
SLICING OF UML MODELS

K. Lano and S. Kolahdouz-Rahimi
Department of Computer Science, King’s College London, London, U.K.

Keywords: UML, Model transformations, Software verification.

Abstract: This paper defines techniques for theslicing of UML models, that is, for the restriction of models to those
parts which specify the properties of a subset of the elements within them. The purpose of this restriction is to
produce a smaller model which permits more effective analysis and comprehension than the complete model,
and also to form a step in factoring of a model. We consider class diagrams, individual state machines, and
communicating sets of state machines.

1 INTRODUCTION

In this paper we show how slicing techniques for
specification languages such as Z (Wu and Yi, 2004)
and Object-Z (Bruckner and Wehrheim, 2005) can be
combined with the semantic slicing of (Lano, 2009a)
to slice UML class diagrams and state machines.

A slice can be considered to be a transformed ver-
sion S of an artifactM which has a lower value of
some complexity measure, but an equivalent seman-
tics with respect to the sliced data (Harman et al.,
2003):

S<syn M ∧ S=semM

The form of slicing used depends on the type of analy-
sis we wish to perform onM : S should have identical
semantics toM for the properties of interest, but may
differ for other properties.

In general, applying slicing at a high level of ab-
straction simplifies the calculation of the slice, and
means it is possible to detect specification flaws at an
early development stage, thus reducing development
costs.

2 SLICING OF CLASS
DIAGRAMS

We assume that the client-supplier relation between
different classes in a class diagram forms a tree struc-
ture. The class at the root of this tree is termed the
controller class of the system: it will usually serve as
the access point to the services of the system for exter-
nal users. Operations are assumed to be deterministic.

Thedata features of such a system are all the at-
tributes of classes in the system, including association
ends owned by the classes.

Slicing will be carried out upon class invariants
and operation pre and postconditions by considering
thepredicates P of which they are composed. A pred-
icate is a truth-valued formula, whose main operator
is notand. Class invariant predicates can be eitheras-
sertions: properties which are expected to be invariant
for objects of the class, but which do not contribute
to the effect of operation postconditions, oreffective:
implicitly conjoined to the postcondition of each up-
date operation.

In order to reduce the dependencies in a model,
we assume that certain effective class invariant pred-
icates, and operation postcondition predicates areop-
erational if they have the form

L implies R

where R is a formula such as f = e,
f→includes(e), f→excludes(e), f→includesAll(e),
f→excludesAll(e), ref.f = e, ref.f→includes(e),
ref.f→excludes(e), ref.f→includesAll(e),
ref.f→excludesAll(e). f is a feature name, pos-
sibly with a selector→at(g) in the case of equality,
for some expressiong, in the case of an ordered role
f. f is not a pre-form of a feature (ie, notx@pre for
some featurex). f is called thewritable feature of the
constraint.L may be omitted.L is thetest part of the
predicate,e thevalue part,ref thereference part, and
g theindex part.

Other predicates are termednon-operational, they
may (in the case of postcondition predicates) consist
of a mixture of features in pre form and post form, all

259
Lano K. and Kolahdouz-Rahimi S. (2010).
SLICING OF UML MODELS.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 259-262
DOI: 10.5220/0002913202590262
Copyright c© SciTePress

the features in post form are assumed to be writable
in this case, and to be mutually data-dependent.

For any system there are also implicit operational
constraints which relate the two ends of binary asso-
ciations. Assertion constraints arise from the multi-
plicity restrictions of association ends, ie, a 0..n mul-
tiplicity endbr has a constraintbr→size() ≤ n.

We will slice a class diagram specificationM by
slicing the controller classC of M : this class is di-
rectly or indirectly a client of all other classes inM
and is not a supplier of any other class inM .

A history of a specificationM is a finite sequence
of invocations of update operations on instances ofC.
A history is valid if operations are only invoked on
instances which have been created, and for which the
operation precondition is true at the point of call, in
addition the history should conform to the protocol
state machineSMC of C.

The definition of slicing we will use for class dia-
gramsM is the following:S<syn M if S has a subset
of the elements ofM . S=sem M holds, for a given
states in the protocol state machine ofC, and setV
of data features ofM , if any valid historyσ with final
states of M is also a valid history with final states in
S, and if the values of the features in the slice setV in
S in the final state ofσ are equal to the values of these
features inM at the final state whenσ is applied to
both models, starting from the same initial values for
the features they have in common. We assume that
the protocol state machines ofC in M andS have the
same states.

The first step in producing a slice of a classC is
to normalise the class invariant, and each pre and post
condition, so that these are all in the form of conjunc-
tions of predicates. Then the effective invariant pred-
icates are copied to the postconditions of each update
operation.

For each postcondition predicatep we define the
sets of features read and written inp, and its internal
data dependencies:

• wr(p) is the set of features written to inp. If p is
operational, this set is the single writable feature
of p, otherwise it is the set of features not inpre
form in p.

• rd(p) is the set of features read inp. If p is op-
erational this is the set of all features occurring in
the test, value, reference or index expressions in
p, and the pre formf@pre of the writable feature
f (in the case of a simple equalityf = e, the pre
form f@pre of the writable featuref itself is not
included, unless it occurs ine). For other predi-
catesrd(p) is the set of features inpre form, or
input parameters.

• In the case of a formula
C.allInstances()→exists(P) specifying creation
of an instance ofC satisfyingP, C.allInstances()
is a written feature andC.allInstances()@pre a
read feature.

• In the case of formulaex.oclIsNew() or
x.isDeleted(), where x is of class type C,
C.allInstances() is a written feature and
C.allInstances()@pre andx are read features.

• The internal data-dependencies of an operational
predicatep are then:

dep(p) = rd(p)×wr(p)

and for a non-operational predicate

dep(p) = (rd(p)∪wr(p))×wr(p)

Thewrite frame of an operationop is the union of
wr(p) for the predicatesp in its postcondition, this is
denotedwr(op).

The predicates in the postcondition of an opera-
tion are assumed to be control dependent on the pred-
icates in the precondition (Bruckner and Wehrheim,
2005).

At the level of particular features,f, g, there is a
direct dependency off ong in an operationop, if:

• g 7→ f is in somedep(p) for a postcondition pred-
icatep of op.

Let rop be the (non-reflexive) transitive closure of this
relation. Then the feature dependency relationρop of
op includes the pairs:

• g 7→ f if g occurs in the precondition andf is in
wr(p) for some postcondition predicatep

• g 7→ f if g is an input parameter of the operation,
or is a feature not inwr(op), andg 7→ f is in rop

• g 7→ f if g@pre 7→ f is in rop

• x 7→ x if x 6∈ wr(op).
The meaning of this relation is that the value ofg at
the start of the operation may affect the value off at
the end. Initial values of features not inρ−1

op (|V |) can-
not affect the value of any feature inV at termination
of the operation.

In order to analyse dependencies between data in
different operations, we need to consider the possi-
ble life histories of objects of the class. A UML
classC may have a protocol state machineSMC as its
classifierBehavior(Lano, 2009b), this state machine
defines what sequences of operations can be applied
to the object, and under what conditions.SMC can be
used as the basis of the data and control flow graph
GC of the classC. We carry out normalisation of the
pre and post-conditions of each transition oft, so that
these are conjunctions of predicates.

The primary nodes ofGC are:

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

260

• The basic states ofSMC

• A precondition/guard nodepret for each transi-
tion t of SMC

• A postcondition nodepostt for each transitiont of
SMC.

Within each nodepret there are subordinate nodes for
each predicate of the guard oft, and each predicate of
the precondition of the operationop that triggerst.
Within each nodepostt there are subordinate nodes
for each predicate of the postcondition oft, and each
predicate of the postcondition of the operationop that
triggerst.

There is direct data dependency from a write oc-
currenced of a featuref within predicatep of a post-
condition noden, to a read occurrenced′ of f within
predicateq of a noden′ if either:

1. n = n′, p 6= q and bothd andd′ aref

2. n 6= n′, d is f, d′ is f@pre in a postcondition node,
or f in a precondition node, andn′ is reachable
from n along a pathσ following the control flow
of the state machine, and there is no intermedi-
ate nodem strictly betweenn andn′ in σ which
contains a write occurrence off in its predicates.

The dependency relationρC is then the transi-
tive closure of the union of the data-dependency and
control-flow relations on predicates.

The following algorithm is used to compute a
slice, with respect to a states and setV of features,
from the graphGC. We associate a setVx of features
to each basic state node of the data and control flow
graph.

1. Initialise eachVx with the empty set of features,
except for the target states, which has the setV of
features.

2. For each transitiont : s1→ s2, add toVs1 the set
ρ−1

op (| Vs2 |) of features upon whichVs2 depends,
via the version of the operationop executed by
this transition (with precondition and postcondi-
tion formed from both the class and state machine
predicates forop andt).
Mark as included in the slice those predicates of
pret , postt which are inρ−1

C (| ps |) whereps is
the set of predicates contained inpostt which have
write occurrences of features inVs2. The set of
features (withpre removed) used in the marked
predicates are also added toVs1.

The second step is iterated until a fixed point is
reached. EachVx then represents the set of features
whose value in statex can affect the value ofV in
states, on one or more paths fromx to s. (Parameter
values of operations along the paths may also affectV

in s). Let V′ be the union of theVx sets, for all states
x on paths from the initial state ofSMC to s. The set
of features retained in the sliceS will be set equal to
V′.

The transformation we have described above does
produce a semantically correct sliceS of a modelM ,
using the definition=semof semantic equivalence, be-
cause, ifσ is a valid history ofM (ie, of the controller
classC of M), ending in the slice target states, andV
a set of features ofM , then:

• σ is also a valid history ofS, since the set of
states in the controller class state machine are the
same in both models, as are the preconditions and
guards of each transition in the models

• the features retained inS are the unionV′ of the
setsVx of the features upon whichV in sdepends,
for each statex of any path tos, and henceV′

containsVx for each state on the historyσ, and in
particular for the initial state

• since the values of the features ofV′ in the initial
state are the same forS and M , and the values
of operation parameters are also the same in the
application ofσ to S andM , the values ofV in s
are also the same in both models.

3 STATE MACHINE SLICING

Slicing can be carried out for UML state machines,
using data and control flow analysis to remove ele-
ments of the machine which do not contribute to the
values of a set of features in a selected state of the
machine (Lano, 2009a).

The following transformations are used to slice
state machines:

• Delete states which cannot occur in paths from
the initial state to the selected state, and delete the
transitions incident to the deleted states.

• Slice transition actions to remove assignments
which cannot affect the value of the variables of
interest in the selected state.

• Delete transitions with afalseguard.

• Merge two transitions which have the same
sources, targets and actions. The guard of the re-
sulting transition is the disjunction of the original
guards.

• Replace a featurev by a constant valuee through-
out a state machine, ifv is initialised toe on the
initial transition of the state machine, and is never
subsequently modified.

• Merge a groupK of states into a single statek if

SLICING OF UML MODELS

261

the states are connected only by actionless transi-
tions and all transitions which exitK are triggered
by events distinct from any of the events that trig-
ger internal transitions ofK .

State machine slicing for behaviour state machines of
objects and operations has been implemented in the
UML2Web tool (Lano, 2008).

The above slicing approach can be extended to
systems which consist of multiple communicating
state machines, attached to linked objects, provided
that the communication dependenciesM1→M2 (M1
sends messages toM2) form a tree structure.

4 SUMMARY

We have defined techniques for slicing of UML class
diagram and state machine models. These enable
models to be simplified and factored on the basis of
groups of features. Extension of this work to AND
composite states in state machines, and to activity di-
agrams and sequence diagrams is planned.

ACKNOWLEDGEMENTS

The work described here has been funded by the UK
EPSRC project SLIM.

REFERENCES

Bruckner, I. and Wehrheim, H. (2005). Slicing Object-
Z specifications for verification. InZB 2005, LNCS
3455, pages 414–433. Springer-Verlag.

Harman, M., Binkley, D., and Danicic, S. (2003). Amor-
phous program slicing.Journal of Systems and Soft-
ware, 68(1):45 – 69.

Lano, K. (2008). Constraint-driven development.Informa-
tion and Software Technology, 50:406–423.

Lano, K. (2009a). Slicing of UML state machines. InAIC
’09.

Lano, K. (2009b).UML 2 Semantics and Applications. Wi-
ley.

Wu, F. and Yi, T. (2004). Slicing Z specifications.ACM
Sigplan, 39(8).

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

262

