
X-FEE
An Extensible Framework for Providing Feedback IN the Internet of Services

Anja Strunk
Department of Computer Science, Institute of Systems Architecutre

Dresden University of Technology, 01069 Dresden, Germany

Keywords: Internet of Services, Service-oriented Architecture, Web Services, Feedback, Monitoring, User Feedback.

Abstract: In the Internet of Services, there is a big demand for feedback about services and their attributes. For
example, on service market places, feedback is used by service discovery to help a service user to find the
right service or at runtime, feedback is employed to detect and compensate errors. Thus, the research
community suggests a large amount of techniques to make feedback available. However, there is a lack of
adequate feedback frameworks to be used to implement these techniques. In this paper we suggest the
feedback framework X-Fee, which is highly extensible, flexible and interoperable to easily realize feedback
components and integrate them in arbitrary infrastructures in the Internet of Services.

1 INTRODUCTION

The vision of the future internet is to transform the
web of information to a web of services. The goal is
to develop a so-called Internet of Services (IoS)
where economically viable services are offered,
brokered and consumed via the internet. Service
marketplaces emerge as web platforms where
providers can publish and sell services and
customers can find suitable services and combine
them together according to their needs.

While trading and using services in the IoS, a lot
of feedback information arises. The most important
are monitoring and user feedback. (Kalepu et al,
2002).

Monitoring feedback results from quality
monitoring. In the IoS, each service guarantees a
specific QoS level, such as receiving the service’s
response within a certain time period. The assured
QoS properties, negotiated between the service
provider and the service user are called Service
Level Objective (SLO) and saved in a legal contract,
called Service Level Agreement (SLA). At runtime,
quality monitoring observes the compliance of each
SLO by comparing the measured values with the one
that was promised. Thus monitoring feedback
deduces the service’s reputation related to their QoS
and their SLO compliance.

User feedback is created by human beings, after
each service interaction, by evaluating non-

measurable service attributes, such as correctness or
price-benefit-ratio. Hence it allows determining the
service’s reputation related to the non-technical
aspects.

The research community has suggested different
approaches to make both monitoring and user
feedback available in the IoS. In fact, there is a great
demand for feedback. For example, at design time,
feedback is consumed in order to improve existing
services or to deduce innovative ideas for new
services (Stathel, et al, 2009). The service discovery,
a search engine for services, integrates feedback to
support the user by selecting the right service. (Xu et
al., 2007). At runtime feedback is used to recognize
errors and to trigger appropriate compensation
mechanisms (Strunk et al., 2009).

Despite the great demand for feedback and a lot
of techniques to provide it, there is a lack of an
adequate framework, which can be used to
implement these techniques. State-of-the-art
feedback components are not modular, interoperable
or flexible enough to be reused in new platforms.
This forces a costly re-development of already
existing software components.

In this paper we propose the feedback framework
X-Fee, which is highly extensible, flexible and
interoperable to be easily integrated in arbitrary
infrastructures. It acts as a base for the
implementation of methods for providing both
monitoring and user feedback.

119
Strunk A. (2010).
X-FEE - An Extensible Framework for Providing Feedback IN the Internet of Services.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 119-124
DOI: 10.5220/0002919401190124
Copyright c© SciTePress

The rest of this paper is organized as follows.
Section 2 presents an overview of related work in
this area, followed by a description of the feedback
model used in X-Fee. The overall architecture of
X-Fee is explained in Section 4. In Section 5 we
discuss the strength and weaknesses of our approach
and finish the paper with a conclusion.

2 RELATED WORK

Feedback in service-oriented architectures and the
IoS is very well investigated. Started with the
question how feedback information can be
formalized, Maximilien and Singh (Maximilien and
Singh, 2002) published their conceptual model of
web service reputation. Today, this feedback model
is the de-facto standard and is also the basis for X-
Fee.

Kalepu et al. analyse feedback in the IoS and
categorize it into monitoring and user feedback
(Kalepu et al, 2002). With the author’s definition of
reputation as f(User Ranking, Compliance, Verity)”,
they argue that both feedback categories have to be
considered to get meaningful results.

The first approaches for techniques to provide
monitoring feedback are presented by Robinson
(Robinson, 2004) and Fickas et al. (Fickas et. el,
1995). Both authors propose a technique to monitor
web service requirements. Raimondi et al.
(Raimondi et al., 2008) investigate monitoring of
SLOs more closely and define a methodology for
online monitoring of web service SLOs based on
timed automata.

Beside techniques to monitor SLOs, commercial
and academic monitoring systems are developed.
However, the main disadvantages of these
approaches are the lack of interoperability,
flexibility and extensibility.

The well-know commercial monitoring system is
Nagios (Pervilä, 2007). Despite its many extensions
and modular sensors, it is not flexible enough to
monitor SLOs. Two meaningful academic monitor
approaches are Grand Slam (Spillner et al., 2009)
and SLAMon (Ameller et al., 2008). Both are
modular systems, which can be extended by future
functionality. Unfortunately the core modules can
not be adapted. Thus the fields of usage of Grand
Slam and SALMon are limited; for instance, the
used SLA description format can not be changed. On
the contrary, X-Fee allows modifying any part of the
system.

In contrast to SLO-monitoring, techniques and
systems related to user feedback are well analysed

and discussed. One of the best survey papers in this
area is the one by Wang and Vassileva (Wang and
Vassileva, 2007). The authors compare more than
ten academic as well as productive systems to
collect, compute and provide user feedback. None of
these approaches, however, is interoperable, flexible
and extensible enough to be used in heterogeneous
systems and to be adapted to individual requirements
of system providers.

3 FEEDBACK MODEL

Feedback in the context of the IoS evaluates a
service’s functional and non-functional attributes. It
is created for each service separately after each
interaction.

X-Fee organizes the different kind of feedback
information and the resulting reputations in a
conceptual feedback model, depicted Figure 1.

Figure 1: Conceptual feedback model.

The feedback model is based on the conceptual
model of reputation of Maximilien et al.
(Maximilien et al., 2002), which allows rating each
service’s attribute separately instead of the whole
service. This feedback information is defined as a 4-
tuple, consisting of the service and the service
attributes which were rated, the evaluation value as
well as the time stamp. All feedback information is
stored in the history, which is used to calculate
reputations based on reputation algorithms. A
reputation can be related to a service or just to a
service attribute. We call the first service reputation
and the latter attribute reputation.

The feedback model of X-Fee is independent of
the feedback category. Thus it can be used to save
monitoring as well as user feedback information.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

120

4 X-Fee – AN EXTENSIBLE
FEEDBACK FRAMEWORK

X-Fee is a modular framework based on OSGi1 and
consists of five main parts: (1) a database to store all
feedback information, (2) the monitoring feedback
component, called SloMon, (3) the user feedback
component, called WebRat, (4) a web service
interface (WS) to support RPC-based access and (5)
a message-oriented-middleware (MoM) to support
event-based access to X-Fee.

W
S

W
S

Figure 2: The overall architecture of X-Fee.

As it was already mentioned, one of the main
disadvantage of state-of-the-art feedback
components is the lack of flexibility and
interoperability.

Interoperability is defined as the ability of a
software module to run on and communicate with
heterogeneous environments. X-Fee supports this
design principle as follows:

1. The OSGi container keeps X-Fee
independent from any target platform.

2. The web service interfaces of SloMon and
WebRat allow a programming language
independent RPC-based access to add and
get feedback as well as reputation values.

3. The message-oriented-middleware allows
SloMon and WebRat sending and receiving
XML-based events in a programming
language independent way.

1 http://www.osgi.org

Flexibility is defined as a system’s ability to be
adaptable to customers’ needs, by e.g. changing or
removing system’s modules. X-Fee supports this
feature as follows:

1. Both, the database as well as the message-
oriented-middleware are integrated via
adapters to make them replaceable.

2. Each part of X-Fee is implemented by two
separate OSGi bundles. One for the
interfaces and one for the implementation.
Hence, the customer can adapt the system
by exchanging the implementation bundle.

3. The modularity of OSGi allows using
SloMon and WebRat separately as well as
in an integrated way.

The vision of X-Fee is to provide a fully and
ready-to use feedback framework. Thus we are
realizing each part of X-Fee by a default
implementation. Therefore MySQL2 is used as
database and the Apache ActiveMQ3 as Message-
oriented Middleware (MoM). These open-source
third party components are not included in X-Fee
and have to be installed separately.

4.1 Monitoring Feedback with SloMon

SloMon, depicted in Figure 3, provides a framework
as well as a default implementation for SLO-
monitoring. Its name stands for SLO monitoring.
SloMon, which reuses the design pattern of Grand
SLAM (Spillner et al, 2009), consists of three main
parts: (1) the core, (2) the sensors and (3) the
aggregators.

The core provides the web service interface and
controls each part of SloMon. Therefore it is
composed of three services: (1) the agreement
service, (2) the sensor service and (3) the aggregator
service.

The agreement service is responsible for reading
agreements and for storing them into the database.
The default implementation is based on the
agreement standard Web Service Agreement
(Andrieux et. al, 2007). Furthermore the agreement
service allows loading feedback values as well as
reputations from database via web service calls.

The sensor service manages the sensors, which
are responsible for providing the feedback
information. In terms of SLO monitoring feedback
information are related to QoS measurement and
SLO violation recognition, whereas each sensor
takes care for one QoS property. Both measured

2 http://www.mysql.com/
3 http://activemq.apache.org/

X-FEE - An Extensible Framework for Providing Feedback IN the Internet of Services

121

values as well as recognized SLO violations are
published on the MoM to be available for interested
components, such as error compensation strategies.

W
S

Figure 3: The architecture of SloMon.

SloMon supports two kinds of sensors: (1) periodical
sensors and (2) invoke sensors. A periodical sensor
measures the QoS property at regular intervals and
returns the value to the sensor service, which stores
the feedback information in the database. Therefore,
at each interval, the sensor service reads out all
agreements that are saved in the database and starts
for each SLO a new instance of the registered
periodical sensor, if such one exists.

An invoke sensor measures the QoS property
during service invocation. Therefore the sensor
service listens to the MoM to ServiceStarted events,
which have to be generated by the infrastructure
with which X-Fee is integrated. As soon as a
ServiceStarted event occurs, the sensor service reads
out all SLOs the started service guarantees and
activates the appropriate sensor instance. The
measurements are finished as soon as a
ServiceStopped event for the running service is
received on the MoM. The new feedback values
returned by the sensors are saved in the database.

By default SloMon supports two types of
sensors: (1) a response time sensor and (2) an
availability sensor.

The aggregator service is responsible for the
aggregators, which implement reputation
algorithms, such as a service’s availability per
specific time period, e.g. per day. Similar to the
sensors, each aggregator takes care of one reputation

value. SloMon distinguishes between two kinds of
aggregators: (1) service aggregators, providing
service reputations and (2) attribute aggregators
creating reputations for a specific attribute, i.e., QoS
property.

All Aggregators work in parallel and are
triggered by the aggregator service as soon as a new
feedback value was inserted in the database.
Therefore, the aggregator service reads out all
registered services as well as their related QoS
properties and starts a new instance of the
appropriate aggregator. The new instance gets the
list of all measurements related to the service or
service attribute, calculates the reputation value and
returns it to the aggregator service in order to be
stored in the database.

The default implementation of SloMon contains
two types of aggregators: (1) an availability
aggregator providing the service’s availability per
hour, day, week, month as well as year and (2) a
SLO violation prediction aggregator, which
forecasts the probability with which a service will
violates its SLO for response time and availability.

In contrast to the state-of-the-art monitoring
components, SloMon is built to be highly flexible
and extensible. Flexibility and extensibility allow
changing, removing and adding modules to adapt the
system to customer’s needs. SloMon supports these
features by implementing the services of the core
component as well as each sensor and aggregator as
separate bundles. This allows:

1. Changing the default implementation by
removing the old bundle and adding a new
one.

2. Adding a new sensors and aggregator, by
adding a new bundle implementing the
appropriate interface and registering the
sensor or aggregator at SloMon.

3. Removing unnecessary sensors and
aggregators by removing the respective
bundles.

Due to OSGi’s Hot Deployment, the adaptation
of SloMon is possible even if the system is running.

4.2 User Feedback with WebRat

WebRat, depicted in Figure 4, provides a framework
as well as a default implementation to deal with user
feedback in the IoS. Its name stands for web service
rating. WebRat consists of two main parts: (1) the
core and (2) the aggregators.

The core controls each part of WebRat and is
composed of two services: (1) the rating service and
(2) the aggregator service.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

122

The rating service implements a generic web
service interface to add new feedback information,
which means in terms of user feedback, to submit
user ratings for one or more service attributes. The
user ratings are stored in the database and distributed
in the MoM as XML messages in order to inform
components that are interested in. Furthermore it is
possible to access the reputations, related to services
and services attributes as well as to register services
and their rateable attributes.

Figure 4: Architecture of WebRat.

The aggregation service manages, similar to
SloMon, the service- and attribute-aggregators,
which calculate the reputations based on
appropriated algorithms. All aggregators work in
parallel and are started as soon as a new user rating
was inserted in the database. Hence, the aggregator
service reads out all stored services and their
attributes. For each service a new instance of each
registered service aggregator is started. For each
service attribute a new instance of the appropriate
attribute aggregator is activated, as long as such an
aggregator is registered at WebRat. Each aggregator
instance gets the list of user ratings stored for the
service or service attribute it manages. Based on this
list, the reputation is deduced and returned to the
aggregator service, which distributes the new value
in the MoM and inserts it into the database.

By default WebRat supports two kind of service
aggregators: (1) a simple arithmetic average and (2)

a reputation algorithm based on the decay effect (Xu
et al., 2007).

Analogous to SloMon, WebRat is highly flexible
and extensible, by implementing the core
component’s services as well as each aggregator as
separate bundles. This allows:

1. Changing the default implementation by
removing the old bundle and adding a new
one.

2. Adding new aggregator bundle which
simply contains the algorithm to calculate
the reputation based on a list of user
ratings. All the other necessary tasks, such
as database or MoM access, are done by the
framework.

3. Removing unnecessary aggregators by
removing the respective bundles.

5 DISCUSSION

The vision of X-Fee, which is still under
development, is to be an interoperable, flexible and
extensible infrastructure for providing feedback in
the IoS. We fulfil theses requirements as follows:

1. Choosing OSGi as basis
2. Installing web service interfaces and MoM
3. Implementing all parts of X-Fee as

modules, which are as small as possible and
can be added, removed and changed
corresponding to the user’s needs

Despite the advantages discussed above, X-Fee
has also two main weaknesses: (1) the web service
interface and (2) the default implementation.

The web service interface constrains the
performance because of the overhead caused by the
XML marshalling and un-marshalling and the time
needed to establish and close HTTP connections for
every web service request. We are currently looking
for alternative ways to provide interoperable RPC-
based interfaces.

The second weakness, the default implement-
tation, provides only simple algorithms, which do
not conform to the current state-of-the-art and
missing important aspects, including security. Thus
the usefulness of X-Fee is limited without
addressing these issues. But the missing parts can be
implemented easily be replacing or adding new
bundles. We plan to provide X-Fee as an open-
source framework to be freely available.

6 CONCLUSIONS

X-FEE - An Extensible Framework for Providing Feedback IN the Internet of Services

123

This paper introduced X-Fee, an OSGi-based
framework to provide monitoring and user feedback
in the Internet of Services. X-Fee owns two main
components: (1) SloMon and (2) WebRat, which can
be used separately or in an integrated way to
implement techniques for feedback creation as well
as reputation calculation. In contrast to the state-of-
the-art feedback components, X-Fee is interoperable,
highly flexible and extensible and can be used by
heterogeneous applications. Moreover, it is adaptive
to the customers need.

ACKNOWLEDGEMENTS

The presented work is part of the research project
THESEUS4 and will be evaluated in the use case
TEXO. The project was funded by means of the
German Federal Ministry of Economy and
Technology under the promotional reference
“01MQ07012”. The authors take the responsibility
for the contents.

REFERENCES

Ameller, D., Franch, X., 2008. Service Level Agreement
Monitor (SALMon). In Proceedings of the 7th IEEE
International Conference on Composition-Based
Software Systems (ICCBSS), Madrid, Spain, February
25-29, IEEE Computer Society, pp 224-227.

Andrieux, A., Czajkowski, K., Keahey, A., Ludwig, H.,
Nakata T., Pruyne, J., Rofrano, J., Tuecke, S., Xu, M.,
2007. Web Service Agreement Specification (WS-
Agreement). GFD-R-P.107, Open Grid Forum,
http://www.ogf.org/documents/GFD.107.pdf

Fickas, S., Feather, M. S., 1995. Requirement Monitoring
in Dynamic Environments. In Proceedings of the 2nd
International Symposium on Requirements
Engineering, York, England, March 27-29. IEEE
Computer Society, pp. 140.

Kalepu, S., Krishnaswamy, S, Loke, S. W., 2004.
Reputation = f(User Ranking, Compliance, Verity). In
Proceedings of the IEEE International Conference on
Web Services (ICWS’04), San Diego California, USA,
July 6-9. IEEE Computer Society, pp. 200- 207.

Maximilen, E. M., Singh, P. M., 2002. Conceptual Model
of Web Service Reputation. ACM SIGMOD Record,
SPECIAL ISSUE: Special section on semantic web
and data management. ACM, pp. 36-41.

Pervilä, M. A., 2007. Using Nagios to monitor faults in a
self-healing environment. Seminar and Self-Healing
Systems, University of Helsinki.

4 http://www.theseus-programm.de

Raimondi, F., Skene, J., Emmerich, W.:, 2008. Efficient
Online Monitoring of Web-Service SLAs, In
Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering,
Atlanta, Georgia, November 9-14, CAM, pp. 170-180.

Robinson, W. N., 2003. Monitoring Web Service
Requirements, In Proceedings of the 11th IEEE
International Conference on Requirements
Engineering, Monterey Bay, California, USA,
September 8-12, IEEE Computer Society, pp. 65.

Spillner, J., Hoyer, J., 2009. SLA-Driven Service
Marketplace Monitoring with Grand Slam. In
Proceedings of the 4th International Conference on
Software and Data Technologies (ICSOFT09), Sofia,
Bulgaria, July 26-29.

Strunk A., Braun I., Reichert, S., Schill A., 2009.
Supporting Rebinding in BPEL processes. In
Proceedings of the IEEE International Conference of
Web Services (ICWS’09). Los Angeles, California,
USA, July 6-10, IEEE Computer Society, pp. 864-871.

Stathel, S., van Dinther, C., Schönefeld, A. 2009. Service
Innovation with Information Market. In Proceedings
of the 9th International Conference on Business
Informatics (Business Services: Concepts,
Technologies, Applications), February 25-27, Vienna,
Austria, pp. 825-834.

Wang, Y., Vassileva, J., 2007. Towards trust and
reputation based web service selection: A survey. In
Proceedings of the 27th International Conference in
Distributed Computing Systems Workshop (ICDCSW),
Toronto, Canada, June 22-29, pp. 25.

Xu, Z., Martin, P., Powley, W., Zulkernine, F., 2007.
Reputation-Enhanced QoS-based Web Service
Discovery. In Proceedings of the IEEE International
Conference on Web Services (ICWS’07), Salt Lake
City, Utah, USA, July 9-13, IEEE Computer Society,
pp. 249-256.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

124

