
PW-PLAN
A Strategy to Support Iteration-based Software Planning

Deysiane Sande, Arnaldo Sanchez, Renan Montebelo, Sandra Fabbri and Elis Montoro Hernandes
Computing Department, Federal University of São Carlos, São Carlos, Brazil

Keywords: Planning, Planning Tracking, Process Improvement, Agile Method, Small Companies.

Abstract: Background: Although there are many techniques in the literature that support software size estimation,
iteration-based software development planning is still based on developers’ personal experience in most
companies. Particularly for the agile methods, iterations estimation must be as precise as possible, since the
success of this kind of development is intrinsically related to this fact. Aim: In order to establish a
systematic planning of iterations, this article presents the PW-Plan (Piece of Work Planning) strategy. This
strategy is based on four items: the iterative development, the use of a technique to estimate the complexity
of the work to be done, the adoption of personal planning practices and the constant evaluation of the Effort
Level (EL). Method: PW-Plan evolved from another strategy that was elaborated based on the systematic
practice of using Use Case Points, Personal Software Process and constant EL evaluation. Results: PW-Plan
was used by two small businesses companies in two case studies and showed that its application is feasible
from the practical point of view and that it enhances the development control. Conclusion: The case studies
provide insights of the PW-Plan contribution for both the developer’s and the manager’s processes.
Furthermore, the strategy application provides more precise estimations for each iteration.

1 INTRODUCTION

One of the key aspects of the planning and
management of projects is the estimation of how
long a project will last. According to Pressman
(2007), the estimated time and cost are often
imprecise. This problem becomes more serious in
the context of small business companies which
continuously deal with the market pressure to
develop high quality systems with restrict deadlines.
In such cases, the control of time and costs is vital to
continue in the market and the company revenue is
directly related to the delivery of each system
ordered within the estimations made.

Given this scenario, Sanchez, Montebelo and
Fabbri (2007) proposed the UCP|PSP strategy aiming
to achieve more precise estimations combining
continued planning and control activities in order to
keep planning adjusted with current time spent on
development. This strategy was built on the lessons
learned at Linkway company through the continued
use of Use Case Points - UCP (Karner, 1993) and
the Personal Software Process - PSP (Humphrey,
1995). Linkway is a small software company that
looks to the constant improvement of its software

development process. This concern led the company
to adopt the use of the PSP. Thus, the development
team uses the main practices of PSP 1.1 - related to
the project estimation - together with the Process
Dashboard tool (Dashboard, 2010), which supports
the PSP.

After defining the UCP|PSP strategy, it was
observed that its steps were quite naturally related to
agile practices proposed in the Scrum framework
(Schwaber, 2004). Being agile methods a feasible
methodology for small teams and not complex
systems (Beck & Andres, 2004), they become
appropriate in the context of small businesses.

Thus, the UCP|PSP strategy evolved, in order to
become more generic regarding the method used to
estimate size, planning and describing iterations not
only through use cases, but also by any other unit of
work, such as user stories. Moreover, being based on
iterations, it becomes adaptable, especially to agile
methods. This evolution of the UCP|PSP strategy was
given the name PW-Plan, which is presented in this
paper.

This article is organized as follows: Section 2
presents the concepts related to agile methods and
agile planning. Section 3 details the PW-Plan

66
Sande D., Sanchez A., Montebelo R., Fabbri S. and Montoro Hernandes E. (2010).
PW-PLAN - A Strategy to Support Iteration-based Software Planning.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages 66-74
DOI: 10.5220/0002909100660074
Copyright c© SciTePress

strategy proposed in this paper. In Section 4 it is
presented two case studies in two small business
companies, Linkway and NBS, showing the use of
the strategy in different situations. In Section 5 it is
presented the lessons learned and, finally, in Section
6 it is presented the conclusions and further work.

2 AGILE METHODS AND AGILE
PLANNING

The agile approach applied to software project
management came into the spot in 2001, date of the
publication of the Agile Software Development
Manifest (Manifesto, 2001). This manifest
highlighted their differences compared to traditional
methods, especially by being incremental,
cooperative, direct and adaptive. The most
prominent agile methodologies are: Extreme
Programming - XP (Beck & Andres, 2004),
Dynamic Systems Development Method (DSDM,
2010), Feature Driven Development - FDD (Palmer
& Felsing, 2002), Adaptive Software Development -
ASD (Highsmith, 2002), OpenUP (Openup, 2010),
the Crystal Clear and Orange methods of the Crystal
methodology (Cockburn, 2002) and Scrum
(Schwaber, 2004).

Scrum stands out among the methods due to its
emphasis on project management. It is an agile
framework that provides a set of best practices to
achieve the success of a project, supporting the
construction of a software product in iterative steps.
It does not define ‘what should be done’ in all the
circumstances. Hence, it may be used in complex
projects where it is not possible to predict everything
that will occur (Schwaber, 2004).

Scrum projects are carried out in a series of
iterations called Sprints. Each Sprint has a certain
time in calendar days to be completed. Schwaber
(2004) proposes a 30 days Sprint.

Scrum defines three main roles: Product Owner,
responsible for the requirements; Team, represented
by developers, and Scrum Master, represented by the
manager. The two main artifacts of Scrum are the
Product Backlog - list of requirements that must be
implemented in the system - and the Sprint Backlog
- list of tasks to be performed on a Sprint.

The process begins when the product owner has
a general description of the product to be developed.
From this description, called Vision, the Product
Backlog is created. At the beginning of each sprint,
the Sprint Planning Meeting takes place, where the
Product Owner prioritizes the Product Backlog

items. Based on this prioritization, the Team selects
the tasks that will be in the Sprint Backlog.

During the Sprint, the Team carries out the Daily
Scrum Meeting - which is 15 minutes long – where
the work is synchronized and possible issues are
discussed. At the end of each Sprint, the Team
presents the completed functionality at the Sprint
Review Meeting, and the Scrum Master encourages
the Team to review the development process to
make it more efficient for the next Sprint.

A key point for the proper practice of agile
methods is the planning of iterations. This planning
must be based on the size estimation of the items
that will be developed, and also based on the
productivity of the Team members. Although these
items may have different representations, the most
common one is user story, which is a brief
description of the functionality being developed
accordingly to the client's project vision (Cohn,
2005).

Among the existing methods to estimate the size
of the work to be done, Cohn (2005) highlights:

 Story Points (SP): unit of measure which express
the size of a user story, a system characteristic or
any piece of work to be developed.

 Ideal days: unit of measure which corresponds to
an ideal day of work, which is a day when every
resource needed, is available and the work is
done without interruptions.

Two scales of magnitude are suggested by Cohn
to characterize the complexity (or size) of the work
to be done: the Fibonacci sequence, in which the
next sequence number is the sum of the two previous
numbers (1, 2, 3, 5, 8,...); and a second sequence, in
which each number is twice the precedent number
(1, 2, 4, 8, 16,...). These scales can be used in
conjunction with what Cohn called Planning Poker.
In order to estimate the complexity of the task, Team
members receive cards with these sequence
numbers, and for each Piece of Work, the values are
arranged together until a consensus is reached.
Haugen (2006) presents results that indicate a good
performance of the Team on the accuracy of
estimations when this type of technique is used.

In addition to the methods presented to calculate
the size of the work to be done, there are other more
traditional techniques that can be used to assist in
planning. They are:

 Function Points Analysis (FP): proposed by
Albrecht (1979) for measuring software projects
size. This measure is calculated based on the
complexity of the technique five logical
components. These points are calculated in two

PW-PLAN - A Strategy to Support Iteration-based Software Planning

67

steps, generating respectively the unadjusted and
the adjusted points. In the latter, technical and
environmental factors are considered to interfere
with the complexity of the development.

 Use Case Points (UCP): proposed by Karner
(1993) to estimate software projects based on use
cases. This technique was inspired by FP and
also calculates the unadjusted and the adjusted
points. Unadjusted Use Case Points are based on
the complexity of actors and use cases. The
Adjusted Use Case Points considers
environmental and technical complexity factors,
much like FP. Based on the complexity, Karner
estimated the development time by multiplying
UCP by 20 man-hours. This is a value that
should be adjusted to the company size and to
the complexity of the software being developed.

The agile estimation techniques previously
mentioned are feasible alternatives to achieve the
necessary estimations in the strategy proposed in this
research, even if agile methods are not being used.
In addition, despite the technique used to estimate, it
is important to control and monitor the estimation
and the software planning. As it will be presented,
the strategy proposed herein takes into account this
activity.

3 PW-PLAN STRATEGY

The PW-Plan strategy is an evolution of UCP|PSP
(Sanchez et al., 2007), which was established by
systematically using the Use Case Points and the
PSP methods together. This strategy evolution
resulted from the observation that the strategies steps
would be easily adjusted to Agile Methods,
especially Scrum.

The strategy main goal is to support planning and
monitoring of the development plan of each
iteration, increasing the software development
process quality.

While Scrum only determines ‘what should be
done’ (Kniberg, 2007), the strategy defines ‘how it
should be done’.

In this paper context, it is considered the PSP 1.1
usage with the Process Dashboard tool, which
records the total time spent in every tracked activity.
However, if it is chosen not to use PSP and Process
Dashboard, the strategy can still be used, as long as
alternatives ways of time tracking are applied.

The strategy consists of two large blocks which
are constantly executed: planning and control. These

blocks feed each other with information gathered by
the PSP method, which provides constant feedback.

The Control block aim is to assess if the planning
elaborated in the Planning block is being correctly
followed and, if not, the reasons for this situation.
With the control activities feedback, the planning
activities are constantly adjusted by the LE (Level of
Effort), which represents the relationship between
time spent and work done. The work itself is
characterized by the complexity of the estimation
method that is being used, like UCP, SP, etc.

The Scrum roles are represented in the strategy
as follows: the Scrum Master is represented by the
manager; the Team is represented by the developers;
the Product Owner is the customer representative
who is responsible for the return of investment.

The Scrum activities are identified in the strategy
as: Sprint Planning Meeting 1 corresponds to Step 1;
Sprint Planning Meeting 2 is related to Steps 1, 2 and
3; the Sprint Review Meeting is related to Step 9.

Regarding the work to be done, the correlation
between Scrum and the proposed strategy is as
follows: the Product Backlog is represented by a
system specification that can be described through
use cases, stories, etc; the Sprint Backlog
corresponds to the Piece of Work (PW), which may
be composed by Items of Work (IW) that can be
composed of Tasks. For example, a PW may be a set
of use cases selected for an iteration; an IW, in this
case, means a use case which can be decomposed
into tasks.

Figure 1 presents the whole strategy, which is
composed by the following steps:

 Step 1 – Planning Meeting: from system
specification - which can be represented by use
cases, user’s stories and etc - the manager and the
developer discuss the complexity of the work to be
done. This complexity is characterized by a
technique compatible with the representation being
used. For example, use cases require the use of the
UCP technique; user stories require the use of Story
Points, and so on. In the case of Story Points, the
complexity will be determined using some technique
such as, for example, Planning Poker in conjunction
with the Fibonacci sequence.

 Step 2 – PW Detailed Planning: based on the
specification of Step 1, it is defined the PW to be
developed in the iteration. The IWs that compose
this PW are defined based on the development work
load of the iteration. If the iteration is the first one, it
should be used historical data or the manager and
developers’ experience to determine the LE. The
subsequent iterations must use the LE calculated in
step 8.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

68

Figure 1: PW-Plan strategy.

 Step 3 – Detailed IW Planning: each developer is
responsible for the division of the IWs assigned to
them in Tasks, using the method of his or her
preference. At the end of each Task the developer
must evaluate his LE accordingly to the time
recorded by Process Dashboard tool, aiming to
obtain a more precisely planning of the next task. If
PSP is being used, this auto-evaluation is equivalent
to the ‘postmortem’ activity. In addition, the Process
Improvement Proposal report is generated, where
errors are reported and estimation improvement
activities are proposed.

 Step 4 – Development: based on the detailed
planning of the previous step, the developer
effectively does coding, testing and defects fixing
activities according to his personal process, which
can be improved using the PSP guidelines.

 Step 5 – Concluded Task: this event is
characterized by the conclusion of a Task, hence
triggering Step 8, which calculates a new LE value.

 Step 6 – Concluded Item of Work: this event is
related to the conclusion of a IW, triggering Step 8;

 Step 7 – Concluded Piece of Work: end of
iteration. This is characterized by a PW conclusion,
triggering Step 9 execution;

 Step 8 – Current LE calculation: when a Task or
an IW are concluded, the developer’s LE must be
adjusted to meet the actual relationship between
work done and effort in man-hours. The adjustment
corresponds to accumulated time spent so far
(provided by PSP using the Process Dashboard tool)

divided by the number of points that represent the
complexity of work already done.

 Step 9 – Control Meeting: at the end of an
iteration, a meeting between manager and
developers is carried out to discuss lessons learned
and project scope. Eventually, the scope may change
due to found or eliminated requirements, which may
impact the initial planning. Besides, if the LE has a
very big variation in one unique iteration, it must be
evaluated if any external factor (technical or
environmental) may be interfering the developer’s
performance.

In summary, the PW-Plan Strategy provides a
systematic approach for planning and controlling
iteration-based software development. It is based on
the PSP guidelines for individual software process
improvement, particularly on the planning activities.
Iterative work is the base of the strategy and then, it
is easily adapted to Scrum. Besides, the strategy
work unit, named Piece of Work, is a general unit
and can also be adapted to the enterprise unit.

In the next section, two case studies will be
detailed showing the application of the strategy in
different situations.

4 CASE STUDIES

This section presents two application examples of
the proposed strategy: the first is the development,
from scratch, of a website by the Linkway company;

PW-PLAN - A Strategy to Support Iteration-based Software Planning

69

and the second is an enhancement to a traditional
desktop system by the NBS company. Each project
used a different estimation procedure: the first used
“Use Case Points” (UCP), while the second one used
“Story Points” (SP) together with the Fibonacci
sequence (Cohn, 2005). This fact shows that the
strategy is generic and can be adapted to different
habits and needs. In both cases the companies used
Process Dashboard (Dashboard, 2010), a free, open-
source PSP support tool.

4.1 Linkway Case Study – Use Case
Points

This case study was conducted at Linkway company
during the development of a web portal to a carpet
industry. This portal had the following features: a
catalogue of manufactured products, a list of
representatives, product news and institutional data.
These data were stored in a database and were
manipulated by the Web application. The whole
portal was built in Java (Sun, 2010) by only one
developer, who consumed approximately 216 man-
hours distributed over the nine use cases that
composed the system. To plan the activities, the
strategy presented in this paper was applied using
Use Case Points to calculate the estimation.

First, at the Planning Meeting (Step 1), the
manager and the developer defined the complexity
values of Actors and Use Cases, hence calculating
the Unadjusted Use Case Points. Also in this step,
the complexity of technical and environmental
factors were evaluated. Then, in the PW Detailed
Planning (Step 2), it was calculated the Adjusted
Use Case Points and the total estimated time to
develop the system. This time corresponds to the
multiplication of Adjusted Use Cases Points by the
LE, which was determined from the company’s
historical data. These values are presented in Table
1.

Still in the detailed PW planning stage, it was
defined the use cases (IWs) that composed an
iteration. To define the PW, it is necessary to know
the duration of one iteration. At Linkway, an
iteration corresponds to a two weeks’ period (or
around 60 hours). The workload of the iteration is
considered this way because a developer has a daily
journey of 8 hours of work, but for planning
purposes only 6 hours are considered per day. Thus,
considering the historical LE (3), each iteration
should have a maximum of 20 UCP (hours / LE = 60
/ 3 = 20).

Table 1: Initial Web system planning values developed by
Linkway.

Description Value

Unadjusted Use Case Points 101

Technical Complexity Factor 1.10
Environment Factor 0.85

Adjusted Use Case Points 93.45
Initial LE (company’s

historical data)
3 man-hours

Initial Total Time Estimated 280.40 man-hours

Based on this value, the use cases were

distributed considering 20 UCP per iteration. From
this point on, the system development was started
and both the LE and the total development time were
continuously adjusted. This adjustment allowed the
re-planning of the current iteration at the end of the
use case, and also allowed that the next iteration
would be calculated based on actual data instead of
historical information.

To perform these adjustments, at the conclusion
of each Use Case (Step 7), the following values were
updated:

 Accumulated Use Case Points value: the current
Use Case value plus the previously finished Use
Cases points;

 Accumulated time spent in the Use Cases
development: time spent in the current Use Case
plus the previously accumulated value;

 Current LE value: Accumulated Time divided by
Accumulated UCP (this new LE varies as the
developer’s performance varies);

 Remaining time to system finalization: new LE
multiplied by Adjusted UCP minus Accumulated
UCP so far.

Table 2 depicts the application of the strategy,
and such table must be elaborated as each Use Case
is finished. This systematic monitoring of the
development process provides the effective control
of the iterations and hence this allows the constant
adjustment of the iteration, making the overall
planning more feasible and less error-prone.

Thus, after finishing the use case 1, the
corresponding row for the use case was updated. The
accumulated values were exactly the same as
individual values because only this use case was
developed so far. The LE is then 1.70 (24.60 /
14.50), not 3.0 as it was initially assigned according
to historical data (see Table 1). Due to the decreased
LE value, the planning was recalculated and it was
possible to predict that the initial planning of 20
points per iteration could be increased to 30.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

70

Table 2: Results of the strategy application at Linkway.

 Step 1 Steps 1 and 2 Step 4 Step 8 Step 2

Use
Case

Complexity
Adjusted Use Case Points

Time effectively used for the Use Case
conclusion LE

Time left (in
hours)

Individual Accumulated Individual Accumulated

Sprint 1
1 Complex 14,50 14.50 24.60 24.60 1.70 134.22
2 Simple 5.24 19.74 8.36 32.96 1.67 123.10
3 Medium 9.87 29.61 38.20 71.16 2.40 153.22

Sprint 2
4 Complex 14.50 44.10 53.50 124.66 2.83 139.66
5 Medium 9.87 53.97 10.20 134.86 2.50 98.70

Sprint 3
6 Simple 5.24 59.22 6.50 141.36 2.39 81.81
7 Medium 9.87 69.09 29.50 170.86 2.47 60.17
8 Medium 9.87 78.96 28.50 199.36 2.52 36.51

Sprint 4
9 Complex 14.50 93.45 16.85 216.21 2.31 0

It is likely that the experience gained by the
developer has caused him to be more productive
developing this use case than in previously
developed applications, which had gave him an LE
equal to 3. Thus, if the developer continued with this
new calculated productivity, the application - which
initially should consume 280.4 hours - in the current
conditions would consume 158.87 hours of work
(93.45 UCP * 1.7 LE). Hence, the time estimated to
completely finish the application would be 134.22
hours ((93.45-14.50) * 1.70).

When the use case 2 was completed, the same
calculations described early were applied. The new
LE was, then, 1.67, indicating that to achieve full
implementation more 123.10 hours would be
needed. This would correspond to an error of 157.30
hours, compared with initial estimations.

Observing the data for use case 9, it is possible to
note that the LE has increased to 2.31, and that the
actual number of hours spent to develop the system
was, actually, 216.21, less than the original
estimation of 280.40 man-hours.

It should be highlighted that this constant change
in the LE was the result of the application and
registration of the planning activities of the PSP.
This procedure gives the developer a greater
personal planning capacity, as well as a more precise
work estimation capacity.

4.2 NBS Case Study – Story Points

The second case study, applied in NBS company,
was an update to a desktop system of public
accounting, developed in Delphi (Embarcadero,

2010). The existing accounting system was
restructured to meet the requirements of electronic
auditing by governmental agencies.

Because this is a maintenance activity in a
previously existing system, the application of Use
Case Points was not appropriate because only some
parts of the use cases would be modified. Thus,
modifications in the system were described as user
stories. As the previous case study, work was
performed by only one developer, who consumed
approximately 380 man-hours distributed over 40
stories that made up the system.

The Fibonacci sequence - which is one of the
methods proposed by studies in the area to
characterize the complexity of a user story (Cohn,
2005) - was used to calculate these Story Points.

At the Planning Meeting between manager and
developers (Step 1), each user story was given a
score, using the Fibonacci sequence. The total Story
Points to complete the development of the system
was calculated as 308.

Then, in the detailed PW planning activity (Step
2), the total time estimated to update the system was
calculated by multiplying the Story Points by the
LE, whose value was taken from historical data.
From these calculations, a determined story quantity
was allocated for each iteration, for the next two
weeks. These values are shown in Table 3.

The distribution of the stories per iteration was
done, as the previous case study, considering that
each iterations lasts for approximately 60 hours.
Thus, considering the historical LE (1.3), each sprint
should have, approximately, 47 points per story
(hours / LE = 60 / 1.3 = 47.2).

PW-PLAN - A Strategy to Support Iteration-based Software Planning

71

Table 3: Initial planning values of the desktop system
updated by NBS.

Description Value
Total Story Points 308
Initial LE (historical
data)

1.3 man-hours

Initial total time
estimated

400.4 man-hours

The development was then initiated, and the

adjustments of the LE and the remaining time for
conclusion were done at the end of each story.

When a story was concluded (Step 7), the
following values were updated:

 Accumulated Story Points: current story points
plus the previously accumulated value;

 Total accumulated time spent developing stories:
time spent developing current story plus previously
accumulated value;

 Current LE value: total accumulated time spent
developing stories divided by accumulated story
points;

 Total time to development completion: current
LE multiplied by total story points, minus
accumulated points so far;

Table 4 shows the developed stories during the
iterations and the calculated values when applied the
strategy. As an example, the LE calculation for story
3 was the total time (0.48 + 2.20 + 12.42 = 15.10)
divided by total story points (1 + 2 + 8 = 11), which
is 1.37 (15.10 / 11). The data is only partially shown
in table 4 because there were too many stories to be
represented in this paper.

When story 1 was finished, the corresponding
row was updated. The accumulated values were
exactly the same as individual values, because only
this story was developed so far. The LE is, then,
0.48 (0.48 / 1), and not 1.30 as initially attributed by
historical values. Hence, if the developer continued
with this productivity, only 147.36 hours would be
remaining to complete the whole development.

However, this LE value produced a very low
time estimation. Thus, it was decided to wait for the
completion of a more complex story to verify if the
productivity would remain so high. When story 3
was concluded, it was possible to note that the LE
was then much more near the initial value taken
from the developer history. Thus, the manager
decision was to keep the iteration development
considering the same quantity of stories distributed
in the PW Detailed Planning. At the end of iteration
1, the LE was 1.2, nearer the 1.37 of story 3. Based
in this new LE, a new Story Points was calculated as

the appropriate amount of work for each iteration.
This value is (time / LE = 60 / 1.20) 50 points. As
this story points values was similar to the initial
value (50), no modifications were made to the
iterations organization.

For this 308 story points system with average LE
of 1.24, the actual time spent developing the whole
system was 380 hours, which is less than the
originally estimated 400 hours. This difference
between estimated time and actual time, yet small
one, is a strong evidence of the developer’s
improvement in his personal planning capacity and
work estimation. This is, again, result of the constant
application of the PSP methods, which require that
the developer plan his work and then become more
precise in his estimations.

5 LESSONS LEARNED

The main lessons learned are related to the definition
of a personal process, planning and monitoring of a
software project.

The definition of a personal process improves the
productivity and the decision-making capacity of the
developer. In the case studies presented, both
companies formally adopted the PSP, which
provided a disciplined development environment
which productivity could be adjusted constantly.
Thus, if the developers do not adopt the PSP, they
should always produce estimations of the work to be
developed and then track the time spent to
effectively develop it.

The iteration-based development facilitates the
planning, which must be elaborated according to the
productivity of each developer. Hence, chances of
success are high, which makes the strategy very
feasible in the small businesses context.

The planning monitoring must be constantly
done, because it allows estimations to be adjusted at
any time in the development. This monitoring
should be done by the manager, who will act as a
coach of the team, constantly re-estimating the work
to be developed and encouraging developers to
improve their personal software development
processes.

6 CONCLUSIONS

In this paper, the PW-Plan strategy was presented.
This strategy supports the planning stage of
iteration-based software development. It can be

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

72

Table 4: Results of the strategy application in NBS company.

 Steps 1 and 2 Step 5 Step 8 Step 2

Iteration Story
Story Points
(Fibonacci)

Time spent (in hours)
Current LE

Time remaining
(hours)

Individual. Accumulated.Individual.Accumulated.

1

1 1 1 0.48 0.48 0.48 147.36
2 2 3 2.20 2.68 0.89 272.47
3 8 11 12.42 15.1 1.37 421.96

(…)
16 3 47 2.97 56.43 1.20 313.37

7
39 21 300 19.97 371.96 1.24 9.92
40 8 308 8.67 380.63 1.24 0

used with other development methodologies because
the planning phase is essential for every
development cycle. Each iteration develops a PW,
which can be composed of IWs that are distributed
among developers. These, in turn, can decompose an
IW into Tasks. Throughout development, the
developers must use the planning guidelines of the
PSP 1.1, so that the developer has a commitment of
planning and tracking the time associated with each
development effort. This approach allows the Level
of Effort (LE), which reflects the relationship
between work and the time spent doing work, to be
is constantly updated. This always up to date value
allows the monitoring of the project as a whole, as
well as each iteration.

According to case studies, it was obtained
evidence that the PW-Plan strategy supports the
project planning and control, providing an
improvement in the activities of both the manager
and the developer. For the manager, he will take
greater control over the project and will be able to
take decisions at the appropriate time if something
does not happen as expected. For the developer, he
finds out his productivity and, therefore, does more
precise estimations. Overall, estimations for the
software project are more accurate.

It is noteworthy that in the context of large
companies the strategy may have to be adapted,
because depending on the size of the development
team an individual control is more difficult. For
larger teams, the manager must define an approach
to "coach" several developers at the same time.
Basically, the strategy must be applied by each
developer and the manager should control their
productivity individually. The two case studies
presented had the participation of a single developer,
fact that did not allow a preliminary assessment of
this issue.

The LE value varied almost 100% from one
company to another. This clearly suggests that the

LE should be adjusted to the context of each
company in order to represent, preferably, the
productivity profile of each developer. There was a
relative stability of the LE for each project, allowing
the constant monitoring of development through the
analysis of this variable.

Because PW-Plan is based on iterations and in
the performance monitoring of the developer, it is a
generic strategy. It can be adapted to agile methods,
to the estimation technique used by the company and
from small to larger development teams.

As future work, it is intended to include in this
strategy other levels of the PSP, apply it to projects
with more than one developer and also explore other
types of metrics that could further improve planning.

At present, quality practices – especially
Verification, Validation and Testing (VV & T)
activities - are already being incorporated into the
strategy in a way that the same systematic control
remains functional. Also, it is intended to perform an
analysis of the strategy implementation as a support
to the implementation of some processes models,
such as Capability Maturity Model Integration
(CMMI, 2006) and Process Improvement of
Brazilian Software (MPSBR, 2007).

ACKNOWLEDGEMENTS

We would like to thank CNPq and FAPESP for the
financial support. Special thanks to Linkway and
NBS companies for their cooperation in the work.

REFERENCES

Albrecht, A. J. (1979). Measuring application
development productivity. Proceedings of SHARE/
GUIDE IBM Application Development Symposium

PW-PLAN - A Strategy to Support Iteration-based Software Planning

73

(pp. 83—92).
Beck, K. & Andres, C. (2004). Extreme Programming

Explained: Embrace Change. Addison-Wesley
Professional.

CMMI - Capability Maturity Model Integration Version
1.2. (2006), CMMI-SE/SW, V1.2 – Continuous
Representation. (SEI Technical Report CMU/SEI-
2006-TR-001).

Cockburn, A. (2002). Agile software development. Boston:
Addison-Wesley Longman Publishing Co., Inc.

Cohn, M. (2005). Agile estimating and planning. New
Jersey: Prentice-Hall.

Dashboard - The Software Process Dashboard Initiative.
(2010). Retrieved January 5, 2010, from
http://processdash.sourceforge.net

DSDM - DSDM Public Version 4.2 Manual. (2010).
Retrieved January 10, 2010, from
http://www.dsdm.org/version4/2/public/

Embarcadero - Delphi from Embarcadero. (2010).
Retrieved January 20, 2010, from
http://www.embarcadero.com/products/delphi

Haugen, N.C. (2006). An empirical study of using
planning poker for user story estimation. Proceedings
of Agile 2006 Conference (pp. -34).

Highsmith, J. (2002). Agile software development
ecosystems. Addison-Wesley.

Humphrey, W. S. (1995). A discipline for software
engineering. Pittsburgh: Addison-Wesley.

Karner, G., 1993, Resource Estimation for Objectory
Projects. Objective Systems SF AB (copyright owned
by Rational Software).

Kniberg, H. (2007). Scrum and XP from the Trenches -
How we do use Scrum. Retrieved from
http://www.crisp.se/henrik.kniberg/ScrumAndXpFrom
TheTrenches.pdf

Manifesto - Manifesto for Agile Software Development.
(2001). Retrieved November 5, 2008, from
http://agilemanifesto.org/

MPSBR. (2007). Melhoria de Processo do Software
Brasileiro – Guia Geral (Versão 1.2). Retrieved
January 4, 2010, from http://www.softex.br/mpsbr

Openup. (2010). Retrieved January 4, 2010, from
http://epf.eclipse.org/wikis/openup/

Palmer, S. R. & Felsing, J. M. (2002) A Practical Guide to
Feature-Driven Development. New Jersey: Prentice-
Hall.

Pressman, R. S. (2007). Software Engineering: A
Practitioner's Approach. New York: McGraw-Hill,
Inc.

Sanchez, A., Montebelo, R. & Fabbri, S. (2007). PCU|PSP:
Uma Estratégia para ajustar Pontos por Casos de Uso
por meio do PSP em Empresas de Pequeno Porte.
Proceedings of VI Simpósio Brasileiro de Qualidade
de Software (pp. 187-202).

Schwaber, K. (2004). Agile project management with
Scrum. Redmond USA: Microsoft Press.

Sun, Developer Resources for Java Technology. (2010).
Retrieved January 5, 2010, from http://java.sun.com

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

74

