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Abstract: This paper investigates the utilization of Genetic Programming (GP) as a method to facilitate better software 
cost modeling and estimation. The aim is to produce and examine candidate solutions in the form of 
representations that utilize operators and operands, which are then used in algorithmic cost estimation. 
These solutions essentially constitute regression equations of software cost factors, used to effectively 
estimate the dependent variable, that is, the effort spent for developing software projects. The GP 
application generates representative rules through which the usefulness of various project characteristics as 
explanatory variables, and ultimately as predictors of development effort is investigated. The experiments 
conducted are based on two publicly available empirical datasets typically used in software cost estimation 
and indicate that the proposed approach provides consistent and successful results. 

1 INTRODUCTION 

The issue of locating functions (or equations) in 
software cost estimation to effectively describe 
effort, usually expressed in person-months, is a long-
pursued objective in the software engineering 
research and practise. Essentially a software 
manager requires a viable method to predict, or at 
least approximate, the total costs spent, including 
money, physical and technical resources, as well as 
the effort required to generate a software product 
during the development process. Nevertheless, the 
software industry’s inability to provide accurate 
estimates of development effort is well known.  

Inaccuracies of the effort required in software 
projects by organizations have a strong impact on 
their business continuity, reputation and 
competitiveness. This occurs because effort 
estimates are strongly related to correct budget and 
schedule planning acquisition, while they also affect 
the delivery of high quality software with the 
minimum expenditures in resources. Literature 

shows that the average effort overruns has not been 
considerably improved over the last 10-20 years 
while the fields of research for cost estimation and 
industry are quite disconnected (Jørgensen and 
Shepperd, 2007). The main difficulties and 
limitations that impose this disconnection stem from 
the dynamic nature of the software development 
process. Specifically, the process faces risks 
associated with the uncertain parameters at the 
beginning of a new project, the lack of trained 
estimators with the necessary expertise to support 
the estimation process and the hindering factors 
related to people, process and product developed, 
that eventually affect cost. These factors relate to 
high software complexity, volatile technologies, 
development group dynamics and skills, 
complicated team communication networks and 
cohesion.  

Software effort prediction is usually based on 
historical project data samples either gathered within 
or outside the development organization. Analyzing 
the data that relate the project characteristics (of 
nominal, ordinal, or numerical nature) with project 
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costs (primarily effort) is greatly appreciated and 
required in most effort estimation models. The aim 
of this paper is to attempt to offer effort prediction 
with the use of evolutionary models and more 
specifically structures that are automatically created 
and serve as candidate solutions through Genetic 
Programming (GP). These structures combine 
different cost factors in simple mathematical 
equations, close to regression models, which are 
assessed in terms of how accurately they calculate 
effort values within two cost estimation datasets.  

The rest of the paper is organized as follows: 
Section 2 presents a brief background review of 
software cost estimation literature and presents a 
short description of the methods used. Section 3 
describes the use of GP on the public datasets 
selected for experimentation. Section 4 presents the 
basic concepts of GP and explains how these were 
modified to be applied for software cost estimation. 
A detailed description of how the experiments were 
designed and conducted is provided in Section 5, 
along with the prediction results obtained by 
executing the best equations provided by the GP, 
which calculate the expected effort. Finally, Section 
6 presents the conclusions, discusses briefly some 
limitations and outlines future research steps. 

2 BACKGROUND LITERATURE 
OVERVIEW 

Over the last thirty years substantial work has been 
conducted using estimation techniques ranging from 
algorithmic and estimation-by-analogy to expert 
judgement and machine learning techniques. These 
techniques aim to acquire improved estimation 
models that could enable project managers to 
effectively manage project resources. They  rely, in 
a varying degree, on previous experiences or 
concentrated project data to develop software cost 
models. The specified information reflects previous 
project experiences and typically describes the 
characteristics of completed projects. Most models 
developed focus on explaining the effort using a 
variety of project factors, usually of a numerical 
nature. More specifically, algorithmic models 
attempt to introduce mathematical equations 
containing cost factors for estimating the associated 
development effort, usually via regression 
techniques. They may also use expert judgment, 
which relates to consulting several experts on the 
proposed software development technique and 
application domain. Well-known examples are 

SLIM (Putnam, 1978), Function Points Analysis 
(FPA) (Albrecht, 1979), COCOMO I (Boehm, 1981) 
and the newer version of COCOMO II (Boehm et 
al., 2000), etc.  

Machine learning approaches in software cost 
estimation, flourishing mostly in the mid 90s, reach 
to better effort approximations and automate the 
process of searching enhanced solutions. Such 
applications include artificial neural networks 
(Heiat, 2002; Papatheocharous and Andreou, 2007), 
evolutionary algorithms such as genetic (Burgess 
and Leftley, 2001; Lefley and Shepperd 2003; 
Huang and Chiu, 2008; Razmi et al., 2009), fuzzy 
logic (Xu and Khoshgoftaar 2003), etc.  

It is frequently the case that machine learning 
techniques are compared with the classical 
regression method, which serves as the benchmark 
(Burgess and Leftley, 2001; Heiat 2002; Lefley and 
Shepperd 2003). The reason for applying diverging 
methods over the same datasets stems from the 
hypothesis that different methods may obtain a 
different and more successful description of the 
relationship between project attributes. However, 
finding and analyzing all possible combinations of 
solution relationships for estimating effort is 
difficult, complex and time consuming. Thus, the 
problem to determine the optimal regression 
expressions in the sense of prediction ability and 
relative error for cost estimation may be viewed as 
an optimization problem imposing computational 
challenge. Additionally, in such optimization 
problems, where the search space is huge, among the 
most popular techniques lay the Evolutionary 
Algorithms and especially when the space involves 
regression equations Genetic Programming (GP) is 
considered a widely-accepted alternative. The latter 
technique does not require any knowledge a-priori 
and provides usually close approximations to the 
optimum solution.  Furthermore, unlike classical 
regression approaches that assume normal 
distribution for the data, it makes no such 
assumptions. GP implementations may explore all 
possible combinations of regression equations based 
on natural evolution and on the Darwinian theory of 
natural selection (Holland, 1992).  GP may also be 
considered a promising method for obtaining 
optimized modelling of the software cost estimation 
problem because it is an adaptive search technique, 
able to explore a vast set of potential solutions, 
which once they are obtained, they can be 
comprehensively understood and easily interpreted 
by individuals. More information on Genetic 
Algorithms (GA) and Genetic Programming (GP) 
may be found in (Koza, 1992; Michalewicz, 1994). 

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

282



 

3 APPLYING GP FOR 
SOFTWARE COST MODELING  

The proposed implementation of Genetic 
Programming (GP) seeks and locates appropriate 
equations of various cost factors which characterize 
the dependent variable (development effort) in the 
best possible way based on specific grammars. The 
overall research procedure followed was to apply GP 
on two different publicly available datasets and 
attempt to guide the solution towards regression 
equations that provide the highest level of prediction 
ability and the smallest relative error. A brief 
description of the empirical datasets utilized in this 
work follows.  

The COCOMO dataset (Boehm, 1981) includes a 
set of cost drivers that define the subjective 
assessment of the product, hardware, personnel and 
project attributes for 63 software projects of 
different applications. The cost factors used in the 
experiments are: RELY (Required Reliability), 
DATA (Database Size), CPLX (Product 
Complexity), TIME (Execution Time Constraint), 
STOR (Main Storage Constraint), VIRT (Virtual 
Machine Volatility), TURN (Computer Turnaround 
Time), ACAP (Analyst Capability), AEXP 
(Applications Experience), PCAP (Programmer 
Capability), VEXP (Virtual Machine Experience), 
LEXP (Programming Language Experience), MODP 
(Modern Programming Practices), TOOL (Use of 
Software Tools), SCED (Required Development 
Schedule) and LOC (Lines of Code). The actual total 
effort recorded in person-months against the projects 
is also used to calculate the accuracy estimate 
obtained by the GP regression equations.The 
Desharnais dataset (Desharnais, 1989), was used 
after excluding null and categorical values. It 
comprised of 77 observations of systems developed 
by a Canadian software development house and the 
following cost features: TEAM EXP., MANAGER 
EXP., LENGTH, TRANSACTIONS, ENTITIES, 
POINTS AJUST, ENVERGURE, POINTS NON 
AJUST. The actual development effort recorded in 
person-hours was also used as the output attribute. 

4 DESIGN OF THE 
EXPERIMENTAL APPROACH 

In the GP context, potential solutions in the 
population are represented as parse trees (see Figure 
1) and usually utilize a customized pool of 
arithmetic operators for the case of input factors of 

numerical nature. The GP tool used in the 
experimental phase of this work is implemented in 
Matlab v.7.5.0. (R2007b) and makes use of several 
functions of the GPLab toolbox described in detail 
in (Silva, 2007). The GPLab toolbox is a generic, 
versatile and easily extendable tool for GP that 
follows the concepts of Genetic Algorithms. Both 
the manual and functions that form the toolbox are 
available at http://gplab.sourceforge.net/. The basic 
concepts are extended in this work by several new, 
custom-built functions (also in Matlab scripts). 

 
Figure 1: An example parse tree for COCOMO. 

The GP steps executed during the experimental 
process, along with the extended features are 
described as follows: 
Step1. Use the software cost attributes of each 
dataset to design and build a random population of 
potential solutions (parse trees of regression 
equations). 
Step 2. Execute each solution (parse tree) and assign 
a fitness value to it according to how well the 
solution describes the dependent variable (effort). 
Step 3. Generate new offspring in the population 
using the following procedure: 

Sampling 
It defines the method for selecting a parent based 

on which new individuals are created. The following 
five variations are supported: Roulette, where a 
roulette with random pointers is spun and each 
individual owns a portion of this roulette. Sus, which 
is based on the roulette process but here the pointers 
are equally spaced. Tournament, where the parent is 
chosen with a random draw of individuals and then 
the best of them is selected. Lexictour, which is 
based on tournament but in case of equality the 
shortest individual wins. Double tournament, where 
two tournaments are performed one for fitness and 
one for parsimony. The sampling methods select the 
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best individuals according to a certain fitness 
function (see equations (1) and (2)) to apply the 
genetic operators listed below. 

Crossover 
Random nodes from two parents are chosen and 

swapped creating two new individuals. 
Mutation 
A random node is chosen from a parent and 

replaced with a randomly created tree. Several 
different types are utilized here: Shrink Mutation, a 
random sub-tree S is chosen from a parent and 
replaced with a random sub-tree of S. Swap 
Mutation, two random sub-trees are chosen from a 
parent and swapped. Replace Mutation, follows the 
concepts of the normal mutation but with the 
difference that for a certain mutation point 
performed on a terminal node (i.e., a cost factor) the 
terminal node is replaced by another random 
operand from the available pool, whereas in the case 
mutation is performed on an arithmetic operator, the 
operator will be replaced by another randomly 
selected operator from the available pool.  

Survival 
The selection of a number of individuals from 

the current population and the newly created 
children forms the new population.  

Elitism 
The best individuals of each generation are 

passed to the next one unchanged. This is known as 
the full (or total) elitism operator, according to 
which the more fit individuals get the chance to be 
part of the reproduction process throughout 
generations.  
Step 4. Repeat steps 2 and 3 until the maximum 
number of generations is reached. The solution with 
the highest fitness value from the final population is 
considered to be the result of the GP. 
Initially, the data is randomly split in two sets, the 
training and testing set, according to a percentage 
defined by the user. The rationale behind this is to 
produce cost functions (solutions) valid within a 
variable and random set of training samples and then 
evaluate their generalization performance with the 
rest of the testing samples.  

The cost equations make use of the following 
arithmetic operators: add (+), minus (-), divide (/), 
multiply (*), power (^), natural logarithm (log), base 
2 logarithm (log2) and base 10 logarithm (log10). 
Each equation-solution is evaluated according to the 
default fitness equation (regfitness), which is later 
modified to the fitness equation named mrefitness. 
In the equations described xact represents the actual 

value of the data sample and xpred the predicted one. 
The regfitness fitness is defined in equation (1) and 
calculates the sum of absolute differences between 
the predicted and actual effort.  
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The mrefitness fitness is equal to the MRE error 
metric defined in the sum of equation (2) which is a 
common performance metric used in the area of 
software cost estimation. Additionally, common 
performance metrics (equations (2)-(4)) are used for 
evaluation. More specifically, the Mean Magnitude 
of Relative Error (MMRE) is described in equation 
(2) to evaluate the predictive ability of the 
expression. 
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The Correlation Coefficient (CC) described in 
equation (3), measures the ability of the predicted 
samples to follow the upwards or downwards of the 
original series as it evolves in the sample prediction 
sequence. 
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The Normalized Root Mean Squared Error 
(NRMSE) described in equation (4), assesses the 
quality of predictions and is calculated using the 
Root Mean Squared Error (RMSE). If NRMSE=0 
then predictions are perfect; if NRMSE=1 the 
prediction is no better than taking prediction equal to 
the mean value of n samples. 
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5 EMPIRICAL EXPERIMENTS 
AND RESULTS  

Experiments were carried out with varying 
parameters, until the basic parameters of the GP 
application were configured. More specifically, the 
experiments were executed for a set of parameters 
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Table 1: Indicative performance results of the cost functions execution. 

Rule Dataset Depth/ 
Nodes* 

TRAINING TESTING 
MMRE CC NRMSE MMRE CC NRMSE 

C1 
COCOMO 

4 0.459 0.985 0.184 0.469 0.945 0.322 
C2 5 0.465 0.986 0.179 0.497 0.962 0.354 
C3 5 0.485 0.991 0.138 0.494 0.979 0.243 
D1 

Desharnais 
5 0.474 0.836 0.562 0.485 0.768 0.722 

D2 20* 0.520 0.799 0.606 0.521 0.731 0.684 
D3 28* 0.454 0.851 0.546 0.574 0.744 0.710 

*The superscript denotes tree size in terms of nodes 

100 times aiming to create and evaluate diverse 
equations. A random k-fold cross validation 
procedure was executed, using the percentage of 
80% of the historic data for constructing the solution 
tree (training) and the remaining samples (20%) for 
testing the prediction accuracy of the solution 
(evaluation). The GP was employed on a population 
of size 100 individuals and was evaluated for a 
maximum of 350 generations.  

Furthermore, specific parameters were selected 
to create tree-structured equations that avoid 
‘bloating’. Bloating is the phenomenon presented in 
GP where the tree structures expand excessively 
without the analogous improvement in fitness. 
Several techniques exist to control bloating that 
seem to have promising results to other problems, 
like for example defining tree depth size and node 
number restrictions on the evolved trees (Koza, 
1992), setting dynamic maximum tree depth (Silva 
and Almeida, 2003), applying lexictour and 
doubletour sampling methods and survival methods 
based on resources (Silva and Costa, 2005). For the 
results presented in this section we applied Static 
Resources for Survival and Total Elitism whereas 
Double Tournament was used for Sampling. The 
Tree Size Based on Depth was specified to values 3, 
4, 5, 6 or 7 and Based on Nodes to 16, 20 or 28. The 
Tree Population Type (type of trees created in the 
initial population) was Ramped Half and Half 
(Balanced and Unbalanced) trees. This means that 
half trees were constructed based on the Maximum 
Tree Level and the other half had a random form. 
This ensured that the GP produced random type 
trees in the initial population. For the Fitness 
Improvement (describes the way the generation can 
be improved) we selected the Best-of-Mean 
Population Fitness which considers the fitness value 
of the best-of-run mean population fitness of the 
previous generation. The Expected Number of 
Children (determines the method used for 
calculating the expected number of children of each 
individual) was set to Absolute. Additionally, the 
Dynamic Maximum Tree Depth was used to control 

bloat by setting a maximum depth on trees evolved, 
so that when a genetic operator produces a tree that 
outruns this limit, one of the parents enters the new 
population instead. The Genetic Operators of 
Crossover (probability=0.3), Replace Mutation 
(probability=0.2) and Crossover & Mutation 
(probability=0.6) were employed. The Stopping 
Condition (specifies for when the algorithm should 
stop) was set to either until the maximum generation 
size (set to 350) is reached, or to if the best 
individual produces exact results within ± the 
Fitness Hits Tolerance percentage (set to 10) of the 
expected results in at least the Fitness Hits 
Percentage (set to 60). Finally, once the trees of the 
final generation are constructed, they are evaluated 
through the set of performance metrics (equations 
(2)-(4)) over both the training and testing phases.  

Equations (5) and (6) express two indicative cost 
functions (regression equations) obtained for the 
COCOMO (C1) and Desharnais (D1) datasets 
respectively. 

(((LOC*SCED)^(TIME/TOOL))+ 
((LOC^VEXP)^(TIME*MODP))) (5) 

The derived equations have a relatively simple 
form and are easily understandable by project 
managers. Additionally, using the best regression 
equations yielded by the GP we calculated the 
predicted effort values with relative high success 
(see Table 1). 

((((LENGTH* LENGTH)+ENVERGURE)+ 
((MANAGER EXP.+POINTS AJUST.)+ 

(TRANSACTIONS+MANAGER 
EXP.)))*((POINTS NON AJUST.-
(TRANSACTIONS+ LENGTH))))

(6) 

The accuracy performance for the COCOMO 
and Desharnais datasets effort prediction is around 
0.45 in terms of MMRE. The results in terms of the 
MMRE and CC during training and testing phases 
for both datasets are similar, but in terms of the 
NRMSE the figures are better in training than  in 
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testing. Overall, the error rates obtained are 
considered quite promising in relation to other GP 
approaches on the same datasets mentioned in 
relative works (e.g., Burgess and Lefley, 2001, 
report best population solutions for the Desharnais 
dataset: MMRE=0.379 and CC=0.824). The best-of-
run equations obtained from the GP experiments 
seem to perform consistently well with insignificant 
differences, indicating a promising generalization 
ability over the datasets employed. 

6 CONCLUSIONS 

The current work utilized Genetic Programming to 
derive classical regression equations applied on two 
publicly available project cost datasets to provide 
accurate software development effort estimations. 
The main contribution of this work is the automatic 
creation and exploration of a large set of different 
equations represented by parse trees evaluated 
through newly devised fitness functions. The 
experiments showed that GP performed consistently 
well and reached to constructive solutions that yield 
relatively successful effort approximations. This 
finding is also in agreement with observations from 
other research studies that compared GP to other 
techniques. More specifically, the work of (Lefley 
and Shepperd, 2003) focused on comparing GP with 
other techniques for cost estimation. The authors 
assess the accuracy of the estimates using data 
within and outside organizations (SSTF dataset) and 
report that GP performs very well but requires a lot 
of expertise. They also emphasize the need of 
producing accurate enough and simpler equations. 
Similar works using the Desharnais dataset (Burgess 
and Lefley, 2001) compare techniques for predicting 
effort and argue that there may be other techniques 
or model characteristics (despite accuracy degree) 
that should have an equal, if not greater impact upon 
their selection, such as  ‘transparency’ and ‘ease of 
configuration’. It seems that GP can produce 
relatively quite transparent solutions in the sense that 
they are expressed in expressions. However, again 
they mention that some expertise is required to 
choose configuration values for the parameters.  

The present work took into consideration the 
previous suggestions and attempted to obtain 
simpler and suitable equations to predict effort. A 
possible limitation of this work is the specific 
selection of the operands used, which were 
considered expressive enough to cover the potential 
solution space and not too general or narrow to 
radically increase execution time or constrain the 

search space. Furthermore, we imposed several 
restrictions to control the effect of bloat in GP 
execution in order to save on both storage space and 
algorithm execution time. The experiments were 
designed to give a realistic dimension to the 
solutions obtained in the form of equations that can  
be easily interpreted and used by project managers. 

Future research steps will emphasize on utilizing 
operators of categorical and numerical type and 
modified fitness functions that may provide 
improvements to the results of the GP. Such fitness 
functions could include for example combinations of 
performance metrics, parameter settings and 
facilitate in achieving even better effort predictions.  
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