
USING SQL/XML FOR EFFICIENTLY TRANSLATING QUERIES
OVER XML VIEW OF RELATIONAL DATA

Fernando Lemos
PRiSM Lab, Université de Versailles, 45 avenue des Etats-Unis, Versailles, France

Clayton Costa, Vânia Vidal
Departament of Computing, Federal University of Ceará, S/N av. Eng. Humberto Monte, Fortaleza, Brazil

Keywords: XML, Web Services, Relational Database.

Abstract: XML and Web services are becoming the standard means of publishing and integrating data over the Web.
A convenient way to provide universal access (over the Web) to different data sources is to implement Web
services that encapsulate XML views of the underlying relational data (Data Access Web Services). Given
that most business data is currently stored in relational database systems, the generation of Web services for
publishing XML view of relational data has special significance. In this work, we propose RelP, a
framework for publishing and querying relational databases through XML views. The main contribution of
the paper is an algorithm that translates XML queries over a published XML view schema into a single
SQL/XML query over the data source schema.

1 INTRODUCTION

A convenient way to provide universal access (over
the Web) to different data sources is to implement
data access Web services, i.e., Web services that
publish XML views of data stored in a data source.
Given that, a user can query the data source through
XML views. Without an XML view, the XML
application developer must be aware of the relational
schema and must write and maintain all the queries
to transform the SQL data into the desired XML
structure. In this case, the use of XML views causes
the developer to know only the exported XML
schema, over which he can write less complex XML
queries to retrieve the relevant date.

This strategy not only offers a flexible and
transparent way to publish underlying data but also
encapsulates details of access and transformation
between the application and the data. Moreover, with
the Semantic Web, the use of Web services and
ontologies will make the data store content machine-
processable and machine-interpretable.

The two main problems resulting from XML
publishing are: defining the XML view (how to
specify the mappings from source to target schemas)
and query answering (how to use the mappings to

answer correctly the queries posed on the XML view
schema). Additionally, approaches for publishing
relational data to XML must meet three requirements
(Fernández, 2002): (i) be general, i.e., the mapping
language must be flexible enough to allow specifying
complex XML schemas over the relational schema;
(ii) be selective, i.e., only the relevant data must be
materialized, since, in general, it consists of a small
part of the whole data; and (iii) be efficient, i.e., must
guarantee an efficient query processing by exploiting
the database optimizers and evaluation engines.

We have recently seen research aiming to provide
high level mapping languages for data migration
purposes (Haas, 2005; Popa, 2002; Melnik, 2005).
Meanwhile, the problem of query answering is
addressed in (Funderburk, 2002; Fernández, 2002;
Jiang, 2007; Krishnamurthy, 2003, Benham, 2003).
The query answering approach in these works must
handle mappings which are hard to manipulate,
leading to less-efficient query processing. Moreover,
they don’t guarantee efficient query processing and
the lack of mapping formalism in some works leads
to complex query-like mappings management.

In this paper, we present a framework, called
RelP, for publishing and querying relational
databases through XML views. In RelP, users can

269Lemos F., Costa C. and Vidal V. (2010).
USING SQL/XML FOR EFFICIENTLY TRANSLATING QUERIES OVER XML VIEW OF RELATIONAL DATA.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages
269-274
DOI: 10.5220/0002909302690274
Copyright c© SciTePress

Figure 1: Components and interfaces required for RelP.

define XQuery queries over an XML view schema.
The query is translated into a single equivalent
SQL/XML (Eisenberg, 2004) query defined over the
relational schema. The choice for the SQL/XML
standard relies in its flexibility and simplicity to build
arbitrarily complex declarative queries that return
XML data from relational data in the structure the
user desires. These characteristics allow us to
guarantee that a single SQL/XML query is obtained
in the query answering process.

In our approach, a view is specified by a set of
correspondence assertions (Popa, 2002; Vidal, 2006),
which defines how to transform source states to view
states. The views that we address are focused on
schema-directed XML publishing (Bohannon, 2004).
As such, the correspondence assertions induce
schema mappings defined by the class of projection-
selection-equijoin (PSE) SQL/XML queries, which
support most types of data restructuring that are
common in data exchange applications. We make a
compromise in constraining the expressiveness of
mappings so we can have a query answering
algorithm that is much more efficient than those
implemented by others XML publishing tools.

The main contribution of the paper is an
algorithm that translates XML queries over a
published XML view schema into a single
SQL/XML query over the data source schema. The
efficiency of our algorithm relies in two particulars:
(i) the view mappings analysis is done at design time
to generate a set of SQL/XML fragments (Query
Templates), which are used in the query answering
process; and (ii), the execution of SQL/XML queries
takes advantage of traditional relational optimizers,
which represents a considerable gain in performance
(Liu, 2005). RelP also features a graphical interface
to help in the creation of the XML view.

The rest of the paper proceeds as follows. Section
2 discusses the related works. Section 3 gives an
overview of the main components of RelP. Section 4
discusses the process for publishing an XML view
with RelP. Section 5 presents the query answering

process in RelP. Finally, Section 6 presents the
conclusions and shows experimental results and
corresponding analyses.

2 RELATED WORK

In the last years, several middlewares and
frameworks have been proposed to treat the problem
of XML publishing.

In XTables (Funderburk, 2002) and SilkRoute
(Fernández, 2002), the XML view schema and
mapping knowledge is specified by an XQuery
query over a canonical XML representation of the
relational schema. A query defined over the view
schema is translated into equivalent SQL queries and
the SQL results are tagged to produce the final XML
document. Efficient query processing is not
guaranteed, since for a single query more than one
SQL queries can be generated. Moreover, the lack of
mapping formalism leads to complex XQuery-based
mappings generation and maintenance.

In Clio’s Three-Phase Framework (Jiang, 2007),
a view is specified by a set of tuple-generating
dependencies (tgds) (Haas, 2005). These mappings
can be generated with the help of Clio tool (Haas,
2005). The framework (i), based on the view tgds,
extracts the relevant data from the data source, (ii)
generates XML fragments from the relevant data,
and (iii) merges/groups the XML fragments to
produce the final result. The framework is used in
the transformation and transport of data between
source and view schemas. Therefore, it is not
possible to query the database through the view.

In XML Publisher (Vidal, 2004), the view is
defined by its schema and a set of correspondence
assertions between the view schema and the data
source schema. Based on the view mappings, a
canonical object view is created in the underlying
DBMS. A query defined over the view schema is

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

270

FK1

FK3

FK2

CUSTOMERS_REL
CUST_NO

CUST_NAME
STREET
CITY
STATE
ZIP
PHONE1
PHONE2
PHONE3

ORDERS_REL
ORDER_NO

CUST_NO (FK)
ORDER_DATE
SHIP_DATE
TO_STREET
TO_CITY
TO_STATE
TO_ZIP

LINE_ITEMS_REL
ORDER_NO (FK)
ITEM_NO

PROD_NO (FK)
QUANTITY
DISCOUNT

PRODUCTS_REL
PROD_NO

NAME
PRICE
TAX_RATE

 PurchaseOrder_Type
@ID (integer)
OrderDate (date)
Customer (Customer_Type)

Address (Address_Type)
Street (string)
City (string)

ZIP (string)
Phone* (string)

LineItem* (LineItem_Type)
ItemNo (integer)
Product (string)
Quantity (integer)

Name (string)

State (string)

Discount (float)
Figure 2: Relational Schema ORDERS_DB. Figure 3: XML Type PurchaseOrder_Type.

first translated into a SQL:92 query over the
canonical view schema, and then the DBMS view
mechanism takes place to answer the query. The
obligation to create an object view at the data source
level makes the approach undesirably intrusive.

A significant amount of DBMSs, such as Oracle,
DB2 and PostgreSQL, currently features publishing
SQL data in XML format using the SQL/XML
standard. Among them, only Oracle provides a
SQL/XML view mechanism in which views can be
queried using XQuery language.

In summary, on the one hand, we have
middleware approaches that have complex mapping
languages and do not guarantee efficiency in query
processing. At the same time, we have some
database systems that feature the SQL/XML
standard, but a few number of them provides an
SQL/XML view mechanism. Thus, the need for low-
cost solutions that support the creation of XML
views in a simple way to ensure easy access to data
and efficient query processing motivates this work.

3 RelP ARCHITECTURE

A simplified view of the RelP architecture is shown
in Figure 1. The XML View Publisher is an evolution
of XVBA tool (Vidal, 2007). As XVBA, this
component allows users to graphically define XML
views, but, instead of generating the SQL/XML
view definition, it generates the query templates of
the view, which are used in the query translation.
The view schema and its query templates are stored
via the Catalogue Manager component.

The Query Browser component allows users to
graphically define a query over the XML views. The
Query Translator component translates an XML
query posed in terms of an XML view schema into
an SQL/XML query over the data source schema by
using the query templates stored in the Catalogue.

The Data Access Service interface provides
standard access for querying the XML views. It
provides the following methods: (i) getCapabilities:
requests the capabilities of the data access service
(specifically, which XML views are serviced); (ii)
describeViewType: requests the description of an
XML view serviced by the data access service; (iii)
query: requests the execution of an XQuery query
over the schema of an XML view serviced by the
data access service.

The Request Manager component simply
redirects the requests to the appropriate components.

4 PUBLISHING AN XML VIEW

The publication of an XML view in RelP consists of
two steps: (i) First, with the help of the XML View
Publisher, the user defines the XML view schema and
the correspondence assertions between the view
schema and the relational schema, as explained in
(Vidal, 2007). (ii) Then, the query templates are
automatically generated based on the view assertions.
The query templates of a view are composed of a set
of SQL/XML fragments, each one responsible to
generate an attribute/element of the view. The
procedure that automatically generates the query
templates can be found in (Lemos, 2010).

Consider the relational schema ORDERS_DB
depicted in Figure 2. Suppose the XML view
PurchaseOrder_XML, which is a set of
<PurchaseOrder> elements, instances of type
PurchaseOrder_Type (Figure 3), generated from the
tuples of the relational scheme ORDERS_REL. The
correspondence assertions of PurchaseOrder_XML can
be found in (Vidal, 2006).

The query templates generated from the
correspondence assertions of the view are shown in
Figure 5. In the PurchaseOrder_Type template, for
example, each attribute/element of the complex
type PurchaseOrder_Type have one corresponding

USING SQL/XML FOR EFFICIENTLY TRANSLATING QUERIES OVER XML VIEW OF RELATIONAL DATA

271

INPUT: output node $nodeTP of a tree pattern query; node $nodeQT of a
query template QT
OUTPUT: SQL/XML subquery Q
CASE 1: If $nodeTP is not labelled with * THEN
Q := $nodeQT.query + GenFilter(f), where f is the set of conditional
expressions of $nodeTP;
CASE 2: If $nodeTP is labelled with * THEN
LET $node'QT := $nodeQT.reference;
Q := $node'QT.query + GenFilter(f), where f is the set of conditional
expressions of $nodeTP;
Qc := "";
FOR EACH output child $childTP of $nodeTP, where δ is the path from
$nodeTP to $childTP DO
LET δQT be the equivalent path of δ in QT;
Qc := Qc + $node'QT.δQT.query;
END FOR
REPLACE %content% in Q by Qc;
RETURN Q;
Note: GenFilter(f) translates the conditional expressions in f to the
correspondent SQL filter clauses.

Figure 4: Procedure GenSubquery.

Figure 5: Query Templates for PurchaseOrder_XML.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

272

SELECT XMLELEMENT("PurchaseOrder",
 XMLFOREST(O.ORDER_DATE AS "OrderDate"),
 (SELECT XMLELEMENT("Customer",
 XMLFOREST(C.CUST_NAME AS "Name"),
 XMLELEMENT("Address",
 XMLFOREST(C.STREET AS "Street"), XMLFOREST(C.CITY AS "City"),
 XMLFOREST(C.STATE AS "State"), XMLFOREST(C.ZIP AS "ZIP")),
 XMLFOREST(C.PHONE1 AS "Phone", C.PHONE2 AS "Phone", C.PHONE3 AS "Phone"))
 FROM CUSTOMERS_REL C WHERE C.CUST_NO = O.CUST_NO),
 (SELECT XMLAGG(XMLELEMENT("LineItem",
 (SELECT XMLFOREST(D.NAME AS "Product")
 FROM PRODUCTS_REL D WHERE D.PROD_NO = L.PROD_NO),
 XMLFOREST(L.QUANTITY AS "Quantity")))
 FROM LINE_ITEMS_REL L WHERE L.ORDER_NO = O.ORDER_NO AND L.QUANTITY < 20))
FROM ORDERS_REL O, CUSTOMERS_REL C WHERE O.CUST_NO = C.CUST_NO AND C.CITY = 'Baltimore';

Figure 8: Translated SQL/XML query.

for $v1 in
view(PurchaseOrder_XML)/PurchaseOrder
where $v1/Customer/Address/City = "Baltimore"
return <PurchaseOrder>{
 $v1/OrderDate, $v1/Customer,
 for $v2 in $v1/LineItem
 where $v2/Quantity < 20
 return <LineItem>{
 $v2/Product, $v2/Quantity
 }</Line Item>
 }</PurchaseOrder>

Figure 6: XQuery QX1.

PurchaseOrder*

Customer

Address

City

OrderDate LineItem*

Product Quantity

20
<

"Baltimore”
=

Figure 7: Tree pattern query TX1.

SQL/XML subquery that specifies how it is computed
from the data source. The remaining templates
contain the fragments of other complex types used in
the view type definition.

5 ANSWERING XML QUERIES
IN RELP

The user can query an XML view through the Data
Access Service interface using XQuery language.
The user can graphically formulate the query using
the Query Browser component.

The Query Translator component translates an
XML Query QX posed in terms of an XML view
schema into a SQL/XML query QS over the data
source schema. QS is a correct translation for QX,
which means that the result of executing QX over the
XML view state is equivalent to the result of
executing QS over the database state, in a given time
(Lemos, 2010).

The Query Translator component accepts any
XQuery queries that can be expressed as a tree
pattern query (TPQ). In our approach, a tree pattern
query is a labelled tree whose nodes are labelled by
element/attribute names or data values. Nodes
pointed by arrows are called output nodes, and
indicates that the correspondent attribute/element is
part of the query result. Element nodes having its
content restructured are also labelled by the symbol
*. Filters are selection expressions modelled labelling
the edge with a Boolean operator. Filters are applied
to the closest unbounded ancestor output node.

For instance, consider the XQuery QX1 presented
in Figure 6. The query asks for the orders of
customers in Baltimore, and for each order, it asks
for the items having quantity greater than 20. The
correspondent TPQ TX1 is shown in Figure 7. In TPQ
TX1, the filter “City = Baltimore” is applied to
PurchaseOrder node and “Quantity > 20” is applied to
LineItem node.

The Query Translator algorithm translates an
XQuery query into a single correspondent
SQL/XML query over the source relations. The
translation is done by matching the TPQ against the
query templates of the view. The SQL/XML
fragments of the matched nodes are composed to
generate the final query.

The procedure GenSubquery shown in Figure 4
generates the SQL/XML subquery that computes the
XML element represented by an output node. For
example, consider the XQuery QX1 of Figure 6. The
steps of the query translation are presented below:

from PurchaseOrder_Type Template, Customer node
from PurchaseOrder_Type Template, OrderDate node

from PurchaseOrder_Type Template, LineItem* node
from LineItem_Type Template, Product node

from LineItem_Type Template, Quantity node

from PurchaseOrder_Type Template, PurchaseOrder* node

USING SQL/XML FOR EFFICIENTLY TRANSLATING QUERIES OVER XML VIEW OF RELATIONAL DATA

273

(1) Generation of the TPQ TX1 (see Figure 7).
(2) Matching of the output node
PurchaseOrder* of TX1 with the node
PurchaseOrder* of the PurchaseOrder_Type
template. The conditional expression
Customer/Address/City = "Baltimore" is translated
into a correspondent SQL clause, which is added
to the WHERE clause of the SQL/XML fragment
of PurchaseOrder* node.
(3) Matching of the output nodes Customer and
OrderDate with the nodes Customer and OrderDate
of PurchaseOrder_Type template, respectively.
(4) Matching of the output node LineItem* with
the node LineItem* of LinteItem_Type template. The
conditional expression Quantity > "20" is translated
into the correspondent SQL clause and added to
the WHERE clause of the fragment of LineItem*
node.
(5) The placeholder %content% in the
SQL/XML fragment of PurchaseOrder* node is
replaced by the SQL/XML fragments of
Customer, OrderDate and LineItem*.
(6) Finally, the nodes Product and Quantity of
TX1 are matched with the nodes Product and
Quantity of LineItem_Type template, respectively.
The placeholder %content% in the SQL/XML
fragment of LineItem* node is replaced by the
SQL/XML fragments of Product and Quantity.
Figure 8 shows, in details, the SQL/XML

translation for the XQuery QX1 shown in Figure 6.
Figure 8 indicates the template and path used to
generate each subquery.

6 PERFORMANCE ANALYSIS
AND CONCLUSIONS

In this paper, we presented RelP, a framework for
publishing and querying relational databases through
XML views. We first showed how to specify a view
with the help of correspondence assertion. Next, we
presented an algorithm that translates XML queries
over a published XML view schema into a single
SQL/XML query over the data source schema.

We evaluate the performance of our algorithm
with respect to the query complexity and time
response. We compared our implementation with the
approach of using Oracle’s built-in XML view
mechanism. The results in Figure 10 show that our
approach can be significantly faster, if not, we have
similar performance (Lemos, 2010).

The main reason of this performance benefit
comes from our query templates, which are
generated at view creation time. It means that the

query translator component doesn’t have to deal
with the complexity of the view mappings at
execution time.

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ti
m
e
(m

s)

XQuery Queries

Oracle RelP

Figure 9: Response time vs. query.

REFERENCES

Benham, S E 2003, 'XML-Enabled Data Management
Product Architecture and Technology', XML Data
Management, Native XML and XML-Enable Database
Systems, Addison Wesley.

Bohannon, P et al 2004, 'Incremental evaluation of schema-
directed XML publishing', SIGMOD’04, pp. 503-514.

Eisenberg, A et al 2004, 'SQL:2003 has been published'
SIGMOD’04, pp. 119-126.

Fernández, M et al 2002, 'SilkRoute: A framework for Pu-
blishing relational data in XML', TODS’02, pp.438-493.

Funderburk, J E et al 2002, 'XTABLES: Bridging relational
technology and XML', IBM Systems Journal, vol.41, n. 4.

Haas, L M et al 2005, 'Clio Grows Up: From Research
Prototype to Industrial Tool', SIGMOD’05, pp. 805-810.

Jiang, H et al 2007, 'Mapping-driven XML Transformation',
WWW’07, pp. 1063-1072.

Krishnamurthy, R et al 2003, 'XML-to-SQL Query
Translation Literature: The State of the Art and Open
Problems', XSym’03, pp. 1-18.

Lemos, F C et al 2010, 'Using SQL/XML for Efficiently
Translating Queries over XML View of Relational
Data', Technical Report, http://lia.ufc.br/~arida

Liu, Z H et al 2005, 'Native XQuery Processing in Oracle
XMLDB', SIGMOD International Conference on
Management of Data, pp. 828-833.

Melnik, S et al 2005, 'Supporting Executable Mappings in
Model Management', SIGMOD’05, pp. 167–178.

Popa, L et al 2002, 'Translating Web Data', VLDB’02, pp.
598–609.

Vidal, V M P & Lemos, FC 2007, 'XVBA: A Tool for
Semi-Automatic Generation of SQL/XML Views', IV
Demo Session, SBBD’07, pp. 57-62.

Vidal, V M P et al 2006, 'Automatic Generation of
SQL/XML Views', SBBD’06, pp. 221–235.

Vidal, V M P et al 2004, 'XML Publisher: Um Framework
para Publicação de Dados Armazenados em Banco de
Dados Relacional ou Objeto Relacional como XML', 1st
Demo Session, SBBD’04, pp. 07-12.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

274

