SLICING OF UML MODELS

K. Lano and S. Kolahdouz-Rahimi
Department of Computer Science, King's College London, London, U.K.

Keywords: UML, Model transformations, Software verification.

Abstract: This paper defines techniques for tising of UML models, that is, for the restriction of models to those
parts which specify the properties of a subset of the elements within them. The purpose of this restriction is to
produce a smaller model which permits more effective analysis and comprehension than the complete model,
and also to form a step in factoring of a model. We consider class diagrams, individual state machines, and
communicating sets of state machines.

1 INTRODUCTION The data features of such a system are all the at-
tributes of classes in the system, including association

In this paper we show how slicing techniques for ends owned by the classes.

specification languages such as Z (Wu and Yi, 2004) Slicing will be carried out upon class invariants

and Object-Z (Bruckner and Wehrheim, 2005) can be and operation pre and postconditions by considering

combined with the semantic slicing of (Lano, 2009a) thepredicatesP of which they are composed. A pred-

to slice UML class diagrams and state machines. icate is a truth-valued formula, whose main operator

A slice can be considered to be a transformed ver- is notand. Class invariant predicates can be eita®r
sion S of an artifactM which has a lower value of sertions: properties which are expected to be invariant
some complexity measure, but an equivalent seman-for objects of the class, but which do not contribute
tics with respect to the sliced data (Harman et al., to the effect of operation postconditions,effective:
2003): implicitly conjoined to the postcondition of each up-

date operation.

S<snM A S=semM In grder to reduce the dependencies in a model,
The form of slicing used depends on the type of analy- we assume that certain effective class invariant pred-
sis we wish to perform oM: Sshould have identical icates, and operation postcondition predicatepre
semantics tdv for the properties of interest, but may erational if they have the form
differ for other properties.

In general, applying slicing at a high level of ab- L implies R
straction simplifies the calculation of the slice, and .
means it is possible to detect specification flaws at an where R is a formula such asf = ¢

; f—includege), f—excludege), f—includesAll(e),
ly devel t stage, th d devel t :
eary development stage, fus recuicing developmen f—excludesAlle), ref.f = e ref.f—includege),

ts.
cosg ref.f—excludege), ref.f—includesAll(e),
ref.f—excludesAl(e). f is a feature name, pos-
sibly with a selector—at(g) in the case of equality,
2 SLICING OF CLASS for some expressiog, in the case of an ordered role
DIAGRAMS f. f is not a pre-form of a feature (ie, ne@pre for

some feature). f is called thearitable feature of the
We assume that the client-supplier relation between constraintL may be omittedL is thetest part of the
different classes in a class diagram forms a tree struc-predicateg the value part, ref the reference part, and
ture. The class at the root of this tree is termed the g theindex part.
controller class of the system: it will usually serve as Other predicates are termadn-operational, they
the access point to the services of the system for exter-may (in the case of postcondition predicates) consist
nal users. Operations are assumed to be deterministicof a mixture of features in pre form and post form, all

259

Lano K. and Kolahdouz-Rahimi S. (2010).

SLICING OF UML MODELS.

In Proceedings of the 5th International Conference on Software and Data Technologies, pages 259-262
DOI: 10.5220/0002913202590262

Copyright © SciTePress

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

the features in post form are assumed to be writable e In the case of a formula
in this case, and to be mutually data-dependent. C.allinstanceq)—exist§P) specifying creation
For any system there are also implicit operational ~ of an instance o€ satisfyingP, C.alllnstances)
constraints which relate the two ends of binary asso- is a written feature an€.allinstances) @pre a
ciations. Assertion constraints arise from the multi- read feature.
plicity restrictions of association ends, ie, a0..nmul- ¢ |n the case of formulaex.oclisNew() or
tiplicity end br has a constrairiir —size() < n. x.isDeleted), where x is of class typeC,
We will slice a class diagram specificatidh by C.allinstancey) is a written feature and
slicing the controller clas€ of M: this class is di- C.allinstanceq) @pre andx are read features.

rectly or indirectly a client of all other classes i
and is not a supplier of any other clasdMn
A history of a specificatiorM is a finite sequence

e The internal data-dependencies of an operational
predicatep are then:

of invocations of update operations on instances .of dep(p) = rd(p) X wr (p) _

A history is valid if operations are only invoked on and for a non-operational predicate

instances which ha_l\(e bgen created, anq for Whlch_the dep(p) = (rd(p)Uwr(p)) x wr(p)

operation precondition is true at the point of call, in] " d]

addition the history should conform to the protocol 1hewriteframe of an operatioropis the union of

state machin&Mc of C. wr (p) for the predicatep in its postcondition, this is
The definition of slicing we will use for class dia- denotedr (0p).

The predicates in the postcondition of an opera-
tion are assumed to be control dependent on the pred-
icates in the precondition (Bruckner and Wehrheim,
2005).

gramsM is the following:S <syn M if Shas a subset
of the elements oM. S=¢e;nM holds, for a given
states in the protocol state machine &, and setvV
of data features d¥l, if any valid historyo with final . .
statesof M is also a validyhistory with)f/inal statein x! the level of partlculgr features, 9 ther? IS a
S, and if the values of the features in the slice\éat direct dependency dfong in an operatiorop, if

Sin the final state 06 are equal to the values of these ~ ® g+ fis in somedep(p) for a postcondition pred-
features inM at the final state whea is applied to icatep of op.

both models, starting from the same initial values for Letrq, be the (non-reflexive) transitive closure of this
the features they have in common. We assume thatrelation. Then the feature dependency relapggnof
the protocol state machines Gfin M andShave the opincludes the pairs:

same states. . _ _ e g+ fif g occurs in the precondition arfdis in
The first step in producing a slice of a classs wr (p) for some postcondition predicape
to normalise the class invariant, and each pre and post e g+ fif gis an input parameter of the operation

condition, so that these are all in the form of conjunc- . : o
tions of predicates. Then the effective invariant Jpred- oris a_feature not n_wr_(op), andg—fisinrop
icates are copied to the postconditions of each update ® 9+ fif g@pre — fisinrop

operation. e X — Xif x € wr(op).

For each postcondition predicgtene define the The meaning of this relation is that the valuegoét
sets of features read and writtengnand its internal the start of the operation may affect the valud af
data dependencies: the end. Initial values of features notgg. (| V |) can-
not affect the value of any feature Vhat termination
of the operation.

In order to analyse dependencies between data in
different operations, we need to consider the possi-
ble life histories of objects of the class. A UML
e rd(p) is the set of features read m If p is op- classC may have a protocol state machf®klc as its

erational this is the set of all features occurring in classifierBehavior(Lano, 2009b), this state machine
the test, value, reference or index expressions in defines what sequences of operations can be applied
p, and the pre forni@pre of the writable feature to the object, and under what conditio®Vic can be

f (in the case of a simple equalify= g, the pre used as the basis of the data and control flow graph
form f@pre of the writable featuré itself is not Gc of the clas<C. We carry out normalisation of the

e wr(p) is the set of features written to m If p is
operational, this set is the single writable feature
of p, otherwise it is the set of features notpre
forminp.

included, unless it occurs ig). For other predi- pre and post-conditions of each transitiort ,afo that
catesrd (p) is the set of features ipre form, or these are conjunctions of predicates.
input parameters. The primary nodes d&¢ are:

260

e The basic states @M¢

e A precondition/guard nodpre; for each transi-
tiont of SM¢

e A postcondition nodeost; for each transition of
SMc.

Within each nodere; there are subordinate nodes for
each predicate of the guardigfand each predicate of
the precondition of the operatiaop that triggerst.
Within each nodegoost; there are subordinate nodes
for each predicate of the postconditiontpfind each
predicate of the postcondition of the operatapthat
triggerst.

There is direct data dependency from a write oc-
currenced of a featurd within predicatep of a post-
condition noden, to a read occurrena# of f within
predicateg of a noden’ if either:

1. n=n’, p # qand bothd andd’ aref

2. n#£n’,disf, d isf@pre in a postcondition node,
or f in a precondition node, ana is reachable
from n along a patto following the control flow
of the state machine, and there is no intermedi-
ate nodem strictly betweem andn’ in g which
contains a write occurrence bin its predicates.

The dependency relatiopc is then the transi-

tive closure of the union of the data-dependency and

control-flow relations on predicates.

The following algorithm is used to compute a
slice, with respect to a stateand setV of features,
from the graplG¢c. We associate a s¥fy of features

SLICING OF UML MODELS

in s). LetV’ be the union of th&/ sets, for all states
x on paths from the initial state &M¢ tos. The set
of features retained in the sliGwill be set equal to
V.

The transformation we have described above does
produce a semantically correct sliSeof a modelM,
using the definitior=sem0f sSemantic equivalence, be-
cause, ifo is a valid history oM (ie, of the controller
classC of M), ending in the slice target stadggandV
a set of features d¥l, then:

e O is also a valid history ofS, since the set of
states in the controller class state machine are the
same in both models, as are the preconditions and
guards of each transition in the models

¢ the features retained i@ are the uniorV’ of the
setsVy of the features upon whicti in sdepends,
for each statex of any path tos, and hence/’
containsVy for each state on the histogy and in
particular for the initial state

e since the values of the features\tfin the initial
state are the same f@ and M, and the values
of operation parameters are also the same in the
application ofo to S andM, the values oW in s
are also the same in both models.

3 STATE MACHINE SLICING

Slicing can be carried out for UML state machines,
using data and control flow analysis to remove ele-

to each basic state node of the data and control flow ments of the machine which do not contribute to the

graph.

1. Initialise eachvy with the empty set of features,
except for the target statewhich has the set of
features.

. For each transitioh: s1 — s2, add toVg the set
pgpl(| Vg |) of features upon whicNs, depends,
via the version of the operatioop executed by
this transition (with precondition and postcondi-
tion formed from both the class and state machine
predicates fobp andt).

Mark as included in the slice those predicates of
pret, post which are inpgl(| ps |) whereps is
the set of predicates containedgiost; which have
write occurrences of features Wip. The set of
features (withpre removed) used in the marked
predicates are also added\g .

The second step is iterated until a fixed point is
reached. EacNy then represents the set of features
whose value in stat& can affect the value o¥ in
states, on one or more paths fromto s. (Parameter
values of operations along the paths may also affect

values of a set of features in a selected state of the

machine (Lano, 2009a).
The following transformations are used to slice

state machines:

e Delete states which cannot occur in paths from
the initial state to the selected state, and delete the
transitions incident to the deleted states.

e Slice transition actions to remove assignments
which cannot affect the value of the variables of
interest in the selected state.

e Delete transitions with &lseguard.

e Merge two transitions which have the same
sources, targets and actions. The guard of the re-
sulting transition is the disjunction of the original
guards.

e Replace a featureby a constant valuethrough-
out a state machine, ¥f is initialised toe on the
initial transition of the state machine, and is never
subsequently modified.

e Merge a grouiK of states into a single stakeif

261

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

the states are connected only by actionless transi-
tions and all transitions which ext are triggered

by events distinct from any of the events that trig-
ger internal transitions df.

State machine slicing for behaviour state machines of
objects and operations has been implemented in the
UML2Web tool (Lano, 2008).

The above slicing approach can be extended to
systems which consist of multiple communicating
state machines, attached to linked objects, provided
that the communication dependendiét — M2 (M1
sends messageshb2) form a tree structure.

4 SUMMARY

We have defined techniques for slicing of UML class
diagram and state machine models. These enable
models to be simplified and factored on the basis of
groups of features. Extension of this work to AND
composite states in state machines, and to activity di-
agrams and sequence diagrams is planned.

ACKNOWLEDGEMENTS

The work described here has been funded by the UK
EPSRC project SLIM.

REFERENCES

Bruckner, 1. and Wehrheim, H. (2005). Slicing Object-
Z specifications for verification. [ZB 2005, LNCS
3455, pages 414-433. Springer-Verlag.

Harman, M., Binkley, D., and Danicic, S. (2003). Amor-
phous program slicingJournal of Systems and Soft-
ware, 68(1):45 — 69.

Lano, K. (2008). Constraint-driven developmehiforma-
tion and Software Technology, 50:406—423.

Lano, K. (2009a). Slicing of UML state machines. AhC
"09.

Lano, K. (2009b).UML 2 Semantics and Applications. Wi-
ley.

Wu, F. and Yi, T. (2004). Slicing Z specification\CM
Sgplan, 39(8).

262

