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Abstract: Web query log data contain information useful to research; however, release of such data can re-identify the 
search engine users issuing the queries. These privacy concerns go far beyond removing explicitly 
identifying information such as name and address, since non-identifying personal data can be combined 
with publicly available information to pinpoint to an individual. In this work we model web query logs as 
unstructured transaction data and present a novel transaction anonymization technique based on clustering 
and generalization techniques to achieve the k-anonymity privacy. We conduct extensive experiments on the 
AOL query log data. Our results show that this method results in a higher data utility compared to the state-
of-the-art transaction anonymization methods. 

1 INTRODUCTION 

Web search engines generally store query logs data 
for the purpose of improving ranking algorithms, 
query refinement, user modelling, fraud/abuse 
detection, language-based applications, and sharing 
data for academic research or commercial needs 
(Cooper, 2008). On the other hand, the release of 
query logs data can seriously breach the privacy of 
search engine users. The privacy concern goes far 
beyond just removing the identifying information 
from a query. Sweeney (Sweeney, 2000) showed 
that even non-identifying personal data can be 
combined with publicly available information, such 
as census or voter registration databases, to pinpoint 
to an individual. In 2006 the America Online (AOL) 
query logs data, over a period of three months, was 
released to the public (Barbaro et al., 2006). 
Although all explicit identifiers of searchers have 
been removed, by examining query terms, the 
searcher No. 4417749 was traced back to the 62-
year-old widow Thelma Arnold. Since this scandal, 
data publishers become reluctant to provide 
researchers with public anonymized query logs 
(Hafner, 2006). 

An important research problem is how to render 
web query log data in such a way that it is difficult 
to link a query to a specific individual while the data 
is still useful to data analysis. Several recent works 

start to examine this problem, with (Kumar et al., 
2007) and (Adar, 2007) from web community 
focusing on privacy attacks,  and (He et al., 2009), 
(Terrovitis et al., 2008), and (Xu et al., 2008) from 
the database community focusing on anonymization 
techniques. Although good progresses are made, a 
major challenge is reducing the significant 
information loss of the anonymized data.  

The subject of this paper falls into the field of 
privacy preserving data publishing (PPDP) (Fung et 
al., 2010), which is different from access control and 
authentication associated with computer security. 
The work in these latter areas ensures that the 
recipient of information has the authority to receive 
that information. While such protections can 
safeguard against direct disclosures, they do not 
address disclosures based on inferences that can be 
drawn from released data. The subject of PPDP is 
not much on whether the recipient can access to the 
information or not, but is more on what values will 
constitute the information the recipient will receive 
so that the privacy of record owners is protected. 

1.1 Motivations 

This paper studies the query log anonymization 
problem with the focus on reducing information 
loss. One approach is modelling query logs data as a 
special case of transaction data, where each 
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transaction contains several “items” from an item 
universe I. In the case of query logs, each transaction 
represents a query and each item represents a query 
term. Other examples of transaction data are emails, 
online clicking streams, online shopping 
transactions, and so on. As pointed out in (Terrovitis 
et al., 2008) and (Xu et al., 2008), for transaction 
data, the item universe I is very large (say thousands 
of items) and a transaction contains only a few 
items. For example, each query contains a tiny 
fraction of all query terms that may occur in a query 
log. If each item is treated as a binary attribute with 
1/0 values, the transaction data is extremely high 
dimensional and sparse. On such data, traditional 
techniques suffer from extreme information loss 
(Terrovitis et al., 2008) and (Xu et al., 2008). 

Recently, the authors of (He et al., 2009) adapted 
the top-down Mondrian (LeFevre et al., 2006) 
partition algorithm originally proposed for relational 
data to generalize the set-valued transaction data. 
We refer to this algorithm as Partition in this paper. 
They adapted the traditional k-anonymity (Samarati, 
2001) and (Sweeney, 2002) to the set valued 
transaction data. A transaction database is k-
anonymous if transactions are partitioned into 
equivalence classes of size at least k, where all 
transactions in the same equivalence class are 
exactly identical. This notion prevents linking 
attacks in the sense that the probability of linking an 
individual to a specific transaction is no more than 
1/k.  

Our insight is that Partition method suffers from 
significant information loss on transaction data.  
Consider the transaction data S={ t1, t2, t3, t4, t5 } in 
the second column of Table 1 and the item 
taxonomy in Figure 1. Assume k = 2. Partition 
works as follows. Initially, there is one partition 
P{food} in which the items in every transaction are 
generalized to the top-most item food. At this point, 
the possible drill-down is food  {fruit, meat, 
dairy}, yielding 23-1 sub-partitions corresponding to 
the non-empty subsets of {fruit, meat, dairy}, i.e., 
P{fruit}, P{meat}, ..., and P{fruit,meat,dairy}, where the curly 
bracket of each sub-partition contains the common 
items for all the transactions in that sub-partition. 
All transactions in P{food} are then partitioned into 
these sub-partitions. All sub-partitions except 
P{fruit,meat} violate k-anonymity (for k=2) and thus are 
merged into one partition P{food}. Further partitioning 
of P{fruit,meat} also violates k-anonymity. Therefore, the 
algorithm stops with the result shown in the last 
column of Table 1. 

One drawback of Partition is that it stops 
partitioning the data at a high level of the item 

taxonomy. Indeed, specializing an item with n 
children will generate 2n-1 possible sub-partitions. 
This exponential branching, even for a small value 
of n, quickly diminishes the size of a sub-partition 
and causes violation of k-anonymity. This is 
especially true for query logs data where query 
terms are drawn from a large universe and are from 
a diverse section of the taxonomy.  

 

 

Figure 1: Food taxonomy tree. 

Table 1: The motivating example and its 2-anonymization. 

TID Original Data Partition 
t1 <orange, chicken, beef> <fruit, meat> 
t2 <banana, beef, cheese> <food> 
t3 <chicken, milk, butter> <food> 
t4 <apple, chicken> <fruit, meat> 
t5 <chicken, beef> <food> 

 
Moreover, the Partition does not deal with item 

duplication. As an example, the generalized t3 in the 
third column of Table 1 contains only one 
occurrence of food, which clearly has more 
information loss than the generalized transaction 
<food, food, food> because the latter tells more 
truthfully that the original transaction purchases at 
least three items. Indeed, the TFIDF used by many 
ranking algorithms critically depends on the term 
frequency of a term in a query or document. 
Preserving the occurrences of items (as much as 
possible) would enable a wide range of data analysis 
and applications.  

1.2 Contributions 

To render the input transaction data k-anonymous, 
our observation is: if “similar” transactions are 
grouped together, less generalization and 
suppression will be needed to render them identical. 
As an example, grouping two transactions <Apple> 
and <Milk> (each having only one item) entails 
more information loss than grouping two 
transactions <Apple> and <Orange>, because the 
former results in the more generalized transaction 
<Food> whereas the latter results in the less 
generalized transaction <Fruit>. Therefore, with a 
proper notion of transaction similarity, we can treat 
the transaction anonymization as a clustering 
problem such that each cluster must contain at least 
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k transactions and these transactions should be 
“similar”. Our main contributions are as follows: 

Contribution 1. For a given item taxonomy, we 
introduce the notion of the Least Common 
Generalization (LCG) as the generalized 
representation of a subset of transactions, and as a 
way to measure the similarity of a subset of 
transactions. The distortion of LCG models the 
information loss caused by both item generalization 
and item suppression. We devise a linear-time 
algorithm to compute LCG.  

Contribution 2. We formulate the transaction 
anonymization as the problem of clustering a given 
set of transactions into clusters of size at least k such 
that the sum of LCG distortion of all clusters is 
minimized.  

Contribution 3. We present a heuristic linear-time 
solution to the transaction anonymization problem. 

Contribution 4. We evaluate our method on the 
AOL query logs data. 

The structure of the paper is as follows. Section 2 
describes problem statements. Section 3 gives our 
clustering algorithm. Section 4 presents the detailed 
algorithm for computing LCG. Section 5 presents 
the experimental results. Section 6 reviews related 
works. We conclude in Section 7. 

2 PROBLEM STATEMENTS 

This section defines our problems. We use the terms 
“transaction” and “item”. In the context of web 
query logs, a transaction corresponds to a query and 
an item corresponds to a query term. 

2.1 Item Generalization 

We assume that there is a taxonomy tree T over the 
item universe I, with the parent being more general 
than all children. This assumption was made in the 
literature (Samarati, 2001), (Sweeney, 2002), (He et 
al., 2009), (Terrovitis et al., 2008). For example, 
WordNet (Fellbaum, 1998) could be a source to 
obtain the item taxonomy.  

The process of generalization refers to replacing 
a special item with a more general item (i.e., an 
ancestor), and the process of specialization refers to 
the exact reverse operation. In this work, an item is 
its own ancestor and descendant. 

Definition 1 (Transactions and Generalization). A 
transaction is a bag of items from I (thus allowing 
duplicate items). A transaction t’ is a Generalized 

Transaction of a transaction t, if for every item i’t’ 
there exists one distinct item it such that i’ is an 
ancestor of i. In this case, t is the Specialized 
Transaction of t’. 

The above transaction model is different from 
(He et al., 2009) in several ways. First, it allows 
duplicate items in a transaction. Second, it allows 
items in a transaction to be on the same path in the 
item taxonomy, in which case, each item represents 
a distinct leaf item. For example, we interpret the 
transaction <Fruit, Food> as: Fruit represents (the 
generalization of) a leaf item under Fruit and Food 
represents a leaf item under Food that is not 
represented by Fruit. Also, if t’ is a generalized 
transaction of t, each item i’t’ represents one 
distinct item it. We say that an item it is 
suppressed in t’ if no i’t’ represents the item i. 
Hence, our generalization also models item 
suppression.  

Example 1: Consider the taxonomy tree in Figure 1 
and the transaction t=<Orange, Beef>. All possible 
generalized transactions of t are <>, <Orange>, 
<Beef>, <Orange, Beef>, <Fruit, Beef>, <Orange, 
Meat>, <Fruit, Meat>, <Fruit>, <Meat>, <Food>, 
<Orange, Food>, <Food, Beef>, <Fruit, Food>, 
<Food, Meat>, and <Food, Food>. For t’=<Fruit>, 
Fruit represents (the generalization) of some item 
under the category Fruit (i.e., Orange), and Beef is a 
suppressed item since no more item in t’ represents 
it. For t’=<Food>, Food represents one item under 
Food, therefore, one of Orange and Beef in t is 
suppressed. For t’=<Food, Food>, each occurrence 
of Food represents a different item in t. � 

2.2 Least Common Generalization 

The main idea of transaction anonymization is to 
build groups of identical transactions through 
generalization. We introduce the following notion to 
capture such generalizations.  

Definition 2 (LCG). The Least Common 
Generalization of a set of transactions S, denoted by 
LCG(S), is a common generalized transaction for all 
of the transactions in S, and there is no other more 
special common generalized transaction. 

The following properties follow from the above 
definition. The proof has been omitted due to the 
space limit 

Property 1 LCG(S) is unique for a given S.  

Property 2 The length of LCG(S) (i.e. the number of 
items in it) is equal to the length of the shortest 
transaction in S.  This property can be ensured by 
padding the root item to LCG if necessary.  
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Example 2: Consider the taxonomy tree in Figure 1. 
Let S1 = {<Orange, Beef>, <Apple, Chicken, Beef>}, 
LCG(S1) = <Fruit, Beef>. LCG(S1) cannot be <Fruit, 
Meat> since <Fruit, Beef> is a more specialized 
common transaction. For S2 = {<Orange, Milk>, 
<Apple, Cheese, Butter>}, LCG(S2)=<Fruit, Dairy>. 
Dairy represents Milk in the first transaction and 
represents one of Cheese and Butter in the second 
transaction. Thus one of Cheese or Butter is 
considered as a suppressed item. For S3 = {<Orange, 
Apple>, <Orange, Banana, Milk>, <Banana, Apple, 
Beef>}, LCG(S3)=<Fruit, Fruit>, which represents 
that all three transactions contain at least two items 
under Fruit. Milk and Beef are suppressed items. For 
S4 = {<Orange, Beef>, <Apple, Milk>}, LCG(S4) = 
<Fruit, Food>, where Food represents Beef in the 
first transaction and Milk in the second transaction. 
Here LCG contains both a parent and a child item.  

Various metrics have been proposed in the 
literature to measure the quality of generalized data 
including Classification Metric (CM), Generalized 
Loss Metric (LM) (Iyengar, 2002), and Discernibility 
Metric (DM) (Bayardo et al., 2005). We use LM to 
measure item generalization distortion. The similar 
notion of NCP has also been employed for set-
valued data (Terrovitis et al., 2008) and (He et al., 
2009). Let M be the total number of leaf nodes in the 
taxonomy tree T, and let Mp be the number of leaf 
nodes in the subtree rooted at a node p. The Loss 
Metric for an item p, denoted by LM(p), is defined 
as (Mp-1) / (M-1). For the root item p, LM(p) is 1. In 
words, LM captures the degree of generalization of 
an item by the percentage of the leaf items in the 
domain that are indistinguishable from it after the 
generalization. For example, considering taxonomy 
in Figure 1, LM(Fruit)=2/7.  

Suppose that we generalize every transaction in a 
subset of transactions S to a common generalized 
transaction t, and we want to measure the distortion 
of this generalization. Recall that every item in t 
represents one distinct item in each transaction in S 
(Definition 1). Therefore, each item in t generalizes 
exactly |S| items, one from each transaction in S, 
where |S| is the number of transactions in S. The 
remaining items in a transaction (that are not 
generalized by any item in t) are suppressed items. 
Therefore, the distortion of this generalization is the 
sum of the distortion for generalized items, |S|Σit 
LM(i), and the distortion for suppressed items. For 
each suppressed item, we charge the same distortion 
as if it is generalized to the root item, i.e., 1.  

Definition 3 (GGD). Suppose that we generalize 
every transaction in a set of transactions S to a 
common generalized transaction t. The Group 

Generalization Distortion of the generalization is 
defined as GGD(S, t) = |S|Σit LM(i) + Ns, where Ns 
is the number of occurrences of suppressed items.� 

To minimize the distortion, we shall generalize S 
to the least common generalization LCG(S), which 
has the distortion GGD(S, LCG(S)). 

Example 3: Consider the taxonomy in Figure 1 and 
S1={<Orange, Beef>, <Apple, Chicken, Beef>}. We 
have LCG(S1) = <Fruit, Beef>. LM(Fruit)=2/7, 
LM(Beef)=0, and |S1|=2. Since Chicken is the only 
suppressed item, Ns=1. Thus GGD(S1, LCG(S1)) = 
2(2/7+0) + 1 = 11/7. 

2.3 Problem Definition 

We adopt the transactional k-anonymity in (He et al., 
2009) as our privacy notion. A transaction database 
D is k-anonymous if for every transaction in D, there 
are at least k-1 other identical transactions in D. 
Therefore, for a k-anonymous D, if one transaction 
is linked to an individual, so are at least k-1 other 
transactions, so the adversary has at most 1/k 
probability to link a specific transaction to the 
individual. For example, the last column in Table 1 
is a 2-anonymous transaction database. 

Definition 5 (Transaction Anonymization). Given a 
transaction database D, a taxonomy of items, and a 
privacy parameter k, we want to find the clustering 
C={S1,…,Sn} of D such that S1,…,Sn are pair-wise 
disjoint subsets of D with each Si containing at least 
k transactions from D, and Σ i=1..|C| GGD(Si, LCG(Si)) 
is minimized. � 

Let C={S1,…,Sn} be a solution to the above 
anonymization problem. A k-anonymized database 
of D can be obtained by generalizing every 
transaction in Si to LCG(Si), i=1,…,n. 

3 CLUSTERING APPROACH 

In this section we present our algorithm Clump for 
solving the problem defined in Definition 5. In 
general, the problem of finding optimal k-
anonymization is NP-hard for k3 (Meyerson et al., 
2004). Thus, we focus on an efficient heuristic 
solution to this problem and evaluate its 
effectiveness empirically. In this section, we assume 
that the functions LCG(S) and GGD(S, LCG(S)) are 
given. We will discuss the detail of computing these 
functions in Section 4. 

The central idea of our algorithm is to group 
transactions in order to reduce GGD(Si, LCG(Si)), 
subject to the constraint that Si contains at least k 
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transactions. Recall GGD(S, LCG(S)) = |S|ΣiLCG(S) 
LM(i) + Ns and from Property 2, LCG(S) has the 
length equal to the minimum length of transactions 
in S. All “extra” items in a transaction that do not 
have a generalization in LCG(S) are suppressed and 
contributes to the suppression distortion Ns. Since 
the distortion of generalizing an item is no more than 
the distortion of suppressing an item, one heuristic is 
to group transactions of similar length into one 
cluster in order to minimize the suppression 
distortion Ns.  

Based on this idea, we present our algorithm 
Clump. Let D be the input transaction database and 
let n=|D|/k be the number of clusters, where |D| 
denotes the number of transactions in D: 

Step 1 (line 2-5): We arrange the transactions in D 
in the decreasing order of the transaction length, and 
we initialize the ith cluster Si, i=1,…,n, with the 
transaction at the position (i-1)k+1 in the ordered 
list. Since earlier transactions in the arranged order 
have longer length, earlier clusters in this order tend 
to contain longer transactions. 

For the comparison purpose, we also implement 
other transaction assignment orders, such as random 
assignment order and the increasing transaction 
length order (i.e., the exact reverse order of the 
above algorithm). Our experiments found that the 
decreasing order by transaction length produced 
better results. 

Step 2 (line 6-12): For each remaining transaction ti 
in the arranged order, we assign ti to the cluster Sj 

such that |Sj|<k and GGD(Sj{ti}, LCG(Sj{ti})) is 
minimized. Since this step requires computing 
GGD(Sj{ti}, LCG(Sj{ti})), we can restrict the 
search to the first r clusters Sj with |Sj|<k, where r is 
a pruning parameter. Our order of examining 
transactions implies that longer transactions tend to 
be assigned to earlier clusters.   

Step 3 (line 13-17): after all of the n clusters contain 
k number of transactions, for each remaining 
transaction ti in the sorted order, we assign it to the 
cluster Sj with the minimum GGD(Sj{ti}, 
LCG(Sj{ti})). 

 

Algorithm 1: Clump: Transaction Clustering. 
Input: Transaction database: D, Taxonomy: T, Anonymity 
parameter: k, n=|D|/k 
Output: k-anonymous transaction database: D* 
Method: 
1. Initialize Si  for i=1,...,|D|; 
2. Sort the transactions in D in the descending order of 

length 
3. for i = 1 to n do 
4.      assign the transaction at the position (i-1)k+1 to Si  
5. end for 

6. while |Sj|<k for some Sj do 
7.    for each unassigned transaction ti in sorted order do 
8.         Let Sj be the cluster such that |Sj|<k and   
                      GGD(Sj{ti},LCG(Sj{ti})) is minimized  
9.         LCG(Sj)  LCG(Sj{ti}) 
10.         Sj  Sj{ti} 
11.    end for 
12. end while 
13. for each unassigned transaction ti do 
14.      Let Sj be the cluster such that |Sj|<k and  
                  GGD(Sj{ti},LCG(Sj{ti})) is minimized  
15.      LCG(Sj)  LCG(Sj{ti}) 
16.      Sj  Sj{ti} 
17. end for 
18. return LCG(Si) and Si, i=1,..., n 

The major work of the algorithm is computing 
GGD(Sj{ti}, LCG(Sj{ti})), which requires the 
LCG(Sj{ti}). We will present an algorithm for 
computing LCG(Si) in time O(|T||Si|) in the next 
section, where |T| is the size of the taxonomy tree T 
and |Si| is the number of transactions in Si. It is 
important to note that each cluster Si has a size at 
most 2k. Since k is small, LCG can be computed 
efficiently. In fact, the next lemma says that 
LCG(Sj{ti}) can be computed incrementally from 
LCG(Sj). 

Lemma 1. Let t be a transaction, S be a subset of 
transactions, and S’={LCG(S),t} consist of two 
transactions. Then LCG(S{t}) =LCG(S’). 
Proof: Omitted due to the space limit. � 

In words, the lemma says that the LCG of Sj{ti} 
is equal to the LCG of two transactions, LCG(S) and 
ti. Thus if we maintain LCG(Sj) for each cluster Sj, 
the computation of LCG(Sj{t}) involves only two 
transactions and takes the time O(|T|). 
Theorem 1. For a database D and a taxonomy tree 
T, Algorithm 1 runs in time O(|D|r|T|), where r is 
the pruning parameter used by the algorithm. 
Proof: We apply Counting Sort which takes O(|D|) 
time to sort all transactions in D by their length. 
Subsequently, the algorithm examines each 
transaction once to insert it to a cluster. To insert a 
transaction ti, the algorithm examines r clusters and, 
for each cluster Sj, it computes LCG(Sj{ti}) and 
GGD(Sj{ti}, LCG(Sj{ti})), which takes O(|T||Sj|) 
according to Theorem 2 in Section 4, where |Sj| is 
the number of transactions in Sj. With the 
incremental computing of LCG(Sj{ti}) in Lemma 
1, computing LCG(Sj{ti}) takes time proportional 
to |T|. Overall, the algorithm is in O(|D|r|T|).  � 

Since |T| and r are constants, the algorithm takes 
a linear time in the database size |D|. 
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4 COMPUTING LCG 

In the previous section, we make use of the 
functions LCG(S) and GGD(S, LCG(S)) to determine 
the cluster for a transaction. Since these functions 
are frequently called, an efficient implementation is 
crucial. In this section, we present a linear time 
algorithm for computing LCG and GGD. We focus 
on LCG because computing GGD is straightforward 
once LCG is found. 

4.1 Bottom-up Generalization 

We present a bottom-up item generalization (BUIG) 
algorithm to build LCG(S) for a set S of transactions. 
First, we initialize LCG(S) with the empty set of 
items. Then, we examine the items in the taxonomy 
tree T in the bottom-up fashion: examine a parent 
only after examining all its children. For the current 
item i examined, if i is an ancestor of some item in 
every transaction in S, we add i to LCG(S). In this 
case, i is the least common generalization of these 
items. If i is not an ancestor of any item in some 
transaction in S, we need to examine the parent of i.  

This algorithm is described in Algorithm 2. Let 
S= <t1,…,tm>. For an item i, we use an array Ri[1..m] 
to store the number of items in a transaction of 
which i is an ancestor. Specifically, Ri[j] is set to the 
number of items in the transaction tj of which i is an 
ancestor. MinCount(Ri) returns the minimum entry 
in Ri, i.e., minj=1..m Ri[j]. If MinCount(Ri)>0, i is an 
ancestor of at least MinCount(Ri) distinct items in 
every transaction in S, so we will add MinCount(Ri) 
copies of the item i to LCG(S).  

Algorithm 2 is a call to the recursive procedure 
BUIG(root) with the root of T. Line 1-6 in the main 
procedure initializes LCG and Ri. Consider BUIG(i) 
for an item i. If i is a leaf in T, it returns. Otherwise, 
line 4-9 examines recursively the children i’ of i, by 
the call BUIG(i’). On return from BUIG(i’), if 
MinCount(Ri’)>0, i’ is an ancestor of at least 
MinCount(Ri’) items in every transaction in S, so 
MinCount(Ri’) copies of i’ are added to LCG. If 
MinCount(Ri’)=0, i’ does not represent any item for 
some transaction in S, so the examination moves up 
to the parent item i; in this case, line 8 computes Ri 
by aggregating Ri’ for all child items i’ such that 
MinCount(Ri’)=0. Note that, by not aggregating Ri’ 
with  MinCount(Ri’)>0, we stop generalizing such 
child items. If i is the root, line 10-11 adds 
MinTranSize(S)-|LCG| copies of the root item to 
LCG, where MinTranSize(S) returns the minimum 
transaction length of S. This step ensures that LCG 
has  the   same  length  as  the  minimum  transaction 

length of S (Property 2). 

Example 4: Let S={<Orange, Apple>, <Orange, 
Banana, Milk>, <Banana, Apple, Beef>} and 
consider the taxonomy in Figure 1. BUIG(Food) 
recurs until reaching leaf items. Then the processing 
proceeds bottom-up as depicted in Figure 2. Next to 
each item i, we show o:Ri, where o is the sequence 
order in which i is examined and Ri stores the 
number of items in each transaction of which i is an 
ancestor. 

The first three items examined are Apple, 
Orange, and Banana. RApple = [1,0,1] (since Apple 
appeared in transactions 1 and 3), ROrange = [1,1,0], 
and RBanana = [0,1,1]. MinCount(Ri)=0 for these  
items i. Next, the parent Fruit is examined and   
RFruit = RApple + ROrange+ RBanana=[2,2,2]. With 
MinCount(RFruit) = 2, two copies of Fruit are added 
to LCG, i.e., LCG(S)=<Fruit, Fruit> and we stop 
generalizing Fruit.  

A similar processing applies to the sub-trees at 
Meat and Dairy, but no item i is added to LCG 
because MinCount(Ri)=0. Finally, at the root Food, 
RFood = RMeat + RDairy = [0,1,1]. Note that we do not 
add RFruit because MinCount(RFruit)>2, which signals 
that the generalization has stopped at Fruit. Since 
|LCG|=MinTranSize(S), no Food is added to LCG. 
So the final LCG(S)=<Fruit, Fruit>. As mentioned 
in Example 2, the two occurrences of Fruit indicate 
that all three transactions contain at least two items 
under Fruit. 

 

 

Figure 2: BUIG’s processing order. 

Algorithm 2: Bottom-up Item Generalization. 
Input: Taxonomy: T, Set of m transactions: S = <t1, ..., tm> 
Output: LCG(S) 
Method: 

1. LCG  ; 
2. for each item iT do  
3.      for each tjS do 
4.           if tj contains i then Ri[j] 1 else Ri[j] 0 
5.      end for 
6. end for 
7. BUIG(root); 
8. return LCG; 

**** 
BUIG(i): 
1. if i is a leaf in T then  
2.      return 
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3. else  
4.      for each child i’ of i do 
5.           BUIG(i’); 
6.           if MinCount(Ri’)>0 then 
7.                Add MinCount(Ri’) copies of i’ to LCG 
8.           else Ri  Ri+Ri’    /* examining the parent i */ 
9.      end for 
10. if i=root then  
11.     Add  MinTranSize(S)-|LCG| copies of root to LCG  
12. return 
 
Theorem 2. Given a set of transactions S and a 
taxonomy tree T of items, BUIG produces LCG(S) 
and takes time O(|T||S|), where |S| is the number of 
transactions in S and |T| is the number of items in 
taxonomy tree T. 
Proof: First, BUIG generalizes transactions by 
examining the items in T in the bottom-up order and 
stops generalization whenever encountering an item 
that is a common ancestor of some unrepresented 
item in every transaction in S. This property ensures 
that each item added to LCD is the earliest possible 
common ancestor of some unrepresented item in 
every transaction. Second, BUIG visits each node in 
T once, and at each node i, it examines the structures 
Ri’ and Rj of size |S|, where i’ is a child of i. So the 
complexity is O(|T||S|). 

4.2 A Complete Example 

Let us illustrate the complete run of Clump using the 
motivating example in Section 1.1. We reproduce 
the five transactions t1 to t5 in Table 2, arranged by 
the descending order of transaction length. Let k=2. 
First, the number of clusters is m = 5/2 = 2, and the 
first cluster S1 is initialized to the first transaction t1 
and the second cluster S2 is initialized to the third 
transaction t3. Next, we assign the remaining 
transactions t2, t4, and t5 in that order. Consider t2. If 
we assign t2 to S1, LCG(S1{t2})={fruit,beef,food}, 
and GGD = 2(2/7+0+1) = 2.57. If we assign t2 to 
S2, LCG(S2{t2})={meat,dairy,food} and GGD = 
2(1/7+2/7+1) = 2.85. Thus the decision is assigning 
t2 to S1 resulting in S1={t1,t2} and LCG(S1)={fruit, 
beef, food}.  

Next, we assign t4 to S2 because S1 has contained 
k=2 transactions. So S2={t3, t4} and LCG(S2)= 
<chicken,food>. Next, we have the choice of 
assigning t5 to S1 or S2 because both have contained 
2 transactions. The decision is assigning t5 to S2 
because it results in a smaller GGD, and LCG(S2)= 
<chicken,food>. So the final clustering is S1={t1, t2} 
and S2={t3, t4, t5}. The last column of Table 2 shows 
the final generalized transactions. 

Let us compare this result of Clump with the 
result of Partition in the third column (which has 
been derived in Section 1.1). For Clump, we 
measure the distortion by ΣGGD(Si, LCG(Si)) over 
all clusters Si. For Partition, we measure the 
distortion by ΣGGD(Si, tj) over all sub-partitions Si 
where tj is the generalized transaction for Si. The 
GGD for Clump is 2(2/7+0+1) + [3(0+1)+1] = 
6.57, compared to [2(2/7+1/7)+1] + [3(1)+5] = 
8.85 for the Partition.   

Table 2: The motivating example and its 2-anonymization. 

ID Original Data Partition Clump 

T1 <orange,chicken,beef> <fruit,meat> <fruit,beef,food> 

T2 <banana,beef,cheese> <food> <fruit,beef,food> 

T3 <chicken,milk,butter> <food> <chicken,food> 

T4 <apple,chicken> <fruit,meat> <chicken,food> 

T5 <chicken,beef> <food> <chicken,food> 

5 EXPERIMENTS 

We now evaluate our approach using the real AOL 
query logs (Pass et al., 2006). We compared our 
method Clump with the state-of-the-art transaction 
anonymization method Partition (He et al., 2009). 
The implementation of both algorithms was done in 
Visual C++ and the experiments were performed on 
a system with core-2 Duo 2.99GHz CPU with 3.83 
GB memory. 

5.1 Experiment Setup 

Dataset Information. The AOL query log 
collection dataset consists of 20M web queries 
collected from 650k users over three months in form 
of {AnonID, QueryContent, QueryTime, ItemRank, 
ClickURL} and are sorted by anonymous AnonID 
(user ID). Our experiments focused on anonymizing 
QueryContent. The dataset has a size of 2.2GB and 
is divided into 10 subsets, each of which has similar 
characteristics and size. In our experiment, we used 
the first subset. In addition, we merged the queries 
issued by the same AnonID  into one transaction 
because each query is too short, and removed 
duplicate items, resulting in 53,058 queries or 
transactions with the average transaction length of 
20.93. 

We generated the item taxonomy T using the 
WordNet dictionary (Fellbaum, 1998). According to 
the WordNet, each noun has multiple senses. A 
sense is represented by a synset, i.e., a set of words 
with the same meaning. We used the first word to 
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represent a synset. In pre-processing the AOL 
dataset, we discarded words that are not in the 
WordNet dictionary. We treated each noun as an 
item and interpreted each noun by its most 
frequently used sense i.e., the first synset. Therefore, 
nouns together with the is-a-kind-of links among 
them comprise a tree. The generated taxonomy tree 
contains 25645 items and has the height 18. (We 
will release the dataset and the taxonomy tree for 
research if this work is published.) 

We investigate the following four quality 
indicators: a) distortion (i.e., information loss), b) 
average generalized transaction length, which 
reflects the number of items suppressed, c) average 
level of generalized items (with the root at level 1), 
and d) execution time. The distortion is measured by 
ΣGGD(Si, LCG(Si)) over the clusters Si for Clump, 
and by ΣGGD(Si, tj) over the sub-partitions Si for 
Partition where tj is the generalized transaction. 
Parameters. The first parameter is the anonymity 
parameter k. We set k to 5, 7, 10, and 15. Another 
parameter is the database size |D| (i.e., the number of 
transactions). In our experiments, we used the first 
1000, 10000, and 53,058 transactions to evaluate the 
runtime and the effect of “transaction density” on 
our algorithm performance. The transaction density 
is measured by the ratio Ntotal / (|D||L|), where Ntotal 
is the sum of number of items in all transactions, |D| 
is the number of transactions, and |L| is the number 
of leaf items in our taxonomy. |D||L| is the 
maximum possible number of items that can occur 
in |D| transactions. Table 3 shows the density of the 
first |D| transactions. Clearly, a database gets sparser 
as |D| grows. Unless otherwise stated, we set the 
parameter r=10 (a parameter used by Clump). 

Table 3: Transaction database density. 

|D| 1,000 10,000 20,000 30,000 40,000 53,058 

Density 0.28% 0.25% 0.20% 0.16% 0.14% 0.11% 

5.2 Results 

As discussed in Section 1.1, one of our goals is to 
preserve duplicate items after generalization because 
duplication of items tells some information about the 
number of items in an original transaction, which is 
useful to data analysis. To study the effectiveness of 
achieving this goal, we consider two versions of the 
result produced by Clump, denoted by Clump1 and 
Clump2. Clump1 represents the result produced by 
Clump as discussed in Section 4, thus, preserves 
duplicate items in LCG. Clump2 represents the result 
after removing all duplicate items from LCG.  

Figures 3, 4, 5 show the results with respect to 
information loss, average transaction length, and 
average level of generalized items. Below, we 
discuss each in details. 

Information Loss. Figure 3 clearly shows that the 
information loss is reduced by the proposed Clump 
compared with Partition. The reduction is as much 
as 30%. As we shall see shortly, this reduction 
comes from the lower generalization level of the 
generalized items in LCG, which comes from the 
effectiveness of grouping similar transactions in our 
clustering algorithm. However, the difference 
between Clump1 and Clump2 is very small. A close 
look reveals that many duplicate items preserved by 
Clump1 are at a high level of the taxonomy tree. For 
such items, generalization has a GGD close to that 
of suppressing an item. However, this does not mean 
that such duplicate items carry no information. 
Indeed, duplicates of items tell some information 
about the quantity or frequency of an item in an 
original transaction. Such information is not 
modelled by the GGD metric. 

As the database gets larger, the data gets sparser, 
the improvement of Clump over Partition gets 
smaller. In fact, when data is too sparse, no 
algorithm is expected to perform well. As the 
privacy parameter k increases, the improvement 
reduces. This is because each cluster contains more 
transactions, possibly of different lengths; therefore, 
more generalization and more suppression are 
required for the LCG of such clusters. Typically, k in 
the range of [5,10] would provide adequate 
protection. 

Average Generalized Transaction Length. Figure 
4 shows the average length of generalized 
transactions. Clump1 has significantly larger length 
than Clump2 and Partition. This longer transaction 
length is mainly the consequence of preserving 
duplicate items in LCG by Clump1. As discussed 
above, duplicate items carry useful information 
about the quantity or frequency of items in an 
original transaction. The proposed Clump preserves 
better such information than Partition.   

Average Level of Generalized Items. Figure 5 
shows that the average level of generalized items for 
Clump2 is lower than that for Partition which is 
lower than that for Clump1 (recall that the root item 
is at level 1). This is due to the fact that many 
duplicate items preserved by Clump1 are at a level 
close to the root. When such duplicates are removed 
(i.e., Clump2), the remaining items have a lower 
average level than Partition. 
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Figure 3: Comparison of information loss. 

 

Figure 4: Comparison of average generalized transaction length. 

 

Figure 5: Comparison of average level of generalized item. 

 

Figure 6: Effect of r on Clump1. 

 

Figure 7: Comparison of running time. 

Sensitivity to the Parameter r. This is the number 
of top clusters examined for assigning each 
transaction. A larger r means that more clusters will 
be examined to assign a transaction, thus, a better 
local optimal cluster but a longer runtime. In this 
experiment, we set |D|=53,058 and k=5. As shown in 
Figure 6, we set r to 5, 10, 30, 50, and 100. This 
experiment shows that a larger r does not always 

give a better result since Clump works in a greedy 
manner and by increasing the number of clusters to 
examine, we may come up with a locally optimal 
choice that later increases the overall information 
loss. Our experiments show that r=10 achieves a 
good result.  

Runtime. Figure 7 depicts the runtime comparison 
for k=5 and r=10. Clump takes longer time than 
Partition does. In fact, the small runtime of Partition 
is largely due to the fact that the top-down algorithm 
stops partitioning the data at a high level of the 
taxonomy because a sub-partition contains less than 
k transactions.  Thus, this small runtime is in fact at 
the costly information loss. Clump takes a longer 
runtime but is still linearly scalable with respect to 
the data size. Considering the notably less 
information loss, the longer runtime of Clump is 
justified. 

6 RELATED WORK 

A  recent  survey  (Cooper,  2008)  discussed   seven 
query log privacy-enhancing techniques from a 
policy perspective, including deleting entire query 
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logs, hashing query log content, deleting user 
identifiers, scrubbing personal information from 
query content, hashing user identifiers, shortening 
sessions, and deleting infrequent queries. Although 
these techniques protect privacy to some extent, 
there is a lack of formal privacy guarantees. For 
example, the release of the AOL query log data still 
leads to the re-identification of a search engine user 
even after hashing user’s identifiers (Barbaro et al., 
2006). The challenge is that the query content itself 
may be used together with publicly available 
information for linking attacks. 

In token based hashing (Kumar et al., 2007) a 
query log is anonymized by tokenizing each query 
term and securely hashing each token to an 
identifier. However, if an unanonymized reference 
query log has been released previously, the 
adversary could employ the reference query log to 
extract statistical properties of query terms in the log 
and then processes the anonymized log to invert the 
hash function based on co-occurrences of tokens 
within queries.  

Secret sharing (Adar, 2007) is another method 
which splits a query into k random shares and 
publishes a new share for each distinct user issuing 
the same query. This technique guarantees k-
anonymity because each share is useless on its own 
and all the k shares are required to decode the secret. 
This means that a query can be decoded only when 
there are at least k users issuing that query. The 
result is equivalent to suppressing all queries issued 
by less than k users. Since queries are typically 
sparse, many queries will be suppressed as a result. 
Split personality, also proposed in (Adar, 2007), 
splits the logs of each user on the basis of “interests” 
so that the users become dissimilar to themselves, 
thus reducing the possibility of reconstructing a full 
user trace (i.e. search history of a user). This 
distortion also makes it more difficult for researchers 
to correlate different facets. 

The work on transaction anonymization is 
studied in the database and data mining 
communities. Other than the Partition algorithm (He 
et al., 2009) we discussed in Section 1.1, some 
techniques such as (h; k; p)-coherence (Xu et al., 
2008), using suppression technique, and km-
anonymity (Terrovitis et al., 2008), using 
generalization, have been proposed. Both works 
assume that a realistic adversary is limited by a 
maximum number of item occurrences that can be 
acquired as background knowledge. As pointed out 
in (He et al., 2009), if background knowledge can be 
on the absence of items, the adversary may exclude 
transactions using this knowledge and focus on 
fewer than k transactions. The k-anonymity avoids 

this problem because all transactions in the same 
equivalence class are identical.  

7 CONCLUSIONS 

The objective of publishing query logs for research 
is constrained by privacy concerns and it is a 
challenging problem to achieve a good tradeoff 
between privacy and utility of query log data. In this 
paper, we proposed a novel solution to this problem 
by casting it as a special clustering problem and 
generalizing all transactions in each cluster to their 
least common generalization (LCG). The goal of 
clustering is to group transactions into clusters so 
that the overall distortion is minimized and each 
cluster has at least the size k. We devised efficient 
algorithms to find a good clustering. Our studies 
showed that the proposed algorithm retains a better 
data utility in terms of less data generalization and 
preserving more items, compared to the state-of-the-
art transaction anonymization approaches. 
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