
WHAT IS WRONG WITH AOP?

Adam Przybylek
Department of Business Informatics, University of Gdansk, Piaskowa 9, 81-824 Sopot, Poland

Keywords: Aspect-oriented Programming, AOP, Separation of Concerns, Modular Programming.

Abstract: Modularity is a key concept that programmers wield in their struggle against the complexity of software
systems. The implementation of crosscutting concerns in a traditional programming language (e.g. C, C#,
Java) results in software that is difficult to maintain and reuse. Although modules have taken many forms
over the years from functions and procedures to classes, no form has been capable of expressing a
crosscutting concern in a modular way. The latest decomposition unit to overcome this problem is an aspect
promoted by aspect-oriented programming (AOP). The aim of this paper is to review AOP within the
context of software modularity.

1 INTRODUCTION

The history of programming languages may be seen
as a perennial quest for better separation of concerns
(SoC). The term SoC was coined by Dijkstra (1974)
and it means “focusing one's attention upon some
aspect” to study it in isolation for the sake of its own
consistency; it does not mean completely ignoring
the other ones, but temporarily forgetting them to the
extent that they are irrelevant for the current topic.
In the context of systems development, this term
refers to the ability to decompose and organize
systems into manageable modules, which have as
little knowledge about the other modules of the
system as possible.

Programming languages provide mechanisms
that allow the programmer to define modules, and
then compose those modules in different ways to
produce the overall system. However, Kiczales et al.
found that sometimes some issues of the problem
cannot be represented as first-class entities in the
adopted language. The reason why such issues are
hard to capture is that they cut across the system’s
basic functionality, so their implementation will be
spread throughout other modules (Kiczales et al.
1997). Such issues are called crosscutting concerns.

The symptoms of implementing crosscutting
concerns in a procedural or object-oriented (OO)
language are “code scattering” and “code tangling”.
Code tangling occurs when implementations of
different concerns coexist within the same module.
Code scattering occurs when the same

implementation of a crosscutting concern spreads
necessarily through many modules. Code tangling
and scattering are damaging to the software
architecture.

Efforts to deal with the phenomena of code
tangling and scattering have resulted in aspect-
oriented programming (AOP). Although AOP
introduces a new unit of modularity to implement
crosscutting concerns, it comes with its own set of
problems. The distinguishing characteristic of AO
languages is that they provide quantification and
obliviousness (Filman & Friedman 2001).
Quantification is the idea that one can write an
aspect that can affect arbitrarily many non-local
places in a program (Steimann 2006). Obliviousness
states that one cannot know whether the aspect code
will execute by examining the body of the base code
(Filman 2001). Quantification and obliviousness
cause problems such as difficulties in reasoning or
maintenance (Leavens & Clifton 2007).

Hence, AOP, by preventing code tangling and
scattering, improves software quality in one area,
and at the same time, by introducing quantification
and obliviousness, decreases it in the other area. In
spite of the widely-held belief in the positive impact
of AOP on software modularity, it has never been
thoroughly investigated (according to our
knowledge). The key problem this paper addresses is
reasoning about whether the superior SoC offered by
AOP makes software more modular.

125
Przybylek A. (2010).
WHAT IS WRONG WITH AOP?.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 125-130
DOI: 10.5220/0002921601250130
Copyright c© SciTePress

2 BACKGROUND

One of the well-known mechanisms to handle
complexity proposed in the early days of software
engineering is modularization. Modularization is the
process of decomposing a system into loosely-
coupled modules that are more easily
understandable, manageable, and hide their
implementation from each other (Parnas 1972). A
module consists of two parts: an interface and a
module body (implementation). An separates
information needed by a client from implementation
details. It represents a boundary across which
control flow and data are passed. A module body is
the code that actually realizes the module
responsibility. It hides the design decisions and
should not be accessible from outside the module. A
programmer should be able to understand the
responsibility of a module without understanding the
module’s internal design (Parnas, Clements, Weiss
1984). The interface and implementation parts are
also called public and private, respectively. The
users of a module need to know only its public part
(Riel 1996). An interface serves as a contract
between a module and its clients. Such contract
allows the programmer to change the
implementation without interfering with the rest of
the program, so long as the public interface remains
the same (Riel 1996).

An interface as presented above is often termed
provided interface. A module can also stipulate a so-
called required interface, which is another module’s
provided interface. A required interface specifies the
services that an element needs from some other
modules in order to perform its function and fulfill
its own obligations.

In practice, modularization corresponds with
finding the right decomposition of a problem (Win
et al. 2002). Parnas (1972) argues that the primary
criteria for system modularization should focus on
hiding critical design decisions (i.e. difficult design
decisions or design decisions which are likely to
change). Yourdon & Constantine (1979) suggest to
decompose a system so that (1) highly interrelated
parts of the system should be in the same module;
(2) unrelated parts of the system should reside in
different modules. Although the different modules of
one system cannot be entirely independent of each
other, as they have to cooperate and communicate to
solve the larger problem, the design process should
support as much independence as possible (Jalote
2005). Dahl, Dijkstra & Hoare (1972) explain that
“Good decomposition means that each component
may be programmed independently and revised with

no, or reasonably few, implications for the rest of the
system.” Parnas (1972) enumerates the benefits
expected of modularization: (1) managerial –
development time should be shortened because
separate groups would work on each module with
little need for communication; (2) product flexibility
– it should be possible to make drastic changes to
one module without a need to change others; (3)
comprehensibility – it should be possible to study
the system one module at a time. The whole system
can therefore be better designed because it is better
understood. This comprehensibility is often termed
“modular reasoning”. Clifton & Leavens (2003)
clarify that a language supports modular reasoning if
the actions of a module M written in that language
can be understood based solely on the code
contained in M along with the signature and
behavior of any modules referred to by M. A module
M refers to N if M explicitly names N, if M is
lexically nested within N, or if N is a standard
module in a fixed location (such as Object in Java).

3 MOTIVATIONS AND GOALS

Whenever new paradigms are proposed, they must
be carefully assessed, so that their scopes of
appropriate applicability can be identified (Lopes &
Bajracharya 2006). Such is the case with AOP.

In the research community, some conclusions
about AOP are the exact opposites of each other. On
the one hand, “many traditional programming
language researchers believe that aspect-oriented
(AO) programs are ticking time bombs, which, if
widely deployed, are bound to cause the software
industry irreparable harm” (Dantas & Walker 2006).
The best known skeptic – Steimann – in his
OOPSLA’06 paper, argues that AOP “works against
the primary purposes of the two, namely
independent development and understandability of
programs” and concludes that while AOP was set up
to modularize crosscutting concerns, its very nature
breaks modularity. Furthermore, Steimann claims
that “the number of useful aspects is not only finite,
but also fairly small” (Steimann 2006). Other
opponents of aspect orientation, by rephrasing
Dijkstra (1974), suggest that “the quality of
programmers is indirectly proportional to the
amount of advice they use in their programs”
(Constantinides, Scotinides & Störzer 2004).

On the other hand, aspects are presented as
“modular units of crosscutting implementation”:
– AOP is attractive because of its ability to

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

126

modularize crosscutting concerns (Wampler
2007);

– AOP lets programmers modularize concerns that
are orthogonal to the main decomposition of a
program (Clifton 2005);

– AOP improves modularity by encapsulating
crosscutting concerns into aspects (Munoz,
Baudry & Barais 2008);

– Aspects allow for modularization of crosscutting
concerns (Pawlak et al. 2005);

– AOP allows software to reach a higher
modularity (Soares 2004).

However, the existing studies indicate only that
AOP provides a better lexical SoC, but fail to show
that AOP improves modularity. The advocates of
AOP wrongly identify lexical SoC with the meaning
attributed to SoC by Dijkstra. Next, they conclude
that if AOP enriches SoC techniques, then it enables
better modularity. However, something is wrong
with the above reasoning. The results of some
research (Tourwe, Brichau & Gybels 2003; Kästner,
Apel & Batory 2007; Figueiredo et al. 2008) indicate
that AOP leads to software that is as hard, or perhaps
even harder, to evolve and to reuse than was the case
before. Yet, it is documented that the improved
modularity translates into easier maintenance and
code reuse. The aim of this paper is to discuss
whether the aspect-oriented SoC makes software
more modular.

4 ASPECT-ORIENTED SOC: A
THEORETICAL DISCUSSION

4.1 AOP Promotes Unstructured
Programming

Constantinides, Scotinides & Störzer (2004) show
that AOP has some of the problems associated with
the GoTo statement. In particular, it does not allow
for creating a coordinate system for the programmer.
Since an advice can plug into just about any point of
execution of a program, one can never know the
previous (or following) statement of any statement
(Steimann 2006). An advice is even worse than
GoTo as the GoTo statement transfers control flow
to a visible label, while an advice does not. As a
result, just looking at the source code of the base
module is not enough to deduce a variable value –
an advice might have changed it invisibly for the
programmer. Constantinides et al. compare Advice
to the ComeFrom statement, which was proposed as
a way to avoid GoTo – of course only as a joke

(Constantinides, Scotinides & Störzer 2004).

4.2 AOP Breaks Information Hiding

A well designed module hides its implementation
details from other modules. Prior to AOP, public
interfaces together with private implementations
guaranteed that changing a module’s implementation
would not break other modules as long as the
interface would be kept the same. Since AOP this is
no longer true. A pointcut expression allows a
programmer to ignore the provided interface of a
base module by capturing calls to the private
methods. Then changes to the implementation of the
base module might crash the pointcut expression.
Hence, aspects can break down as classes evolve.
Aldrich (2005) tightens this problem by restricting
quantification, in that internal communication events
(e.g., private calls within a module) cannot be
advised by external clients.

In addition, an aspect can access the private
members of any module by using the privileged
modifier. In turn, it leads to a globalization of the
data contained in modules. Hence, the conclusion
drawn by Wulf & Shaw (1973) — that in the
presence of global variables a programmer needs “a
detailed global knowledge of the program” — is
therefore also true for the presence of aspects
(Steimann 2006).

4.3 AOP Leaves Interfaces Implicit

Steimann (2006) tries to apply the idea of
provided/required interfaces to AOP. On the one
hand, the aspect provides a particular service
through which it extends the base module; therefore
it should specify the provided interface. However,
the matching required interface of the base module
remains implicit — the base module does not
specify that it needs something. On the other hand,
the base module provides a set of program elements,
which are required by the aspect to perform its
function. Although the aspect depends on these
elements, the base module comes without an explicit
counterpart interface specification: its provided
interface is implicit. Seen either way, the base
module specifies no interfaces that could be matched
with those of its aspects (Steimann 2006). For the
programmer of the base module, this means that
everything accessible for aspects should be kept
constant.

The efforts of introducing an explicit interface
between aspects and base modules were originated
by Gudmundson & Kiczales (G&K) and then

WHAT IS WRONG WITH AOP?

127

continued by Aldrich. Gudmundson & Kiczales
(2001) that the signature (a name and
parameterization) of a pointcut can convey the
abstract responsibility captured by the pointcut
definition. Such as, pointcuts provide a basis for a
new kind of interface, which G&K call the pointcut
interface. A pointcut interface consists of a
collection of named pointcuts and is exported by the
base module, which can be a class or a package. The
pointcut definition is kept within the module that
exports the interface, so anyone looking at the
definition would also be looking at the
implementation of the base module. By having the
exported pointcut, the programmer is aware that the
base module may be influenced by aspects.
Preserving the pointcut interface guarantees that
upgrades to the base module will not disturb the
dependent aspects.

Aldrich (2005) introduces a new modularization
unit - Open Module - that “is intended to be open to
extension with advice but modular in that the
implementation details of a module are hidden”. His
language allows programmers to export pointcuts
from an open module. Next, an external advice can
be applied to these exported pointcuts. Because an
advice needs to query exported pointcuts in order to
achieve its function, the pointcuts can be thought of
as a provided interface, while its counterpart in the
advice header as a required interface. In addition, all
calls to interface methods from outside the open
module can also be advised. This property is
important because many aspects rely only on calls to
interface methods, so exporting pointcuts for all of
these calls would be cumbersome.

The main drawbacks of open modules are: (1)
Explicitly exposing an interface pointcut means a
loss of some obliviousness; (2) The programmer of
the base module must anticipate that clients might be
interested in the internal event; (3) The programmer
has to hide out some implementation details of the
designed module to make the module open for
advising; (4) When pointcuts are defined within base
modules, many join points that have to be advised in
the same way cannot be captured by quantified
pointcuts, e.g., using wild-card notations. A separate
pointcut is required for each base module.

Leavens & Clifton (2007) introduce a required
interface in the base module by explicitly naming
the aspects that may affect the module behaviour.
Then, aspects can only be applied to the modules
that reference them. Explicit acceptance of an aspect
can be expressed by an annotation.

Hoffman & Eugster (2007) extend AspectJ with
explicit join points (EJPs). EJPs introduce a new

type of join point, which is explicitly declared by the
programmer within aspect, has a unique name and
signature. Base code then explicitly references these
join points where crosscutting concerns should
apply. The idea of EJPs is to represent cross-cutting
concerns via explicit interfaces that act as mediators
between aspects and base code.

As was pointed out by Steimann (2006), both the
above solutions not only make advice activation
almost indistinguishable from guarded subroutine
calling but also they re-introduce the scattering that
AOP was to avoid. For instance, with tracing as a
crosscutting concern, annotating every method
whose execution is to be traced is just as annoying
as adding the tracing code on site (Steimann 2006).
The use of annotations violates the “obliviousness”
property of AOP pointcuts, and has potential scaling
problems. In addition, this technique is invasive for
base modules and unfeasible in case base modules
are third party components.

4.4 AOP Makes Modular Reasoning
Difficult

Aspects are most effective when the code they
advise is oblivious to their presence (Filman &
Friedman 2001). In other words, aspects are
effective when a programmer is not required to
annotate the base code in any particular way (Dantas
& Walker 2006). However, the obliviousness
property of AO languages implies that a base
module has no knowledge of which aspects modify
it where or when (Steimann 2006). It conflicts with
the ability to study the system one module at a time.
The whole-program analysis is required to find all
the aspects that might advise a given piece of code
(Clifton & Leavens 2003; Clifton 2005). This
presents difficulties for code understanding and
maintenance.

In addition, tight coupling between pointcuts and
the semantics of methods and classes makes it
impossible to understand aspects without first
understanding methods and classes (Walker,
Zdancewic & Ligatti 2003). Such as, it is not longer
possible to reason about modules in isolation.

A proposal to maintain modular reasoning was
put forward by Clifton & Leavens (C&L) and then
expanded on by Dantas & Walker (2006) and Rinard
et al. (57). Clifton & Leavens (2002) suggest to
separate aspects into two categories, assistants and
spectators, which provide complementary features.
Assistants have the full power of AspectJ’s aspects,
but to maintain modular reasoning it is required that
assistants are explicitly accepted (see Section 4.3).

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

128

Spectators are constrained to not modify the
behavior of the modules that they advise. In concrete
terms, a spectator may only mutate the state that it
owns and it must not change the control flow to or
from an advised method. In addition to mutating the
owned state, it seems reasonable to allow spectators
to change accessible global state as well, since a
Java module cannot rely on that state not changing
during an invocation (modulo synchronization
mechanisms). This allows modular reasoning
without requiring spectators to be explicitly accepted
(Clifton & Leavens 2002). Nevertheless, when
problems arise, a programmer must examine both
the base and relevant aspect code to identify a bug.

Rinard et al. (57) proposed a more sophisticated
classification system for AO programs. This system
characterizes two kinds of interactions: direct
interactions between an advice and methods that it
crosscuts and indirect interactions between an advice
and methods that may access the same object fields.
They also implemented an application that may help
programmers understand the interactions in AO
programs and indicate the problematic ones.

4.5 AOP Breaks the Contract between
a Base Module and its Clients

In the presence of aspects, clients of a base module
can no longer trust that the provided service meets
its specification. Each service can be affected by an
advice.

Dantas & Walker (2006) introduce the notion of
harmless advice, which is similar to the notation of
spectators (see Section 4.4). Unlike an ordinary
advice, a harmless advice is not allowed to influence
the final result of the base code. Therefore,
programmers may ignore harmless advices when
reasoning about the partial correctness properties of
their programs. Although harmless advices are
useful for many common crosscutting concerns
including: logging, tracing, profiling, invariant
checking and debugging, they limit the powerful of
AOP.

Gudmundson & Kiczales (2001) propose a
pointcut interface (see Section 4.3) to restore the
contract between a module and its clients. A pointcut
interface allows a module to be evolved
independently of its clients so long as the contract is
preserved.

4.6 AOP doesn’t Decrease Coupling

The fact that we must know something about
another module is a priori evidence of some degree

of interconnection even if the form of the
interconnection is not known (Yourdon &
Constantine 1979). An aspect establishes a strong
dependency between itself and the base module,
although this dependency is invisible from the base
module’s side. If a change occurs in any base
module, all aspects need to be reviewed whether
they are still working. Most AO languages in use
today are based on structural information about join
points, such as naming conventions and package
structure, rather than the logical patterns of the
software (Wampler 2007). In the result, a change in
the method signature captured by the pointcut
invalidates this pointcut definition, as well as the
associated advice. This phenomenon is called the
fragile pointcut problem.

5 SUMMARY

Since its inception over a decade ago, AOP is still a
controversial idea. The advocates of AOP still repeat
that AOP improves modularity. If a myth is repeated
often enough, people believe it is true. Thus, even
some opponents of AOP fall into the trap of saying
that “AOSD leads to applications that are better
modularized“ (Tourwe, Brichau & Gybels 2003).
However, this paper denies it on theoretical grounds.
The main finding from the discussion is that aspects
violate the basic software engineering principles and
thus degrade modularity.

Some researchers propose to reduce
obliviousness in return for increased modularity. In
these approaches, AOP loses its ability to add new
features to the code without having to intrusively
modify the code, hence promises about non-invasive
extensions are no longer true.

Nevertheless, the author appreciates the
contribution of AOP in the development of SoC
techniques and believes that AOP indicated
directions in which further research should be
conducted.

REFERENCES

Aldrich J., 2005. Open Modules: Modular Reasoning
about Advice. In: Proceedings of the 19th European
Conference on Object-Oriented Programming
(ECOOP’05), Glasgow, U.K.

Clifton, C., 2005. A design discipline and language
features for modular reasoning in aspect-oriented
programs. Phd thesis, Department of Computer
Science, Iowa State University, U.S.A.

WHAT IS WRONG WITH AOP?

129

Clifton, C., Leavens, G. T., 2002. Spectators and
Assistants: Enabling Modular Aspect-Oriented
Reasoning. Technical Report 02-10, Iowa State
University.

Clifton, C., Leavens, G. T., 2003. Obliviousness, Modular
Reasoning, and the Behavioral Subtyping Analogy. In:
Software-engineering Properties of Languages for
Aspect Technologies (SPLAT’03), Boston.

Constantinides, C., Scotinides, T., Störzer, M., 2004. AOP
considered harmful. In: 1st European Interactive
Workshop on Aspect Systems, Berlin, Germany

Dahl, O. J., Dijkstra, E.W., Hoare, C. A., 1972. Structured
Programming. Academic Press Ltd.

Dantas, D.S., Walker, D., 2006. Harmless advice. In:
Conference Record of the 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages. ACM, pp. 383–396, New York.

De Win, B., Piessens, F., Joosen, W., Verhanneman, T.,
2002. On the importance of the separation-of-concerns
principle in secure software engineering. In: ACSA
Workshop on the Application of Engineering
Principles to System Security Design, Boston,
Massachusetts.

Dijkstra, E. W., 1974. On the role of scientific thought.
Netherlands, http://www.cs.utexas.edu/users/EWD/
transcriptions/EWD04xx/EWD447.html

Figueiredo et al., 2008. Evolving software product lines
with aspects: An empirical study on design stability.
In: 30th International Conference on Software
Engineering (ICSE'08), Leipzig, Germany.

Filman, R.E., 2001. What is AOP, revisited. In: Workshop
on Multi-Dimensional Separation of Concerns at
ECOOP’01, Budapest, Hungary

Filman, R. E., Friedman, D. P., 2001. Aspect-oriented
programming is quantification and obliviousness. In:
Workshop on Advanced Separation of Concerns at
OOPSLA’00, Minneapolis, Minnesota

Gudmundson S., Kiczales, G., 2001. Addressing practical
software development issues in AspectJ with a
pointcut interface. In: Workshop on Advanced
Separation of Concerns of ECOOP'01, Budapest,
Hungary.

Hoffman, K., Eugster, P., 2007. Bridging Java and
AspectJ through explicit join points. In: 5th
international Symposium on Principles and Practice
of Programming in Java (PPPJ’07), Lisboa, Portugal

Jalote, P., 2005. An Integrated Approach to Software
Engineering. Springer, New York.

Kästner, C., Apel, S., Batory, D., 2007. A Case Study
Implementing Features using AspectJ. In: 11th
International Conference of Software Product Line
Conference (SPLC'07), Kyoto, Japan.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, Ch.,
Lopes, C. V., Loingtier, J., Irwin, J., 1997. Aspect-
Oriented Programming. LNCS, vol. 1241, pp. 220–
242. Springer, New York.

Leavens, G. T., Clifton, C., 2007. Multiple concerns in
aspect-oriented language design: a language
engineering approach to balancing benefits, with
examples. In: 5th Workshop on Software Engineering

Properties of Languages and Aspect Technologies
(SPLAT’07), Vancouver, Canada.

Lopes , C. V., Bajracharya, S., 2006. An Analysis of
Modularity in Aspect-Oriented Design. Springer
LNCS 3880 Transactions on Aspect-Oriented Software
Development I, pp. 1–35.

Munoz, F., Baudry, B., Barais, O., 2008. A classification
of invasive patterns in AOP. In: 24th IEEE
International Conference on Software Maintenance
(ICSM’08), Beijing, China.

Parnas, D. L., 1972. On the criteria to be used in
decomposing systems into modules. Communications
of the ACM, vol. 15(12). ACM Press, New York, pp.
1053–1058.

Parnas, D. L., Clements, P. C., Weiss, D. M., 1984. The
modular structure of complex systems. In:
Proceedings of the 7th International Conference on
Software Engineering, Orlando, Florida.

Pawlak, R., Pawlak, R., Seinturier, L., Retaillé, J.P.,
Younessi, H., 2005. Foundations of AOP for J2EE
Development. Apress.

Riel, A. J., 1996. Object-oriented Design Heuristics.
Addison-Wesley, Boston.

Soares, S., 2004. An Aspect-Oriented Implementation
Method. PhD thesis, Federal University of
Pernambuco, Brazil.

Steimann, F., 2006. The paradoxical success of aspect-
oriented programming. SIGPLAN Not. 41, 10 (Oct.
2006), pp. 481–497.

Tourwe, T., Brichau, J., Gybels, K., 2003. On the
Existence of the AOSD-Evolution Paradox. In:
Workshop on Software Engineering Properties of
Languages for Aspect Technologies (SPLAT’03) at
AOSD’03, Boston, Massachusetts.

Walker, D., Zdancewic, S., Ligatti, J., 2003. A Theory of
Aspects. In: 8th ACM SIGPLAN International
Conference on Functional Programming, Uppsala,
Sweden.

Wampler, D., 2007. Noninvasiveness and Aspect-Oriented
Design: Lessons from Object-Oriented Design
Principles. In: 6th International Conference on Aspect-
Oriented Software Development (AOSD’07),
Vancouver, Canada.

Wulf, W., Shaw, M., 1973. Global variable considered
harmful. SIGPLAN Notices 8:2, pp. 28–34.

Yourdon, E., Constantine, L.L., 1979. Structured Design:
Fundamentals of a Discipline of Computer Program
and System Design. Prentice-Hall, New York.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

130

