members
are accessible from outside a resource.

The index and name would normally be modeled
as attributes of the Member classes, but in this way it
becomes clearer that we somehow need to model the
notions of a non-negative integer and of a string,
most likely as primitive resources. The reference is
another potential primitive resource, possibly
implemented as a URI with a resolution mechanism
that supports migration. Having a reference to a
resource implies registering it in some resource that
offers a directory service.

Therefore, we have two mechanisms to relate
resources:

 Containment. Migrating a resource implies
migrating all the resources it contains. Its
container needs to externalize it, removing it
(and its members) from its containing list;

 Usage. An access mechanism (by position and
by name) needs to be provided so that, given a
resource, a reference to any of its members
can be obtained.

3.2 Message based Interaction

Messages are themselves resources. If, in Figure 2, a
service in resource A wants to send a message to a
service in resource B to invoke some functionality, it
needs to:

 Create the message in the context of A;
 Externalize it to the channel;
 Internalize it in the context of B.

A message is in fact migrated from one resource

to another, in whose context it must be understood
without requiring additional service specific data
that leads to tight coupling.

A service transaction is defined as the entire set
of operations needed at A to produce and send a
request, execute it in B and eventually send a reply
and cope with it back in A.

Although higher level interaction patterns are
possible (Zdun, Hentrich and van der Aalst, 2006),
the basic model of message based service transaction
should be asymmetric (who defines the transaction
details is essentially the provider and the consumer
must comply with this), robust (the consumer must
deal with potential faults), push-based (the provider
must receive the message on the terms it specifies
and not be obliged to scavenge the message in
search of a potential request), self-describing,
loosely-coupled and asynchronous (e.g., using the
future mechanism of some concurrent languages).

MODELING DATA INTEROPERABILITY FOR E-SERVICES

273

3.3 Mechanisms for Distribution

Loosely coupled interoperability is one of the main
guiding tenets in distributed systems. Both consumer
and provider must assume the minimum possible
about each other, which precludes the use of many
of the features that modern programming languages
(in particular, object-oriented) have introduced.
The main solutions provided by our distributed
service model are:

 Any resource can change itself dynamically;
 Use of prototypes and cloning instead of

classes and instantiation;
 Use of delegation and composition for

behavior sharing, instead of inheritance and
interface implementation;

 Use of one single, recursive structuring
mechanism (the resource);

 Separation of data from the engines that
process them, so that services can exchange
data but use their own engines;

 Structural conformance (Kim, D., and Shen,
W., 2007), to match messages with patterns,
based on a structure built out of primitive
resources, instead of named typing;

 Use by all interacting services of a low level
common abstraction (such as a byte sequence)
to be used as a basis for the message format.

3.4 The Model in Action

The actual implementation of the resources and their
services is their internal affair, depending on the
engines they use to implement their behavior.

Figure 4 illustrates the basic operational model
of a resource, contemplating members described by
behavior (the upper broken line rectangle; only one
behavior interaction point represented) and by
structure (the lower part; two internal members, with
private interaction points, and one with a public
interaction point represented). Structurally, this
model is recursive, which means that the members in
the lower part have a similar structure. The Structure
Manager is an engine that supports the topology of
interconnections and the access (by name or
position) to the resource’s members. The set of
primitive resources is not really part of the resource
and is represented to make apparent that they are
available to be replicated (cloned) or shared by using
a reference.

The Receive engine includes the message listener
and eventually a message buffer. It implements a
given transport protocol and deals with the lowest
level data abstraction (sequence of bytes).

Figure 4: The operational model of a structured resource.

The Token Parser is an engine that reconstructs a
sequence of tokens, each representing a non-
structured, primitive resource. A symbol format may
be used if the underlying alphabet is higher level
than bytes (such as characters). The Message Parser
engine reconstructs the message as a structure (tree)
resource, using primitive resource tokens and
structure tokens as input. The Match engine tries to
successively match the message with one of the
patterns specified in the operations (Figure 3)
specified in the resource, using structural
conformance. If it succeeds, passes that information
to the next engine. Otherwise, it either resends the
message to another resource (delegation) or simply
ignores the message. The Instruction Interpreter
engine reads the (compound) instruction
corresponding to the pattern matched and executes
actions according to whatever meaning it assigns to
what it reads. Possible instructions include replying
to the message received or sending a message to
another service, which is the job of the Send engine,
complementary to the Receive engine.

All these engines need to support concurrency.
Reception of a new message creates a new task or
thread to carry out the corresponding request. The
Receive engine may limit this to avoid saturation of
the resource’s response capacity. The primitive
resources are shared by the various tasks.

3.5 Structural Conformance

Sending a message to a (remote) service is, in its
essence, a (remote) assignment. In a distributed
environment, reference semantics are meaningless or
not practical, which means the default must be copy-
semantics (reference-semantics is possible with the
Reference primitive resource). The value to assign

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

274

(the message) is transferred to the context of the
resource that receives it and likely affects its state.

One of the basic problems in an assignment is to
know whether the operation is acceptable, i.e., if the
message conforms to what the receiver expects and
knows how to cope with. Here, we cannot compare
data types by name. We only have tree structures
whose leaves are primitive resources and that are
structurally self-describing. Therefore, we need to
compare two trees and perform a structural
conformance. Specifically, we need to know if a
message just received conforms to one of the
patterns specified in the receiver service.

A pattern is nothing more than a normal
structured resource definition, in which each
member is declared as a replica of some other.
Named members can have some initial resource
value specified. If this is the case, it indicates that
this is an optional member for the message. The
basic algorithm of structural conformance can be
specified recursively in pseudo-code as described
below, where p and m are abbreviations for pattern
and message, respectively, and x <== y is a simple
notation for y conforms to x. Member names must be
unique within each resource. If more than one has a
given semantics, they should be encapsulated in a
structured resource with that name (and not in an
XML style sequence).

conforms = true;
for each named member in p
 if (there is a

 m.member.name == p.member.name)
 if (p.member <== m.member)

 p.member = m.member;
 else {conforms = false; break;}

 else if (p.member is optional)
 p.member = default value;
 else {conforms = false; break;}

An incoming message will match (conform to) a
pattern if all the named pattern members are
conformed to, either by message members with the
same names (assigned to the pattern members) or by
their default values. If there is no match, the
message will be tested for conformance against the
next specified pattern. In case of match, the resulting
(structured) value of the pattern can then be used by
the engine executing the (structured) instruction
corresponding to that pattern as if it were the real
message. Note that the matching is oriented by the
pattern that the receiving service expects and not by
the message. This means that all the message
members that do not match will be ignored.
Structural conformance, allowing default values,
members out of order and ignoring extra data, is a

fundamental aspect in supporting the loose coupling
in service interoperability.

This structural conformance algorithm can easily
be extended for non-named (by position) members,
but space limitations prevent full discussion here.

3.6 Describing and Specifying Services

A service should be described by its semantics.
However, this is still an insurmountable obstacle for
non-trivial services and description is usually limited
to a computer-readable interface, complemented
with some human-readable comments. We must
keep in mind that a service compiler cannot rely on
some available service interface description, because
the service might have been changed in the
meantime. It is more a hint than a specification.

What the consumer may expect as a reply after
sending a request message to some service provider
is also important, including not only the normal
responses but possible exceptions. All these are
resources and can be treated as such when
processing the reply. Exception treatment can be
carried out by some try-catch instruction. Structural
conformance applies in all cases.

The description of a service can be derived
automatically from the source specification of the
service itself and consists mainly of the list of
message and reply patterns in each operation (Figure
3). A resource is described by its services and,
recursively, by its public structured members.

This is just the basic interoperability model.
Higher level mechanisms, such as message access
control and security, can be implemented by
enclosing the message in another message that acts
as an outer envelope and that carries the required
information (which varies from service to service).

To describe and interoperate resources, we
basically need (Figure 4):

 A programmer level language or notation
(with structure, message patterns and
instructions), out of which interface
descriptions can be automatically extracted;

 A set of primitive resources, simple or
structured and both data and instructions;

 A serialization format, to support resource
migration (and message communication) and
processing by the engines;

 A compiler to translate the source
specifications to the serialization format;

 A server type of runtime environment to
support the engines;

 A transport protocol (at the byte stream level).

MODELING DATA INTEROPERABILITY FOR E-SERVICES

275

4 DISCUSSION AND RATIONALE

No system today implements this interoperability
model. The most widely available solutions to the
e-service interoperability problem are based on Web
Services (Peltz, 2003) and REST (Pautasso, 2009).
Both are layered approaches. Instead of one model
designed for services from ground up, they are based
on XML, a document description language, on top
of which messages, service descriptions (e.g.,
WSDL or WADL), behavior (e.g., BPEL) and even
protocols (e.g., SOAP) are built as if they were
documents described by schema documents. All
these layers introduce complexity and overheads.

There is an inherent mismatch here, because
XML was not conceived for message based systems.
The underlying XML model is symmetric and pull-
based, in the sense that an entity produces an XML
document and another reads it using typically the
same schema. The reader (message receiver in
services) then must browse the message in search of
what it needs, instead of having it delivered in the
format that it expects. That’s the difference between
a grammar based schema and a pattern based one.

There is also a lack of dynamicity. Data binding
takes care of softening (within limits) changes in the
schema in what the receiver is concerned. But that
usually requires re-compilation.

Our model contemplates document description
precisely in the same way as message passing, with
the added bonus that data binding is automatic and
dynamic, through the mechanism of structural
conformance. The receiver copes with a message
through its own pattern schema. Which schema the
sender used and even if the message complies with it
is irrelevant. The only thing that matters is if the
message conforms to the schema of the receiver.

Another fundamental issue is the intrinsic
difference between the WS and REST styles. The
Web Services are usually medium to high
granularity and have functionally rich interface.
Essentially, they are based on behavior. In contrast,
RESTful services are adequate to lower granularities
and emphasize a rich structure with a uniform
interface. Neither can really change their mode of
operation, unlike our model that has the intrinsic
ability of tuning up both behavior and structure, by
emphasizing structure with simpler interfaces or the
other way around. This is a feature granted by the
fact that the model is unique and not layered.

Another manifestation of this paradigm is the
unification of data and behavior within the model
itself. This means that actually programming the
behavior of services does not need another layer, as

with BPEL, but continues to use the basic service
paradigm with a foundation on structural
conformance. Active XML (Abiteboul, Benjelloun
and Milo, 2008) also contemplates the possibility of
invoking Web Services from an XML document, but
the model is still document-centered.

Coupled with this issue, and not of lesser
importance, lies the mechanism used to produce a
schema from a service/resource specification, by
simply removing instructions and private resources.
If no security issues arise, the schema is simply the
public part of the service/resource itself.

5 CONCLUSIONS

We have presented a model of service
interoperability, based on many of the ideas fostered
by the XML structural extensibility and separation
of data and processing engines, but in which the
basic unit is not the document but the resource,
including both structure and behavior (services).

An implementation is under development,
tackling the topics mentioned at the end of section
3.6, but not described here due to lack of space. It
deals with service interface only, but the model in
itself does not hamper semantic conformance (on top
of the structural one), which will be pursued next.

REFERENCES

Abiteboul, S., Benjelloun, O., Milo, T., 2008. The Active
XML project: an overview. The VLDB Journal, 17(5),
1019-1040.

Kim, D., and Shen, W., 2007. An Approach to Evaluating
Structural Pattern Conformance of UML Models. In
SAC'07, ACM Symposium on Applied Computing,
1404-1408, ACM Press.

Pautasso, C., 2009. RESTful Web service composition
with BPEL for REST. Data & Knowledge
Engineering, 68, 851–866.

Peltz, C., 2003. Web Services Orchestration and
Choreography. IEEE Computer, 36(10), 46-52.

Thies, G., Vossen, G., 2009. Modelling Web-Oriented
Architectures. In APCCM’09, Asia-Pacific Conference
on Conceptual Modelling. Australian Computer
Society Press.

Tolk, A., 2006. What comes after the Semantic Web -
PADS Implications for the Dynamic Web. In
PADS'06, 20th Workshop on Principles of Advanced
and Distributed Simulation. IEEE-CS Press.

Zdun, U., Hentrich, C., and van der Aalst, W., 2006. A
survey of patterns for Service-Oriented Architectures.
International Journal of Internet Protocol Technology,
1(3), 132-143.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

276

