
TOWARDS A CATALOGUE OF CONFLICTS AMONG

NON-FUNCTIONAL REQUIREMENTS

Dewi Mairiza, Didar Zowghi and Nurie Nurmuliani
Faculty of Engineering and Information Technology

University of Technology, Sydney, Australia

Keywords: Non-Functional Requirements (NFRs), Conflicts, Catalogue, Relative, Relationship.

Abstract: Two of the most significant characteristics of non-functional requirements (NFRs) are “interacting” and

“relative”. Interacting means NFRs tend to interfere, conflict, and contradict with one other while relative

means the interpretation of NFRs may vary depending on many factors, such as the context of the system

being developed and the extent of stakeholder involvement. For the purpose of understanding the interacting

characteristic of NFRs, several potential conflict models have been presented in the literature. These models

represent the positive or negative inter-relationships among various types of NFRs. However, none of them

deal with the relative characteristic of NFRs. In fact, multiple interpretations of NFRs in the system being

developed may lead to positive or negative inter-relationships that are not always obvious. As a result, the

existing potential conflict models remain in disagreement with one other. This paper presents the result of

an extensive and systematic investigation of the extant literature over the notion of NFRs and conflicts

among them. A catalogue of NFRs conflicts with respect to the NFRs relative characteristic is presented.

The relativity of conflicts is characterized by three categories: absolute conflict; relative conflict; and never

conflict. This catalogue could assist software developers in identifying the conflicts among NFRs,

performing further conflict analysis, and identifying the potential strategies to resolve those conflicts.

1 INTRODUCTION

In the early eighties, the term Non-Functional

Requirements (NFRs) was introduced as the

requirements that restrict the type of solution that a

software system might consider (Yeh 1982).

However, although this term has been in use for

almost three decades, studies to date indicate that

currently there is still no general consensus in the

software engineering community regarding the

notion of NFRs. In the literature, the term NFRs is

considered within two different perspectives: (1)

NFRs as the requirements that describe the

properties, characteristics or constraints that a

software system must exhibit; and (2) NFRs as the

requirements that describe the quality attributes that

the software product must have (Mairiza, Zowghi &

Nurmuliani 2009).

In software development, NFRs are recognized

as a very critical factor to the success of software

projects. NFRs address the essential issue of the

quality of the system (Chung et al. 2000; Ebert

1998; Firesmith 2003). Without well-defined NFRs,

a number of potential problems may occur, such as a

software which is inconsistent and of poor quality;

dissatisfaction of clients, end-users, and developers

toward the software; and causing time and cost

overrun for fixing the software (Chung et al. 2000).

NFRs are also considered as the constraints or

qualifications of the operations (Mittermeir et al.

1989). NFRs place restrictions on the product being

developed, development process, and specify

external constraints that the product must exhibit

(Kotonya & Sommerville 1998). Furthermore,

Charette (1990) claims that NFRs are often more

critical than individual Functional Requirements

(FRs) in the determination of a system's perceived

success or failure (Sommerville 2004; Wiegers

2003). Neglecting NFRs has led to a series of

software failures. For example systemic failure in

London Ambulance System (Breitman, Prado Leite

& Finkelstein 1999; Finkelstein & Dowell 1996),

performance and scalability failure in the New

Jersey Department of Motor Vehicles Licensing

System (Boehm & In 1996b), failure in the initial

design of the ARPANet Interface Message Processor

20

Mairiza D., Zowghi D. and Nurmuliani N. (2010).
TOWARDS A CATALOGUE OF CONFLICTS AMONG NON-FUNCTIONAL REQUIREMENTS.
In Proceedings of the Fifth International Conference on Evaluation of Novel Approaches to Software Engineering, pages 20-29
Copyright c© SciTePress

Software (Boehm & In 1996a), and some other

examples as described in (Boehm & In 1996a,

1996b; Breitman, Prado Leite & Finkelstein 1999;

Leveson & Turner 1993).

Although NFRs are widely recognized to be very

significant in the software development, a number of

empirical studies reveal that NFRs are often

neglected, poorly understood and not considered

adequately in developing a software application. In

the development of software system, users naturally

focus on specifying their functional or behavioral

requirements, i.e. the things the product must do

(Chung et al. 2000; Wiegers 2003). NFRs are often

overlooked in the software development process

(Ebert 1998; Grimshaw & Draper 2001). A number

of studies investigating practices of dealing with

NFRs in the software industry also reported that

commonly software developers do not pay sufficient

attention to NFRs (Ebert 1998; Grimshaw & Draper

2001; Heumesser et al. 2003; Yusop, Zowghi &

Lowe 2008). NFRs are not elicited at the same time

and the same level of details as the FRs and they are

often poorly articulated in the requirements

document (Heumesser et al. 2003; Yusop, Zowghi &

Lowe 2008). Furthermore, in the requirements

engineering literature, NFRs have received less

attention and not as well understood as FRs (Chung

et al. 2000). Majority of software engineering

research, particularly within requirements

engineering area only deal with FRs, i.e. ensuring

that the necessary functionality of the system is

delivered to the user (Paech & Kerkow 2004).

Consequently, capturing, specifying, and managing

NFRs are still difficult to perform due to most of

software developers do not have adequate

knowledge about NFRs and little help is available in

the literature (Lauesen 2002).

NFRs tend to interfere, conflict, and contradict

with one another. Unlike FRs, this inevitable conflict

arises as a result of inherent contradiction among

various types of NFRs (Chung et al. 2000; Ebert

1998). Certain combinations of NFRs in the

software system may affect the inescapable trade

offs (Boehm & In 1996b; Ebert 1998; Wiegers

2003). Achieving a particular type of NFRs can hurt

the achievement of the other type(s) of NFRs.

Hence, this conflict is widely acknowledged as one

of many characteristics of NFRs (Chung et al. 2000).

Prior studies reveal that dealing with NFRs

conflicts is essential due to several reasons (Mairiza,

Zowghi & Nurmuliani 2009). First of all, conflicts

among software requirements are inevitable (Chung,

Nixon & Yu 1995; Chung, Nixon & Yu 1996;

Chung et al. 2000; Curtis, Krasner & Iscoe 1988).

Conflicting requirements are one of the three main

problems in software development in term of the

additional effort or mistakes attributed to them

(Curtis, Krasner & Iscoe 1988). A study of two-year

multiple-project analysis conducted by Egyed &

Boehm (Boehm & Egyed 1998; Egyed & Boehm

1998) reports that between 40% and 60% of

requirements involved are in conflict, and among

them, NFRs involved the greatest conflict, which

was nearly half of requirements conflict (Robinson,

Pawlowski & Volkov 2003). Lessons learnt from

industrial practices also confirm that one of the

essential aspects during NFRs specification is

management of conflict among interacting NFRs

(Ebert 1998). Experience shows most systems suffer

with severe tradeoffs among the major groups of

NFRs. For example: the tradeoffs between security

and performance requirements; or between security

and usability requirements. In fact, conflict

resolutions for handling NFRs conflicts often results

in changing overall design guidelines, not by simply

changing one module (Ebert 1998). Therefore, since

conflict among NFRs has also been widely

acknowledged as one of NFRs characteristics,

managing this conflict as well as making this

conflict explicit is important (Paech & Kerkow

2004). NFRs conflicts management is important for

finding the right balance of attributes satisfaction, in

achieving successful software products (Boehm & In

1996b; Wiegers 2003).

A review of various techniques to manage

conflicts among NFRs have been presented in the

literature (Mairiza, Zowghi & Nurmuliani 2009).

Majority of these techniques provide a

documentation, catalogue, or list of potential

conflicts among various types of NFRs. These

catalogues represent the interrelationships among

those NFRs types. Apart from strength and

weaknesses of each technique, however, NFRs are

also relative (Chung et al. 2000). NFRs can be

viewed, interpreted, and evaluated differently by

different people and different context within which

the system is being developed. The interpretation

and importance of NFRs may vary depending on the

particular system being developed as well as the

extent of stakeholder involvement. Consequently,

the positive or negative relationships among those

NFRs types are not always obvious. These

relationships might change depending on the

meaning of NFRs in the context of the system being

developed. Due to this relative characteristic of

NFRs, existing potential conflict models that

represent the relationship among NFRs are often in

disagreement with each other. For example,

TOWARDS A CATALOGUE OF CONFLICTS AMONG NON-FUNCTIONAL REQUIREMENTS

21

according to Wiegers (2003), efficiency

requirements have negative relationship (conflict)

with usability requirements, but according to Egyed

& Grünbacher (2004), these two types of NFRs have

positive relationship (support). Given that none of

the existing conflicts catalogues deal with the

relative characteristics of NFRs, we are motivated to

pose the following research question:

“Can we develop a catalogue of conflicts

among NFRs with respect to the relative

characteristic of NFRs?”

A catalogue of conflicts with respect to the NFRs

relative characteristic is presented as the novel

contribution of this paper. This catalogue is

developed as a two-dimensional conflict-relationship

between various types of NFRs. It represents the

relationship between each NFR type, such as how

each type of NFR is associated with the other types

of NFRs considering the NFRs relative

characteristic. The conflict-relationships are

represented in three categories: absolute conflict;

relative conflict; and never conflict.

This paper is organized in six sections. The first

section is the introduction to NFRs and conflicts

among them. The second section describes the

research framework and source of information used

in this study. The superset list of NFRs is presented

in section three continued by presenting the

catalogue of NFRs conflicts in section four. Section

five describes the benefits and potential applications

of the conflicts catalogue in the software

development projects. Then, section six concludes

this paper by highlighting some open issues which

are acquired from the investigation.

2 CATALOGUE FRAMEWORK

To get a significant and comprehensive snapshot of

the NFRs conflicts model, an extensive investigation

of the literature over the last three decades has been

performed. This investigation was conducted by

exploring the articles from academic resources and

documents from software development industry.

Four general types of sources of information have

been identified: (1) journal papers; (2) conference

proceedings; (3) books; and (4) documents from

software industry. Selection of those sources is made

in order to confirm the completeness of the

information by obtaining the academics and

practitioners perspectives related to the notion of

NFRs and conflicts among them. The study

conducted by Chung et al. (2000) was used as the

starting point for selection of the papers to be

reviewed.

Our study has examined 182 sources of

information. All of them are literatures within the

discipline of software engineering. They cover

various issues of NFRs and conflicts among them.

The research articles reviewed are published in key

journals and conference proceedings of the software

engineering literature, such as the Journal of

Systems and Software; IEEE Transaction on

Software Engineering; IEEE Software; Lecture

Notes in Computer Science; Journal of Information

and Software Technology; Requirements

Engineering Journal; Requirements Engineering

Conference, International Conference on Software

Engineering, and Requirements Engineering

Foundations of Software Quality Workshop.

Each source was then systematically analyzed

using content analysis technique. Content analysis is

a research technique that uses a set of procedures to

make valid inferences from texts or other

meaningful matter (Krippendorff 2004; Weber

1989). This technique is well-founded and has been

in used for over sixty years. The analysis covers

three essential issues: the NFRs types, the definition

and attributes1 of each type, and the conflict

interdependencies among these types. Content

analysis technique was selected because it enables

researchers to identify trends and patterns in the

literature through the frequency of key words, and

by coding and categorizing the data into a group of

words with similar meaning or connotations

(Stemler 2001; Weber 1989). This technique is also

applicable to all domain contexts (Krippendorff

2004; Neuendorf 2001).

To develop a catalogue of NFRs conflicts, a

research framework was followed. This framework

consists of three research stages as follows:

(1) To create a comprehensive catalogue of NFRs

types, their definition and attributes

characterization

(2) To identify the interdependencies among

various NFRs types

(3) To perform a normalization process to

standardize the NFRs in the conflicts

catalogue.

1 In this paper, the term attribute is considered as the major

components of each NFRs type. In the literature, attribute is also

referred as NFRs subtypes (Chung et al. 2000) or quality sub
factors (Firesmith 2003).

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

22

have definition

accuracy; analyzability; attractiveness;

changeability; communicativeness;

completeness; complexity; composability;

confidentiality; consistency; correctness;

defensibility; dependability; evolvability;

extendability; flexibility; immunity;

installability; interoperability; learnability;

likeability; localizability; maturity;

operability; quality of service;

recoverability; replaceability; stability;

suitability; survivability

without definition and attributes

accountability; additivity; adjustability;

affordability; agility; anonymity; atomicity;

auditability; augmentability; certainty;

compatibility; comprehensibility;

comprehensiveness; conciseness; configurability;

conformance; controlability; customizability;

debuggability; decomposability; demonstrability;

distributivity; durability; effectiveness;

enhanceability; expandability; expressiveness;

extensibility; feasibility; formality; generality;

legibility; manageability; measurability; mobility;

nomadicity; observability; predictability;

provability; reconfigurability; repeatability;

replicability; self-descriptiveness; simplicity;

standardizability; structuredness; supportability;

susceptibility; sustainability; tailorability;

traceability; trainability; transferability;

trustability; uniformity; variability; verifiability;

versatility; viability; visibility; wrappability

have definition and attributes

accessibility; adaptability; availability;

efficiency; fault tolerance; functionality;

integratability; integrity; maintainability;

modifiability; performance, portability;

privacy; readability; reliability; reusability;

robustness; safety; scalability; security;

testability; understandability; and usability

Figure 1: NFRs Types in the Literature.

Since there is no standard catalogue of NFRs

types available in the literature and previous studies

(Glinz 2005, 2007; Mairiza, Zowghi & Nurmuliani

2010) also claimed that many types of NFRs were

introduced without definition or attributes

characterization, the first stage of the research was

creating a comprehensive catalogue of NFRs types.

Each type of NFR discussed in the literature was

recorded. The definition and attributes correspond to

each of NFR type were also documented.

Conflicting terminologies and definitions were

handled through the frequency analysis technique

and keywords identification.

The second stage of the research was creating an

initial catalogue of the conflicts among NFRs. In this

stage, NFRs conflict relationships were used as the

criteria to develop the catalogue. This stage was

initiated by identifying the interdependencies among

various types of NFRs. These interdependencies

represent the typical interrelationships of a particular

type of NFR towards another type of NFR (e.g.

positive, negative, or neutral interrelationships). This

investigation produced the initial catalogue that

presents the conflict relationships among 26 types of

NFRs. These NFRs types are listed in Table 1.

The next stage was performing a normalization

process against 26 types of NFRs that have been

identified in the initial catalogue. This normalization

was conducted in order to standardize the data

obtained in the previous stage.

Normalization is the process of removing the

irrelevant NFRs, i.e. the types of NFRs that do not

have definition and/or attributes, from the initial

catalogue.

The objective is to produce a conflicts catalogue

of the well-defined NFRs types.

Table 1: NFRs Types in the Initial Catalogue.

NFRs Types

Accuracy Interoperability Reliability

Analyzability Legibility Reusability

Availability Maintainability Robustness

Compatibility Performance Safety

Confidentiality Portability Security

Dependability Privacy Testability

Expresiveness Provability Understandability

Flexibility Recoverability Usability

Functionality Verifiability

In this normalization, the catalogue of NFRs

types, their definition, and their attributes are

utilized as the basis of removing those irrelevant

NFRs. This process has removed six NFRs from the

initial catalogue. They are compatibility,

expressiveness, legibility, provability, verifiability

and analyzability. Therefore, the final conflicts

catalogue is a two-dimensional matrix that

represents the conflicts interrelationships among 20

types of “normalized” NFRs.

3 NFRs TYPES

Various authors (e.g. Chung et al. (2000), Alexander

& Maiden (2004), and Robertson & Robertson

(2006)) define the term NFRs as the requirements

that specify the desired quality attributes of the

system. According to this definition, our analysis of

NFRs types in the literature has resulted in

identification of 114 types of NFRs.

TOWARDS A CATALOGUE OF CONFLICTS AMONG NON-FUNCTIONAL REQUIREMENTS

23

Table 2: NFRs Definition and Attributes (Mairiza, Zowghi, & Nurmuliani 2010).

NFRs Definition Attributes

Performance

requirements that specify the capability of

software product to provide appropriate

performance relative to the amount of

resources needed to perform full functionality

under stated conditions

response time, space, capacity, latency,

throughput, computation, execution speed,

transit delay, workload, resource utilization,

memory usage, accuracy, efficiency

compliance, modes, delay, miss rates, data loss,

concurrent transaction processing

Reliability

requirements that specify the capability of

software product to operates without failure

and maintains a specified level of performance

when used under specified normal conditions

during a given time period

completeness, accuracy, consistency,

availability, integrity, correctness, maturity,

fault tolerance, recoverability, reliability,

compliance, failure rate/critical failure

Usability

requirements that specify the end-user-

interactions with the system and the effort

required to learn, operate, prepare input, and

interpret the output of the system

learnability, understandability, operability,

attractiveness, usability compliance, ease of use,

human engineering, user friendliness,

memorability, efficiency, user productivity,

usefulness, likeability, user reaction time

Security

requirements that concern about preventing

unauthorized access to the system, programs,

and data

confidentiality, integrity, availability, access

control, authentication

Maintainability

requirements that describe the capability of the

software product to be modified that may

include correcting a defect or make an

improvement or change in the software

testability, understandability, modifiability,

analyzability, changeability, stability,

maintainability compliance

The superset list of these 114 NFRs types can be
found in our previous publication (Mairiza, Zowghi
& Nurmuliani 2010).

Further investigation to the superset list indicates
that 23 NFRs types (20.18%) have definition and
attributes, 30 types (26.32%) only have definition,
and the rest 61 types (53.50%) were introduced
without definition or attributes. Since this finding
indicates that more than 50% of NFRs types listed in
the literature do not have any definitions and
attributes characterization, therefore, it confirms the
previous claim made by Glinz (2005, 2007) which
stated that “in the literature, many NFRs were
introduced without definition or clarifying
examples”. The detailed list of these classifications
is presented in Figure 1.

The top five of the most frequently discussed
NFRs types in the literature are presented in Table 2.
These top five NFRs were identified by performing
the frequency analysis techniques towards each NFR
type listed in the literature. The definitions and
attributes are decomposed by integrating the existing
definitions and attributes based on general
complementary description stated in the scholarly
literatures.

4 CATALOGUE OF CONFLICTS

The catalogue of conflicts is a two-dimensional

matrix that represents the typical interrelationships

among 20 types of normalized NFRs, in term of the

conflict emerges among them. In this catalogue, the

relativity of NFRs conflicts is presented in three

categories: absolute conflict; relative conflict; and

never conflict (as presented in Figure 2).

 Absolute Conflict: this relationship represents a

pair of NFRs types that are always in conflict. In

the catalogue, this conflict relationship is labeled

as „X‟.

 Relative Conflict: this relationship represents a

pair of NFRs types that are sometimes in

conflict. It consists of all pairs of NFRs that are

claimed to be in conflict in the literature but they

are also claimed as not being in conflict in the

other cases. This disagreement occurs due to

several factors, such as the different

interpretation/meaning of NFRs in the system

being developed, the context of the system, the

stakeholder involvement, and the architectural

design strategy implemented in that system. In

the conflict catalogue, this type of conflict

relationship is labeled as „*‟.

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

24

Figure 2: Catalogue of Conflicts among NFRs.

 Never Conflict: this relationship represents a

pair of NFRs types that are never in conflict in

the software development projects. It consists of

all pairs of NFRs who have never been declared

as being in conflict with each other. They may

contribute either positively (e.g. support (Sadana

& Liu 2007) or cooperative (Egyed &

Grünbacher 2004)) or indifferent to one another

(e.g. low or very little impact on the other

(Wiegers 2003)). In the conflict catalogue, this

conflict relationship is labeled as „O‟.

Further analysis of this conflicts catalogue

indicates that 36 pairs of NFRs are absolute conflict

(e.g. accuracy and performance; security and

performance; and usability and reusability); 19 pairs

are relative conflict (e.g. reliability and performance;

usability and security; and performance and

usability); and 50 pairs are never conflict (e.g.

accuracy and maintainability; security and accuracy;

and usability and recoverability). The rest of

relationships are not known due to there is no

information available in the literature about how

those pairs of NFRs contribute to each other. In the

conflicts catalogue, it is presented as “the blank

spaces”.

Furthermore, this catalogue shows that NFRs

with the most conflict with other NFRs is

performance. Performance has absolute conflict with

accuracy, availability, confidentiality, dependability,

interoperability, maintainability, portability,

reusability, safety, security, and understandability,

and it has relative conflict with functionality,

recoverability, reliability, and usability.

The investigation also indicates that certain

attributes of a particular type of NFR can be in

conflicts with each other. These conflicts point to the

self-conflicting relationships for a particular type of

NFR. Self-conflicting relationship is defined as a

situation where the attributes of a single type of NFR

are in conflict. For example, the relative conflict

between performance and performance

requirements. Performance requirements can be

characterized among others by “response time” and

“capacity”. In many systems, these two attributes are

in conflict. For example in a road traffic pricing

system (Brito & A. 2004; Moreira, Araujo & Brito

2002), multi-user attribute
2
 has negative contribution

to the response time of the system. This means that

increasing the number of concurrent users in the

system may diminish the response time of the

system.

The investigation by using frequency analysis

technique also indicates that conflicts between

security and performance requirements are the most

frequently conflicts discussed in the literature.

33.33% of the reviewed articles talk about this

conflict, followed by conflicts between security and

usability requirements (23.33%) and conflicts

between availability and performance requirements

(20%). This result indicates that those three types of

conflicts (i.e. conflicts between security and

2 In these papers (Brito & A. 2004; Moreira, Araujo & Brito

2002), the term “attribute” is considered as “concern”.

TOWARDS A CATALOGUE OF CONFLICTS AMONG NON-FUNCTIONAL REQUIREMENTS

25

performance, between security and usability, and

between availability and performance) are the three

most frequent conflicts in the software projects and

the most considered and essential to deal with in the

software development process. The top ten

conflicting NFRs that are often discussed in the

literature are presented in Table 3.

Table 3: Conflicting NFRs in Literature.

Conflicting NFRs
Nature of

Conflict
%

Security and Performance absolute 33%

Security and Usability relative 23%

Availability and Performance absolute 20%

Performance and Portability absolute 17%

Reusability and Performance absolute 17%

Interoperability and Performance absolute 10%

Maintainability and Performance absolute 10%

Reliability and Performance relative 10%

Usability and Performance relative 10%

Usability and Reusability absolute 3%

5 USING THE CATALOGUE

The catalogue of conflicts among NFRs, as

presented in Figure 2, extends and complements

previously published NFRs conflict models. Our

work focuses on the extent and relativity of NFRs

conflicts, that is, on negative links between NFRs

and its corresponding level. Most of the existing

conflict models in the literature, however,

concentrate on both positive and negative

interrelationships. For example, Wiegers (2003) has

developed a relationship matrix that represents the

positive and negative relationships between

particular type of NFRs; Egyed & Grünbacher

(2004) created a model of potential conflict and

cooperation among NFRs; and Sadana & Liu (2007)

have also defined conflict relationship and support

relationship as the two types of contribution of a

particular type of NFR on the other types of NFRs.

Utilizing our NFRs catalogue of conflicts in

conjunction with the existing conflict models

extends the overall understanding of how NFRs

associate with each other (positive or negative) and

how this negative association can be characterized in

term of the relative characteristic of NFRs.

Our NFRs catalogue of conflicts could be used

by software developers in dealing with conflicts

among NFRs. The conflicts catalogue can be used to

identify which NFRs of the system that are really in

conflict, including how relative the conflicts are in

term of the relative characteristic of NFRs. If the

conflict identified is an “absolute conflict”, then

software developers may need to identify the

potential strategies to resolve this conflict, such as

the prioritization. On the other hand, if it is a

“relative conflict”, then software developers need to

understand and evaluate this particular NFR in term

of numerous factors involve in the development

project, such as the meaning of this particular type

of NFR in the context of the system being

developed; the stakeholder involvement; or system

development methodology used in the project, in

order to further investigate whether those NFRs are

really in conflict.

This catalogue can also be used to analyze the

conflicts among NFRs. By using this catalogue in

conjunction with the framework presented by

Sadana & Liu (2007), software developers would be

able to develop a structural hierarchy of functional

and non-functional requirements affected by each

conflict type. Therefore, this catalogue could further

assist in the analysis of NFRs conflicts from the

perspective of functional requirements.

By utilizing this catalogue in conjunction with

the “NFR Prioritizer” method presented by Mala &

Uma (2006), this catalogue would assist software

developers to analyze the tradeoffs among NFRs and

prioritize the NFRs. In term of analyzing the NFRs

tradeoff, this catalogue can be used as the basis to

develop the “NFR Taxonomy” that will be used to

identify the type of relationships among NFRs. The

NFR Taxonomy represents the conflicting or

dependable association between each NFR type. The

example of NFR taxonomy is presented as follow

(Mala & Uma 2006):

Usability#Accessibility+#Installability+

#Operability+#Maintainability-

This taxonomy represents that usability

contributes positively to accessibility, installability,

operability while it also contributes negatively to

maintainability. Then, by combining the weight of

user preference on each NFR type and the level of

NFRs tradeoff derived from the NFR Taxonomy,

software developers would be able to prioritize the

NFRs of the system in term of the existence of

conflicts among them.

Furthermore, this catalogue can also be used in

conjunction with the “Trace Analyzer” technique

developed by Egyed & Grünbacher (2004). The aim

of this technique is to identify the true conflicts

among NFRs. By tracing the relationship between

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

26

the system test case and the software program code,

trace analyzer can analyze whether the conflicts

listed in the NFRs conflict catalogue are “really in

conflict” in the developed system.

In term of resolution, the catalogue of conflicts

can also be used to resolve the conflicts among

NFRs. For example, by using this catalogue in

conjunction with the “Non-Functional

Decomposition (NFD)” framework developed by

Poort & de With (2004), software developers would

be able to decompose the NFRs of the system when

the NFRs conflicts identified.

6 DISCUSSION & CONCLUSIONS

Majority of techniques to manage the NFRs conflicts

provide the NFRs documentation, catalogue, or list

of potential conflicts among various types of NFRs.

However, none of them deal with relative

characteristic of NFRs. In fact, it is widely

acknowledged that NFRs are also relative. NFRs can

be viewed, interpreted, and evaluated differently by

different people and different context within which

the system is being developed. The interpretation

and importance of them may also vary depending on

the particular system being developed as well as the

extent of stakeholders‟ involvement. Consequently,

the positive or negative relationships among them

are not always obvious.

In this paper we present a catalogue of conflicts

among NFRs by considering this relative

characteristic. We present the relativity of conflicts

based on three categories: absolute conflict; relative

conflict; and never conflict. This distinction would

assist developer to perform further analysis towards

the conflict identified and investigate the potential

strategy to resolve the conflict.

This catalogue can be used to identify the

conflicts among NFRs in various phase of software

development project. For example, in the

requirements engineering phase, during the

elicitation process, system analysts would be able to

identify which NFRs of the system that will be in

conflict and how relative this conflict is. This

analysis would allow developers to identify the

conflicts among NFRs early and to discuss this

potential conflict with the system‟s stakeholder

before specifying the software requirements. As

another example, during the architecture design

process, system designers would also be able to use

this catalogue to analyze the potential conflict

among NFRs in term of the architecture decision

(e.g. layering, clustering, and modularity). The

relativity of conflict relationship presented in the

catalogue, would allow system designers to

investigate the potential architecture strategies to get

the best solution based on the type of conflicts

among NFRs. Furthermore, by using this catalogue

as the basis of conflict identification, we can adopt

numerous existing conflict analysis and conflict

resolution techniques, such as (Egyed & Grünbacher

2004; Mala & Uma 2006; Poort & de With 2004;

Sadana & Liu 2007) to further investigate and

evaluate the NFRs conflicts. Some examples of the

existing techniques and the potential utilization of

the catalogue in these techniques have been

described in Section 5 – “Using the Catalogue”.

In the process of investigating conflicts and

developing the conflicts catalogue, we also

identified 114 NFRs types listed in the literature.

Among these 114 types, more than 50% NFRs were

introduced without any definition or attributes

characterization while only 20% were provided with

definition and attributes characterization. This

statistic and the list of NFRs types without

definitions and attributes presented in this paper are

expected to encourage software engineering

community, particularly requirements engineering

community to further investigate the unclear NFRs

types and establish the clear concept about these

types of NFRs.

Further research will focus on collecting data

from software practitioners to complement the

catalogue. Those NFRs that have been removed

from the initial catalogue due to lack of definitions

and/or attributes will also be further investigated to

improve the completeness of the catalogue. The

catalogue from industry can also be compared with

the one developed from the content analysis.

Moreover, besides collecting data to develop the

conflicts catalogue, we would also perform further

research on investigating the relative conflicts

among NFRs. This study would not only investigate

how those NFRs dynamically generate conflicts with

each other in term of the context-based of the

system, but also to develop a framework to assist

developers in identifying in which situations those

NFRs are in conflict and in which situations are not.

The self-conflicting relationships will be covered in

this study.

This study is conducted as part of a long term

project of investigating conflicts among NFRs.

Findings of this investigation, especially the

conflicts catalogue, will be used as the basis to select

those NFRs that are known to be frequently in

conflict. The ultimate goal is to develop an

integrated framework to effectively manage the

TOWARDS A CATALOGUE OF CONFLICTS AMONG NON-FUNCTIONAL REQUIREMENTS

27

conflicts among particular NFR by considering the

NFRs relative characteristic. This framework should

be able to identify not only the existence and the

extent of conflict, but also to characterize and find

the potential strategies to resolve the conflict.

In this study, we do not claim that the catalogue

of conflicts presented is an exhaustive list. But, this

catalogue represents what could be found in the

current literature. We propose to conduct further

research to compare and contrast our findings from

the comprehensive review of research literature and

the state of the practice.

ACKNOWLEDGEMENTS

We would like to thank The International

Schlumberger Foundation Paris for funding this

research through Faculty for the Future Award

Program.

REFERENCES

Alexander, I. & Maiden, N. 2004, Scenarios, stories, use

cases: through the systems development life-cycle,

John Wiley & Sons, Ltd, Chichester, England.

Boehm, B. & Egyed, A. 1998, 'WinWin requirements

negotiation processes: a multi-project analysis', 5th

International Conference on Software Processes.

Boehm, B. & In, H. 1996a, 'Aids for identifying conflicts

among quality requirements', IEEE Software, March

1996.

Boehm, B. & In, H. 1996b, 'Identifying quality-

requirements conflict', IEEE Software, vol. 13, no. 2,

pp. 25-35.

Breitman, K.K., Prado Leite, J.C.S. & Finkelstein, A.

1999, 'The world's a stage: a survey on requirements

engineering using a real-life case study', Journal of the

Brazilian Computer Society, vol. 6, no. 1, pp. 1-57.

Brito, I. & A., M. 2004, 'Integrating the NFR framework

in a RE model', paper presented to the Early Aspects:

Aspect-Oriented Requirements Engineering and

Architecture Design, Lancaster, UK.

Charette, R.N. 1990, Applications strategies for risk

analysis, McGraw-Hill, New York.

Chung, L., Nixon, B.A. & Yu, E. 1995, 'Using non-

functional requirements to systematically support

change', The second international symposium on

requirements engineering, IEEE, York, pp. 132-139.

Chung, L., Nixon, B.A. & Yu, E. 1996, 'Dealing with

change: an approach using non-functional

requirements', Requirements Engineering, vol. 1, no.

4, pp. 238-260.

Chung, L., Nixon, B.A., Yu, E. & Mylopoulos, J. 2000,

Non-functional requirements in software engineering,

Kluwer Academic Publishers, Massachusetts.

Curtis, B., Krasner, H. & Iscoe, N. 1988, 'A field study of

the software design process for large systems',

Communication of the ACM, vol. 31, no. 11, pp. 1268-

1287.

Ebert, C. 1998, 'Putting requirement management into

praxis: dealing with nonfunctional requirements',

Information and Software Technology, vol. 40, no. 3,

pp. 175-185.

Egyed, A. & Boehm, B. 1998, 'A comparison study in

software requirements negotiation', 8th Annual

International Symposium on Systems Engineering

(INCOSE’98).

Egyed, A. & Grünbacher, P. 2004, 'Identifying

requirements conflicts and cooperation: how quality

attributes and automated traceability can help', IEEE

Software, vol. 21, no. 6, pp. 50 - 58.

Finkelstein, A. & Dowell, J. 1996, 'A comedy of errors:

the London ambulance service case study', Eigth

International Workshop Software Specification and

Design, pp. 2-5.

Firesmith, D. 2003, 'Using quality models to engineer

quality requirements', Journal of Object Technology,

vol. 2, no. 5, pp. 67-75.

Glinz, M. 2005, 'Rethinking the notion of non-functional

requirements', Third World Congress for Software

Quality, Munich, Germany, pp. 55-64.

Glinz, M. 2007, 'On non-functional requirements', 15th

IEEE International Requirements Engineering

Conference (RE '07), IEEE, pp. 21-26.

Grimshaw, D.J. & Draper, G.W. 2001, 'Non-functional

requirements analysis: deficiencies in structured

methods', Information and Software Technology, vol.

43, pp. 629-634.

Heumesser, N., Trendowicz, A., Kerkow, D., Gross, H. &

Loomans, L. 2003, Essential and requisites for the

management of evolution - requirements and

incremental validation, Information Technology for

European Advancement, ITEA-EMPRESS

consortium.

Kotonya, G. & Sommerville, I. 1998, Non-functional

requirements.

Krippendorff, K. 2004, Content analysis: and introduction

to its methodology, Second edn, Sage Publications,

Inc., Thousand Oaks, USA.

Lauesen, S. 2002, Software requirements: styles and

techniques, Addison-Wesley.

Leveson, N.G. & Turner, C.S. 1993, 'An investigation of

the Therac-25 accidents', IEEE Computer, vol. 26, no.

7, pp. 18-41.

Mairiza, D., Zowghi, D. & Nurmuliani, N. 2009,

'Managing conflicts among non-functional

requirements', 12th Australian Workshop on

Requirements Engineering (AWRE '09), Sydney.

Mairiza, D., Zowghi, D. & Nurmuliani, N. 2010, 'An

investigation into the notion of non-functional

requirements', 25th ACM Symposium On Applied

Computing ACM, Switzerland.

Mala, G.S.A. & Uma, G.V. 2006, 'Elicitation of non-

functional requirements preference for actors of

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

28

usecase from domain model', Lecture Notes in

Computer Science, vol. 4303/2006, pp. 238-243.

Mittermeir, R.T., Roussopoulos, N., Yeh, R.T. & Ng, P.A.

1989, Modern software engineering, foundations and

current perspectives, Van Nostrand Reinhold Co, New

York, NY, USA.

Moreira, A., Araujo, J. & Brito, I. 2002, 'Crosscutting

quality attributes for requirements engineering', 14th

international conference on Software engineering and

knowledge engineering, ACM, Ischia, Italy.

Neuendorf, K.A. 2001, The content analysis guidebook,

First edn, Sage Publications, Inc.

Paech, B. & Kerkow, D. 2004, Non-functional

requirements engineering - quality is essential, 10th

International Workshop on Requirements

Engineering: Foundation for Software Quality, pp. 27-

40.

Poort, E.R. & de With, P.H.N. 2004, 'Resolving

requirement conflicts through non-functional

decomposition', Fourth Working IEEE/IFIP

Conference on Software Architecture (WICSA '04),

IEEE.

Robertson, S. & Robertson, J. 2006, Mastering the

requirements process, 2nd edn, Addison-Wesley,

Boston.

Robinson, W.N., Pawlowski, S.D. & Volkov, V. 2003,

'Requirements interaction management', ACM

Computing Surveys, vol. 35, no. 2, pp. 132-190.

Sadana, V. & Liu, X.F. 2007, 'Analysis of conflict among

non-functional requirements using integrated analysis

of functional and non-functional requirements', 31st

International Computer Software and Applications

Conference (COMPSAC 2007), IEEE.

Sommerville, I. 2004, Software Engineering, 7 edn,

Pearson Education Limited, Essex, England.

Stemler, S. 2001, 'An overview of content analysis',

Practical Assessment, Research & Evaluation, vol. 7,

no. 17.

Weber, R.P. 1989, Basic content analysis, Sage

Publications, Inc.

Wiegers, K.E. 2003, Software requirements, 2nd edn,

Microsoft Press, Washington.

Yeh, R.T. 1982, 'Requirements analysis - a management

perspective', COMPSAC '82, pp. 410-416.

Yusop, N., Zowghi, D. & Lowe, D. 2008, 'The impacts of

non-functional requirements in web system projects',

International Journal of Value Chain Management

vol. 2, no. 1, pp. 18-32.

TOWARDS A CATALOGUE OF CONFLICTS AMONG NON-FUNCTIONAL REQUIREMENTS

29

