LANGUAGE-ORIENTED PROGRAMMING
VIA DSL STACKING

Bernhard G. Humm
Darmstadt University of Applied Sciences, Department of Computer Science, Darmstadt, Germany

Ralf S. Engelschall

Capgemini sd&m Research, Munich, Germany

Keywords:

Language-oriented programming, Extensible programming languages, Domain-specific languages, Meta pro-

gramming, Semantic web, Business information systems, Lisp.

Abstract:

According to the paradigm of Language-Oriented Programming, an application for a problem should be im-

plemented in the most appropriate domain-specific language (DSL). This paper introduces DSL stacking, an
efficient method for implementing Language-Oriented Programming where DSLs and general-purpose lan-
guages are incrementally developed on top of a base language. This is demonstrated with components of a
business information system that are implemented in different DSLs for Semantic Web technology in Lisp.

1 INTRODUCTION

When analyzing large-scale commercial IT projects
today, you usually find that five or even more lan-
guages are being used — even in a “pure Java project”
if you take a closer look. HTML and JavaScript may
be used for GUI programing, SQL or EJBQL for
database accesses, UML for data modeling, Perl for
the UML to Java generator, BPEL for process logic
and several XML dialects for configuration. Why
would projects put up with the high costs of hetero-
geneity? This is because different problem domains
require different language constructs.

This is the main idea of a paradigm called
Language-Oriented Programming (Ward, 1994;
Fowler, 2005; Dmitriev, 2005; Brauer et al., 2008).
It can be briefly summarized as follows. When you
have to solve a complex problem, first choose —
or, if necessary, develop — a language that is most
appropriate for the problem. Then, implement the
solution in this language.

In most publications today, such a language
is called a Domain-Specific Language (DSL) (van
Deursen et al., 2000) — see Sect. 5.2. Earlier pub-
lications use the term Problem-Oriented Language
(Goldfinger, 1961). In this paper we stick to the term
DSL although it shall be noted that the problem area
does not have to be a business domain and the lan-
guage may be more or less specific, depending on its

G. Humm B. and S. Engelschall R. (2010).
LANGUAGE-ORIENTED PROGRAMMING VIA DSL STACKING.

purpose.

Like all software engineering paradigms,
Language-Oriented Programming ultimately serves
one goal: to allow for developing applications of
high-quality at reasonable cost. To this end, which
criteria do we expect from a DSL most appropriate
for a particular domain and why?

Sufficient Semantic Expressiveness. The DSL
must allow to express logic necessary for the
respective application domain directly in the
language, e.g., rules in a knowledge-based
system. This is necessary for implementing the
application at all.

Conciseness and Comprehensibility. Statements
should be expressed adequately, i.e., as concisely
and comprehensibly as possible. Boilerplate code
should be avoided. Inadequate representation has
several drawbacks. Firstly, developing unneces-
sarily voluminous code increases the costs for de-
veloping the application. Even higher are the
follow-up costs for maintenance. Secondly, the
quality of the solution decreases since errors can-
not be detected as easily. The more adequate the
representation — i.e., the closer to the problem do-
main — the more problem domain experts can be
involved in the development.

Integration. It must be possible to integrate the DSL
application with other applications, possibly im-

279

In Proceedings of the 5th International Conference on Software and Data Technologies, pages 279-287

DOI: 10.5220/0002925402790287
Copyright © SciTePress

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

plemented in other DSLs. This includes invoca-
tion at run-time and, ideally, integrated develop-
ment including integrated debugging. Integration
is mandatory if the DSL application is a compo-
nent of a larger application, e.g., a business infor-
mation system. Integrated development decreases
development costs, particularly for testing and de-

bugging.
Performance. Applications implemented in the DSL

must meet the respective performance require-
ments.

Those aspects help the application developer (de-
signer and implementer). Language-Oriented Pro-
graming adds another role: the language developer
(designer and implementer). The following aspect
helps the language developer.

Efficient DSL Development. The design, imple-
mentation including validation logic, testing, and
maintenance of DSLs should be as efficient as
possible. Efficient DSL development directly af-
fects the total development cost.

In this paper, we present a method for Language-
Oriented Programming called DSL Stacking. DSL
stacking may meet all the criteria described above.
We demonstrate this with a sample Lisp application
using Semantic Web technology in the insurance busi-
ness.

This article is structured as follows. Sect. 2 and
3 give an overview of Language-Oriented Program-
ming, Semantic Web technology, the insurance sam-
ple and Lisp. In Sect. 4 we present a family of DSLs
for applying Semantic Web technology in the insur-
ance business. Sect. 5 explains the concept of DSL
stacking. In Sect. 6, we discuss the results. Sect. 7
concludes this article.

2 LANGUAGE-ORIENTED
PROGRAMMING

The term Language-Oriented Programming (Ward,
1994; Fowler, 2005; Dmitriev, 2005; Brauer et al.,
2008) has already been used for a number of years.
The idea, however, is even much older and has been
around since the invention of the first high-level pro-
gramming languages. There have been a number
of extensible language initiatives in the 1960 and
1970s, e.g, translator writing systems like “The Syn-
tax Directed Compiler” (Irons, 1961) or extensible
programming languages like Lisp (McCarthy, 1960),
IMP (Irons, 1970), and Smalltalk-72 (Kay, 1993).
Extensible languages facilitate the development of

280

DSLs. The Unix little languages like AWK (Aho
et al., 1988) or make (Feldman, 1979) are examples
of DSLs.

Recently, there have evolved a number of
Language-Oriented Programming initiatives. Apart
from OMG’s MDA initiative these are the STEPS
project (Kay et al., 2008), Microsoft’s “Software
Factories” (Greenfield, 2004), “Intentional Program-
ming” (Simonyi et al., 2006) and the “Meta-
Programming System” (Dmitriev, 2005). In those
publications, the term “language workbench” is used
as an integrated environment to design and implement
DSLs and to program applications in those DSLs.

Additionally, a number of new extensible pro-
gramming languages like F#, Ruby, Groovy, and
Scala have evolved in the last decade. They explicitly
provide features for language-oriented programming
like Groovy’s Meta-Object Protocol (MOP).

Two approaches to Language-Oriented Program-
ming can be distinguished: external DSLs and inter-
nal DSLs (Fowler, 2005).

Internal DSLs are idiomatic ways of writing higher-
level language code in the host language of the
application (“base language” — see Sect. 5.2)
directly. Example: AllegroProlog, a Prolog
(Clocksin and Mellish, 1987) implementation by
Franz Inc. fully integrated in Lisp that allows Pro-
log programming in Lisp notation. The extensible
programming language initiatives all fall into this
category.

External DSLs are different from the base language.
DSL programs are scanned, parsed and trans-
formed into the base language using some form of
compiler or interpreter. Example: a BPEL (OA-
SIS, 2007) engine parses XML code and trans-
forms it into data structures of a programming lan-
guage like Java. The Unix little languages and
MDA fall into this category. External DSLs may
be embedded in a host language, e.g., as strings,
or may be programmed in separate files.

In this paper, we focus on internal DSLs.

3 SAMPLE DOMAIN: SEMANTIC
WEB TECHNOLOGY IN THE
INSURANCE BUSINESS

3.1 Semantic Web Standards

The World Wide Web Consortium (W3C) has stan-
dardized a number of languages under the term “Se-
mantic Web” (Berners-Lee et al., 2001). The lan-

LANGUAGE-ORIENTED PROGRAMMING VIA DSL STACKING

guages are based on the technologies XML and URIL
The main Semantic Web standards are as follows
(World Wide Web Consortium (W3C), 2010).

RDF (Resource Description Framework) is the ba-
sic Semantic Web modeling language. The funda-
mental data structure is a triple consisting of sub-
ject, predicate, and object.

RDF-S (RDF Schema) builds on top of RDF adding
the concepts of classes and properties.

OWL (Web Ontology Language) builds on top of
RDF-S and adds expressive set-based logic.

SPARQL (SPARQL Protocol and RDF Query Lan-
guage) allows for querying RDF-S and OWL
statements.

3.2 RDF Triples

The triple is the basic yet powerful data structure of
RDF. Every triple consists of subject, predicate, and
object. See Figure 1. It allows for basic statements
like “Peter has an income of $ 65,000”. It further-
more allows statements about class / instance rela-
tionships as in “Peter is a Person” and “Person is a
Class”. It also allows statements about properties like
“has-income is a Property”.

has-income 65,000

9
:

rdf:type

rdf:type

&
b

rdf:type rdf:Property

Figure 1: RDF triples.

3.3 Serialization Syntaxes for RDF

Different serialization syntaxes for RDF have been
standardized: RDF/XML, N3, Turtle, and N-Triples.
The W3C recommends RDF/XML for exchanging
RDF triples.

The following code example implements an RDF
triple stating that “Peter has the disease heart-stroke”.

<rdf:RDF
xmlns:rdf="http://-
www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:ins="http://
www.fbi.h-da.de/insurance-example#">
<rdf:Description rdf:about="http://
www.fbi.h-da.de/insurance-example#Peter">
<ins:has-disease>
<rdf:Description
rdf:about="http://www.fbi.h-da.de/

insurance-example#Heart-Stroke">
</rdf:Description>
</ins:has-disease>
</rdf:Description>

</rdf :RDF>

Ten lines of XML code are necessary for expressing
a simple triple. With this verbose code, RDF/ XML
is certainly no adequate representation for Semantic
Web programming. Other representations more or
less alleviate shortcomings of RDF/XML to provide a
more concise and human-comprehensible form — one
of the main concerns of Language-Oriented Program-
ming.

3.4 Business Domain: Insurance

We have developed a family of DSLs and have imple-
mented an insurance example application using those
DSLs. The example is about issuing disability insur-
ance. The customer interested in a disability insur-
ance must provide, apart from personal data, infor-
mation about employment, financial situation, health,
and lifestyle. Based on this situation, the applica-
tion will perform a customer rating. For example, se-
vere diseases present in the family history may lead to
the decision of not offering a policy to the applicant.
Based on the rating, the application automatically ac-
cepts or declines the application or involves human
intervention.

3.5 Lisp as Base Language

Lisp (McCarthy, 1960) is one of the earliest high-level
programming languages. To date, numerous dialects
and versions have been specified and implemented.
Two aspects of Lisp make it ideal for developing in-
ternal DSLs:

Code is Data. Lisp data are represented by sym-
bolic expressions, so-called S-expressions (Mc-
Carthy, 1960). S-expressions are atoms like
numbers or characters and arbitrary lists of S-
expressions. Lisp programs are also expressed as
S-expressions: function definitions, control struc-
tures, class declarations etc. So, the syntax tree
of Lisp code is directly expressed as Lisp data
and, hence, can itself be transformed by Lisp pro-
grams.

Macro Processor. With the built-in macro processor,
language extensions to Lisp can be implemented
efficiently and with limited effort.

For those reasons, we have chosen Lisp for the im-
plementation of the sample application. However, it
shall be noted that Language-Oriented Programming
is not at all restricted to Lisp.

281

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

¢
[
|

rdf:type rdf:type

“Natural Person”
rdfs:comment

!
i

rdfs:seeAlso,
ins:Profession

Figure 2: Definition of a class and an instance.

We used the Allegro CL Express Edition by Franz
Inc. as integrated development environment for pro-
gramming Allegro Common Lisp, a professional im-
plementation of the ANSI Common Lisp standard
(Steele, 1984). Allegro CL was chosen due to its
extensive libraries, particularly AllegroGraph for Se-
mantic Web programming.

4 DSLS FOR THE SAMPLE
DOMAIN

4.1 Parts

The code example in Sect. 3.3 has shown that
RDF/XML does not fulfill the requirement of being
concise and comprehensive: ten lines of code for ex-
pressing one triple. We, therefore, introduce more ad-
equate language constructs. In the first step, we ab-
breviate URI namespaces as in XML qualified names.
As a language extension, we use the ! macro of Alle-
groGraph.
Instead of writing

http://www.fbi.h-da.de/insurance-example#
Heart-Stroke

we can simply write
!ins:Heart-Stroke
— assuming that we have registered the name space:

(register-namespace "ins"
"http://www.fbi.h-da.de/insurance-example#")

4.2 Triples

Next, we use the add-triple macro of AllegroGraph
as a concise syntax for specifying triples. The fol-
lowing code example is equivalent to the verbose
RDF/XML triple definition from Sect. 3.3.

(add-triple !ins:Peter !ins:has-disease
!ins:Heart-Stroke)

282

!

ins:has-disease rdf:type rdf:Property
rdfs:domain,

rdfs:range

)

ins:Disease

i

ins:has-disease ins:Heart-Stroke

Figure 3: Definition of a property.

4.3 Classes, Subclasses and Instances

So far, we have used concise Lisp-based notations for
expressing parts and triples, the basic RDF data struc-
tures. Now, we extend the language by higher-order
constructs for classes, subclasses, and instances. We
define the macros add-class, add-subclass, and
add-instance. Figure 2 shows an example in RDF-
S. The equivalent statements are expressed in two
lines of DSL code as follows.

(add-class !ins:Person :comment "Natural Person"
:see-also !ins:Profession)

(add-instance !ins:Peter !ins:Person)

:comment, :see-also, and : label are optional key-
word parameters to provide further information about
the class. We have provided them for all higher-order
triple-generating macros. They can all be omitted as,
in this example, : label.

The macro definition of add-class is straight for-
ward.

(defmacro add-class
(class &key comment label see-also)
* (progn
(add-triple ,class !rdf:type !rdfs:class)
, (1f comment ‘(add-triple ,class
'rdfs:comment (literal ,comment)))
, (1f label ‘(add-triple ,class
'rdfs:label (literal ,label)))
, (1f see-also ‘(add-triple ,class

!rdfs:seeAlso ,see-also))))

The macro always generates an
rdf:type rdfs:class triple and, optionally,
up to three triples for comment, label, and see-also.
It allows specifying several statements in one ex-
pression. Additionally, it frees the modeler from
unnecessary and possibly confusing details, e.g.,
that the predicate type is defined in namespace RDF
whereas the class class is specified in namespace
RDF'S.

LANGUAGE-ORIENTED PROGRAMMING VIA DSL STACKING

4.4 Properties

Properties in RDF-S are defined via three triples,
specifying the property itself, its domain and range.
Figure 3 shows an example. We have defined the
macro add-property that allows programmers to ex-
press those three triples in a single, concise expres-
sion:
(add-property !ins:Person

!ins:has-disease !ins:Disease)
(add-triple !ins:Peter

!ins:has-disease !ins:Heart-Stroke)

The RDF triple as a binary predicate is a simple yet
powerful building block. However, in semantic mod-
eling often n-ary predicates are needed, with n > 1.
For this reason, we have extended the add-property
macro to cope with different arities. See the follow-
ing examples.

(add-property !ins:Disease !ins:is-inheritable)
(add-statement !ins:Heart-Stroke

lins:is-inheritable)

(add-property !ins:Person !ins:takes-drug
!ins:Drug !ins:Frequency)

(add-statement !ins:Peter !ins:takes-drug
!ins:Alcohol !ins:rarely)

The first example shows a unary predicate expressing
whether a disease is inheritable — here: heart stroke.
The likelihood of suffering from a heart stroke is in-
creased for people whose direct relatives have had
a stroke. The predicate is implemented with range
xs:Boolean.

The second example shows a tertiary predicate ex-
pressing the drug consumption behavior of a person —
here that Peter drinks alcohol rarely. The predicate is
implemented using RDF blank nodes.

So far, our DSLs contain general-purpose Seman-
tic Web extensions: parts, triples, classes, and pred-
icates. In the following section, we add business-
domain specific extensions.

4.5 Business Domain Specific
Extensions

The following example

(add-insurance-statements !ins:Peter
:daily-duty :sales
:income 80000
:height 175
:weight 98
:drugs ' (:Tobacco :reqularly)
:disease-of-relative :Heart-Stroke)

is expanded to:

(add-instance !ins:Peter !ins:Person)

(add-triple !ins:Peter
lins:has-daily-duty !ins:Sales)

(add-triple !ins:Peter !ins:has-income
(value->upi 80000 :int))

(add-triple !ins:Peter !ins:has-height
(value->upi 175 :int))

(add-triple !ins:Peter !ins:has-weight
(value->upi 98 :int))

(add-statement !ins:Peter !ins:takes-drug
!ins:Tobacco !ins:regularly)

(add-triple !ins:Peter
lins:relative-has—-disease !ins:Heart-Stroke)

Again, the notation has become more concise and
more comprehensible.

S DSL STACKING

5.1 Bootstrapping

The German author R. E. Raspe (1736-1794) has
written the wonderful tale of the impostor Baron
Miinchhausen. Miinchhausen told his credulous au-
dience that he once got into a swamp and he started to
sink in. Quick-wittedly, he pulled himself out of the
swamp by his hair or — in the less painful variation of
the story — on his bootstraps.

Bootstrapping has since then become a metaphor
for self-sustaining processes of that kind. With our
Semantic Web DSL, we have done one kind of boot-
strapping. As the example in Sect 3.3 (ten lines of
code for a simple triple) shows, RDF/XML is like a
swamp for application developers. Instead of express-
ing complex matters in the language of their business
domain, they sink into a mass of unnecessary, confus-
ing boilerplate code. By defining the DSLs in Sect. 4,
we have — step by step — pulled ourselves out of this
swamp:

1. Name spaces instead of full URIs
. Concise triple notation
. Classes, subclasses and instances

. Predicates of different arities

W A~ W N

. Business-domain specific extensions

At the end of the bootstrapping process, the appli-
cation developer is able to express business logic in a
concise, comprehensible form.

Analyzing the bootstrapping process shows that
we have applied the principle of stacking to our DSLs.
We call this method DSL Stacking.

Before specifying the method, we need to define a
few concepts.

283

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

specific|

Language Concept ‘

Insurance DSL Stack with
Semantic Web technology

‘ W3C Technology Stack

Top DSL

Insurance Predicates

Semantic Web DSL:

Predicates RDFS
Intermediate DSLs Classes
Triples
Parts RDF

GPLs Common Lisp

Base Language Lisp S-expressions XML ‘

general

Figure 4: DSL stacks.
5.2 Concepts

In DSL stacking, we distinguish different kinds of
languages, all of which are specified by syntax and
semantics.

o A base language is a language that allows the
specification and / or implementation of other lan-
guages. Minimally, it must contain primitives like
numbers and characters and composition features
like nested lists. Additional features include, e.g.,
name spaces. Base languages are usually self-
describing, i.e., they can be specified in them-
selves. Examples are: XML as the base lan-
guage for all XML dialects like BPEL; MOF as
the base language for UML, CORBA IDL etc.;
Lisp S-expressions as the base language for Com-
mon Lisp as well as the Semantic Web DSL from
Sect.4.

o A general purpose language (GPL) is program-
ming or specification language for a wide vari-
ety of problems. Examples are C (Kernighan and
Ritchie, 2008), Java (Gosling et al., 2005), or
OMG’s UML.

o A domain-specific language (DSL) is a program-
ming or specification language dedicated to a par-
ticular problem domain. Examples are WS-BPEL
(OASIS, 2007) or the DSLs from Sect.4.

o A DSL stack is a set of languages with based-on
dependencies. A language L1 is based on another
language L2 if L1 is specified or implemented in
L2. DSLs may be based on other DSLs, GPLs, or
on the base language.

Figure 4 shows the DSL stack for the Semantic Web
DSL from Sect. 4. Languages further up in the stack
are based on the lower ones. As the base language we
use Lisp S-expressions. This is analogous to XML
as base language of the W3C Semantic Web Stack.
On top of the base language, we use Common Lisp
as a GPL to implement DSLs for parts and for triples.
They implement the semantics of RDF. On top of the
base technologies, we have implemented general pur-

284

pose Semantic Web extensions for classes and predi-
cates. They provide semantics equivalent to RDF-S.
In fact, they extend RDF-S insofar as they provide
classes, subclasses, instances, and predicates as lan-
guage constructs whereas in RDFS one is constrained
to the lower-level triple notation. Again on top we
have implemented predicates that are specific to the
insurance business domain.

5.3 The Language Stacking Method

We postulate the following requirements for the dif-
ferent languages on the DSL stack before we define
the language stacking method.

Base Language. A base language should have a min-
imalistic intrusive syntax and built-in bootstrap-
ping features.

In Lisp, the S-expression syntax is minimalistic,
allowing for defining arbitrary concepts like data
structures, control structures, and aspects of all
kinds.

Bootstrapping features allow the implementation
of new language constructs. In Lisp, these are the
macro processor in combination with the fact that
code is represented as data. Other examples of
bootstrapping features are the Meta-Object Proto-
col (MOP) in Groovy, or implicit conversions in
Scala.

Intermediate DSLs are those DSLs, in which the
application developer does not program directly,
i.e., which are not on top of the DSL stack. They
should focus on a particular problem domain and
be simple yet expressive (Felleisen, 1990). The
triple notation is an excellent example being ex-
tremely simple yet allowing for implementing all
higher-level constructs like classes, subclasses,
instances, and predicates.

Top DSL. The top DSL is the one in which the ap-
plication developer programs directly, i.e. the one
on top of the DSL stack. It should be most ad-
equate for the application being developed: suf-
ficiently expressive, concise and comprehensible
for the domain expert.

DSL stacking is a method for language developers to
provide DSLs for application developers. It consists
of the following steps.

1. Select a base language that meets the require-
ments specified above.

2. If necessary, select a GPL implemented on top of
the base language.

3. While the requirements for a top DSL are not yet
met: select or develop DSLs on top of the stacked

LANGUAGE-ORIENTED PROGRAMMING VIA DSL STACKING

Integration, project-specific extensions (e.g., Insurance Predicates)

Entity, queries,
application data
type DSLs

Workflow DSL GUI DSL

Semantic Web
DSL Test DSL

Configuration
DSL

GPL
(Common Lisp)

Presentation
Insuranceg | Insuranceg |
Back-Office Customer
Dialogs Dialogs
T < T
‘ GUI DSL %

Base Language
(Lisp S-Expressions)

Figure 5: Language hierarchy.

languages. Those languages must meet the re-
quirements for intermediate DSLs.

Language stacking as a method is to be used by the
language developer. The application developer does
not have to be aware of the DSL stack since he is
programming in the top DSL only. Whether or not
the top DSL includes language features of lower-level
languages is a matter of visibility. In internal DSLs,
all lower-level language features are visible by de-
fault. However, sometimes it is desirable to restrict
language features by hiding lower-level DSLs, e.g.,
for security reasons or in order to reduce the com-
plexity for the application developer.

5.4 Integrating Multiple Languages

So far, we have considered a single stack of DSLs
only. When building large applications like business
information systems, different tasks require different
kinds of DSLs. Stacking all languages on the same
base language allows to seamlessly integrate compo-
nents implemented in different DSLs. This not only
allows for invoking functions from any language to
any other language at runtime. It also means inte-
grated development: using the same editor, compiler,
and test tools for different languages. Also — most
importantly — integrated debugging of applications in
different languages is possible.

To demonstrate this, we have implemented or used
a number of Lisp-based DSLs for business informa-
tion systems and have integrated them with the Se-
mantic Web DSL from Sect. 4 (see Figure 5).

e Application data types DSL, based on the Com-
mon Lisp type system

e Persistent entity DSL based on AllegroCache

e Entity query DSL based on AllegroCache

o Workflow DSL based on Allegro Common Lisp
Multiprocessing

e GUI DSL: Allegro Common Graphics
e Test DSL: LispUnit
e Configuration DSL: ASDF

We have, then, implemented a prototypical in-
surance application based on those languages. Fig-
ure 6 shows an UML component diagram of the ap-
plication. It is structured as a three-layer architecture

Policy
Issuing

v
Logic]
Insurance Issuing Workflow
Workflow DSL
g]

Customer
Management

Product £
Management

Rating

|
©=| Entity, Query, ‘ Semantic Web
Appl. Data Type, DSLs

DSLs

\
\
\

| |
Data Access NN v v

2] g]
Static Data Transaciort] Rules Data
Data
Entity, Query, ——
Appl. Data Type,
DSLs

Figure 6: Insurance example component architecture.

in which each component is implemented in one or
more DSLs. Insurance Back-Office and Customer Di-
alogs are implemented with the GUI DSL. The insur-
ance issuing workflow is implemented in the work-
flow DSL. Product Management, Customer Manage-
ment and Policy Issueing are implemented in DSLs
for Business Information Systems including applica-
tion data types, persistent entities and entity queries.
The rating component is implemented in the Seman-
tic Web DSL described in Sect. 4. Finally, static data,
transactional data and rules data are stored and re-
trieved via the persistent entity DSL.

6 DISCUSSION

6.1 Evaluation of Goals

We now evaluate the approach presented against the
criteria for developing high-quality solutions at rea-
sonable cost set out in Sect. 1.

Sufficient Expressiveness. The Semantic Web DSL
presented is based on the RDF/RDF-S technol-
ogy and, hence, expose at least their expressive-
ness. Together with a Prolog-based rules and
query DSL, the insurance rating logic could be ex-
pressed directly.

Conciseness and Comprehensibility. Statements
should be expressed adequately, i.e., as concisely
and comprehensibly as possible. Unnecessary
boilerplate code was avoided. We have compared
the code size of the insurance application im-
plemented in the Semantic Web DSL to the size
of the resulting N-triples code. We measured a
saving of 74% in lines of code (one N-Triple part

285

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

per line) respectively 77% in code size (number
of characters including white space). This will
result in considerable less implementation and
maintenance cost.

Not numerically measurable but obvious is the in-
creased comprehensibility of the code — under-
standable and maybe even editable by business
domain experts. This will result in higher qual-
ity of the solution.

Integration. We have integrated the insurance com-
ponents, all implemented in different DSLs, with
each other to form a business information system.
Invocations Dialog — Workflow — Rating —
Database did not require an additional middle-
ware. Editing, compiling, and testing was all per-
formed in one development environment (Alle-
gro CL Express Edition). Particularly, integrated
debugging of code implemented in different lan-
guages was possible and most helpful.

Performance. The Semantic Web DSL has been im-
plemented as Lisp macros which are expanded at
compile time and, therefore, cause no runtime per-
formance penalty whatsoever.

Efficient DSL Development. The code for imple-
menting the Semantic Web DSL on top of Al-
legroGraph described in Sect. 4 is less than 100
lines of Lisp code (loc) including comments. The
total amount of code for all DSLs used in the in-
surance application as described in Sect. 5.4 is
less than 1,000 loc. Development and testing of
all DSLs was an effort of less than a person month.
This can be regarded as an efficient means of im-
plementing such a comprehensive set of DSLs.
However, it shall be noted that the implementa-
tion is experimental and not production-ready. A
major effort in production-ready DSL implemen-
tations lies in the meaningful handling of compiler
errors, particularly if the DSL is to be used by
non-programmers.

This demonstrates the validity of the approach in gen-
eral and the Semantic Web DSL in particular.

6.2 DSL Stacking

Language stacking is an application of the principle of
separation of concerns — like component-orientation
and layered architectures. Different aspects are sep-
arated into several languages, like components in a
system. Different languages are built on top of each
other with strict dependencies, like in a layered archi-
tecture.

DSL stacking is a form of language stacking.
However, there is an important difference to the Se-

286

mantic Web language stacking. The designers of
the Semantic Web standards have, as a standardiza-
tion body, to stop bootstrapping at a reasonable level
of generality. DSL stacking continues bootstrapping
from there until the requirements for the top DSL are
met, i.e., a most adequate language for the respective
problem domain is found. This allows to gain the full
benefit of Language-Oriented Programming.

7 CONCLUSIONS

To conclude, we summarize the key statements of this
article. When you have a complex problem to solve
you should proceed as follows.

1. Use a development environment that allows the
design and implementation of DSLs.

2. For each subproblem, choose a DSL which is
most appropriate: concise and comprehensible.

3. If such a DSL does not exist, develop one.

4. Stack the DSL on top of a lower-level language.
The base language is the bottom of the stack.

Language-Oriented Programming is neither new nor
a silver bullet but it helps in the development of appli-
cations with high quality at reasonable cost. For ap-
plications using XML-based Internet technology like
Semantic Web standards, Language-Oriented pro-
gramming is particularly useful — see also (Graunke
et al., 2001). We have demonstrated the effectiveness
by measurements of code savings of about three quar-
ters in an experimental implementation of an insur-
ance business information system.

DSL stacking allows for cost-efficient realiza-
tion of Language-Oriented Programming. We have
demonstrated this by implementing a complete Se-
mantic Web DSL in less than 100 loc and by imple-
menting DLSs for application data types, persistent
entities, entity queries, workflow, GUI, test, and con-
figuration in less than 1000 loc.

Those convincing numbers are partially due to the
prototypical character of the implementation and ex-
isting powerful lower-level DSLs like Allegro Graph
on which the new DSLs could be stacked. They are
also partially due to the fact that Lisp as an extensi-
ble language is particularly suitable for implementing
internal DSLs.

A downside for applying Language-Oriented Pro-
gramming and DSL stacking in large-scale industrial
projects is that extensible programming languages are
currently not in mainstream use. This has a number of
consequences: the stock of programmers is limited,
development and production tools are less perfected.

LANGUAGE-ORIENTED PROGRAMMING VIA DSL STACKING

However, we notice a revival of extensible pro-
gramming languages. Within the last decade, quite
a number of such languages have been implemented
on top of mainstream platforms and their number is
increasing rapidly. Examples are implementations of
Python, Ruby, Groovy, and Scala on the Java Platform
or F# on the .NET platform. Furthermore, there are a
number of Lisp implementations on the Java platform,
e.g., ABCL, Clojure, Jatha, and CLForJava.

What needs to be done? Professional tool support
for Language-Oriented Programming and DSL stack-
ing, integration with mainstream platforms like Java
and the development of useful DSLs to be taken off
the shelf.

REFERENCES

Aho, A. V., Kernighan, B. W., and Weinberger, P. J. (1988).
The AWK Programming Language. Addison-Wesley.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001).
The Semantic Web: A new form of Web
content that is meaningful to computers will
unleash a revolution of new possibilities:
www.scientificamerican.com/article.cfm?id=the-
semantic-web. Scientific American.

Brauer, J., Crasemann, C., and Krasemann, H. (2008). Auf
dem Weg zu idealen Programmierwerkzeugen - Be-
standsaufnahme und Ausblick. Informatik Spektrum,
31(6):580-590.

Clocksin, W. F. and Mellish, C. (1987). Programming in
Prolog, 3rd Edition. Springer.

Dmitriev, S. (2005). Language Oriented Program-
ming: The Next Programming Paradigm.
http://www.onboard.jetbrains.com/is1/articles/04/10/
lop/.

Feldman, S. 1. (1979). Make — A Program for Maintaining
Computer Programs. Software: Practice & Experi-
ence, 9:255-265.

Felleisen, M. (1990). On the Expressive Power of Program-
ming Languages. In Jones, N., editor, Proceedings 3rd
European Symposium on Programming (ESOP’90)
Copenhagen, Denmark, May , 1990, volume 432 of
Lecture Notes in Computer Science, pages 134-151,
Berlin, Heidelberg, Springer,.

Fowler, M. (2005). Language Workbenches: The
Killer-App for Domain Specific Languages?
http://martinfowler.com/articles/language Workbench.
html.

Goldfinger, R. (1961). Problem-oriented programming
language structure. Communications of the ACM,
4(3):138.

Gosling, J., Joy, B., Steele, G., and Bracha, G. (2005). The
Java language specification. Addison-Wesley, Upper
Saddle River, NJ, 3. ed., 1. print. edition.

Graunke, P. T., Krishnamurthi, S., Van Der Hoeven, S.,
and Felleisen, M. (2001). Programming the Web

with High-Level Programming Languages. In David
Sands, editor, Proceedings 10th European Symposium
on Programming (ESOP 2001), Genova, Italy, April
2001, volume 2028 of Lecture Notes in Computer Sci-
ence. Springer.

Greenfield, J. (2004). Software Factories: Assem-
bling Applications with Patterns, Models, Frame-
works, and Tools. http://msdn.microsoft.com/en-
us/library/ms954811.aspx.

Irons, E. T. (1961). A Syntax Directed Compiler for AL-
GOL 60. Communications of the ACM, 4(1):51-55.

Irons, E. T. (1970). Experience with an Extensible Lan-
guage. Communications of the ACM, 13(1):31-40.

Kay, A., Piumarta, I., Rose, K., Ingalls, D., and Amelang,
D. (2008). STEPS Toward The Reinvention of Pro-
gramming: 2008 Progress Report Submitted to the
National Science Foundation (NSF): VPRI Technical
Report TR-2008-004. Technical report, Viewpoints
Research Institute.

Kay, A. C. (1993). The Early History of Smalltalk. In
HOPL Preprints, pages 69-95.

Kernighan, B. W. and Ritchie, D. M. (2008). The C pro-
gramming language. Prentice Hall PTR, Upper Sad-
dle River, NJ, 2nd ed., 43. print. edition.

McCarthy, J. (1960). Recursive Functions of Symbolic Ex-
pressions and Their Computation by Machine, Part 1.
Communications of the ACM, 3(4):184—195.

OASIS (2007). Web Services Business Process Ex-
ecution Language Version 2.0: OASIS Stan-
dard. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-
v2.0.pdf.

Simonyi, C., Christerson, M., and Clifford, S. (2006). Inten-
tional software. In Tarr, P. L. and Cook, W. R., editors,
Proceedings of the 21th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2006), pages
451-464.

Steele, G. L. (1984). COMMON LISP: The Language. Digi-
tal Press, 12 Crosby Drive, Bedford, MA 01730, USA.

van Deursen, A., Klint, P., and Visser, J. (2000). Domain-
Specific Languages: An Annotated Bibliography.
ACM SIGPLAN Notices, 35:26-36.

Ward, M. P. (1994). Language-Oriented Programming.
Software - Concepts and Tools, 15(4):147-161.

World Wide Web Consortium (W3C) (2010). Seman-
tic Web: http://www.w3.org/standards/semanticweb/,
last visited 30/4/2010.

287

