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Abstract: Constructing a mosaicing image with broader field-of-view has become an interesting topic in image guided 
diagnosis and treatment. In this paper, we present a robust method for video mosaicing in order to provide 
more guiding information for robotic assisted minimally invasive surgery. Outliers involved in the feature 
dataset are removed using trifocal constraints, homographies between images are estimated with L -norm 
optimization and chained together in a practical way. Finally refinement based on bundle adjustment is 
applied to minimize the error between reprojection and feature measurement. The proposed method has 
been tested with endoscopic images from Totally Endoscopic Coronary Artery Bypass (TECAB) surgery. 
The results showed our method performs better than other typical methods in terms of accuracy and 
robustness to deformation.  

1 INTRODUCTION 

The past decade has witnessed significant advances 
on robotic assisted Minimally Invasive Surgery 
(MIS) evolving from early laboratory experiments to 
an indispensable tool for many surgeries. MIS offers 
great benefits to patients: the incisions and trauma 
are reduced and hospitalisation time is shorter. 
Robotic assisted techniques further enhance the 
manual dexterity of the surgeon and enable him to 
concentrate on the surgical procedure. Despite of all 
these advantages, MIS using an endoscope still 
suffers from a fundamental problem: the narrow 
field-of-view. As a result, the restricted vision 
impedes the surgeon’s ability to collect visual 

information from the scenes and his/her awareness 
of peripheral sites. 

A straightforward solution to overcome the 
difficulty is video mosaicing, creating a 2D image 
with wider field-of-view by aligning and properly 
blending a number of partly overlapped images 
acquired at different positions. A lot of research 
work about video mosaicing has been done in both 
computer vision and medical imaging communities. 
1n 1975, Milgram (Milgram, 1975) proposed the 
first photomosaics method by minimizing the visual 
impact of the introduced seam. Geometric and 
greyscale information was used to combine the 
images on a line-by-line basis and to choose a best 
seam point for each line. After that, this area has 
attracted great attention from researchers in 
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computer vision community. For example, Zoghlami 
et al. (Zoghlami et al., 1997) proposed a 
feature-based algorithm to compute the homography 
between images with relatively small overlap and 
experimental results showed that it could deal with 
large rotation around optical axis and zooming factor. 
Alternatively, Capel (Capel, 2001) focused on the 
global registration for the video mosaicing, the 
alignment of the image frames, taking into account 
all the overlapped images, and not just the 
consecutive ones. Maximum likelihood estimate was 
used to build the chain of consisted homographies 
using all the available feature points. Most recently, 
Brown and Lowe (Brown and Lowe, 2007) 
introduced an automatic mosaicing method based on 
the invariance features. The features are detected 
and matched together between images using SIFT 
(Lowe, 2004). This method is robust to orientation, 
scale and illumination of the input images and can 
recognize multiple panoramas in an unordered 
image dataset. These methods work well for static 
scene without any deformable objects in it. However, 
medical image usually involves some deformation 
from organs and soft tissues, which often lead to the 
failure of these methods. 

In medical imaging community, Seshamani et al. 
(Seshamani et al., 2006) presented an endoscopic 
mosaicing technique to display a wider field-of-view 
of the surgical scene by stitching together images. 
This method, which was evaluated using 
microscopic retinal and catadioptric endometrial 
images, can perform online image registration and 
provide warping models to handle tubular organ 
structure. Vercauteren et al. (Vercauteren et al., 2006) 
also proposed a similar mosaicing method but they 
applied statistics for Riemannian manifolds to 
pairwise registration. Their method is able to 
produce a globally consistent mapping of input 
frames which is also aligned to a reference plane. It 
also considers non-rigid deformations of soft tissue, 
and the irregular sampling present in fibered 
confocal microscopy. Recently Miranda-Luna et al. 
(Miranda-Luna et al., 2008) also proposed a method 
of mosaicing of bladder endoscopic images by 
mutual information-based similarity measure and 
stochastic gradient optimization. Besides, an 
undistortion method is used to preprocess the 
endoscopic images in order to improve the 
robustness of the registration. Unfortunately, a 
common trait shared by these methods is the 
requirement of large overlap to guarantee the 
convergence and accuracy of the local and global 
alignment. 

So in this paper, we propose a robust method to 

mosaic medical images for robotic assisted 
minimally invasive surgery. Good features are 
detected and tracked based on the optical flow and 
then the potential outliers are removed from the 
feature dataset using the trifocal tensor. 
Homographies between images are estimated using 
Second-Order Cone Programming (SOCP) under 

L -norm. Then they are chained together under a 
common and global reference system, followed by 
bundle adjustment refinement to minimize the total 
misalignment. The contributions of the proposed 
method are as follows: (1) Mosaicing image with a 
broader field-of-view can be constructed from the 
input images containing deformable organs and soft 
tissues. Thus it can be used for 2D-3D registration of 
the anatomy to the preoperative CT/MRI data in 
order to provide more information for image guided 
diagnosis or surgery. (2) A robust strategy based on 
the trifocal tensor and bundle adjustment is used to 
remove outliers obtained from incorrect locations 
and incorrect tracking and to obtain the global 
alignment by minimizing the reprojection error.  

2 ROBUST ESTIMATION FOR 
VIDEO MOSAICING 

Given a set of images iI  ( mi  , ,1 ), and some 
image point  Ti

k
i
k

i
k yx 1 , ,x  detected on each frame 

i . If two images iI  and jI  can be related by a 
linear transformation of the projective plane, we 
have 

jjii xHx ,  
(1)

where H  is a 33  matrix, representing the 
2D-2D transformation via a projective plane, also 
called a homography. 

2.1 Feature Detection and Tracking 

The first step to construct mosaicing image is to 
track image features as the camera moves. One of 
the well-known tracking methods is the 
Lucas-Kanade (LK) tracker (Tomasi and Kanade, 
1992). The LK tracker minimizes the sum of squared 
errors between two images kI  and 1kI  by 
altering the warping parameters p  which are used 
to warp 1kI  to the coordinate frame of kI . For a 
general motion model with transformation function 

 px   ,W , the objective function is 

      

x

xppx
21 ;min kk IWI  (2)
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This expression is linearized by a first order 
Taylor expansion on   ppx  ;1 WI k  
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IWI  (3)

Where 1 kI  is the image gradient vector and 
pW  is the Jacobian of the transformation 

function.  

2.2 Outlier Removal 

Usually there are some outliers in the feature dataset 
after the detection and tracking, and they are in gross 
disagreement with a specific postulated model and 
must be handled by robust approaches. More 
importantly, the L  optimization, which will be 
discussed in the next section, is very vulnerable to 
outliers. So the outlier removal is crucial to the 
success of the whole mosaicing process. 

Given three cameras characterized by projective 
matrices  0IP  , ][ VAP  , ][ VBP  , the 
images of a 3D point in each view can be denoted as 

 Tyx 1 , ,x ,  Tyx 1 , , x ,  Tyx 1 , , x in 
homogeneous coordinates. It can be noted that 
matrices A  and B  are 2D homograph matrices, 
where Axx   and Bxx  , and V  and V   are 
the projection of the first camera centre into the 
second and third images.  Then the trilinear 
constraints across the three views can be compactly 
expressed in terms of trifocal tensor, jk

iT , which is a 
333   matrix with 27 entries. And the relation 

xxx   can be described as (Shashua, 1995) 

j
i

kk
i

jjk
i avbvT  ,    3  ,2  ,1  ,  , kji  (4)

Since every corresponding triplet x , x , x   
contributes four linearly independent equations, then 
seven point correspondences uniquely determine (up 
to scale) the tensor T . In fact the trifocal tensor can 
be estimated from a minimum of six point 
correspondences since it has only 18 degrees of 
freedom. However, the six-point estimation involves 
the solution of a cubic and a complicated 
parameterization (Quan, 1994), and so for simplicity, 
we use the seven-point method to compute a 
possible solution and employ the RANSAC strategy 
to detect the outliers based on the geometric error.  

     



n

i
iiiiii

n

i
i dddRR

1

222

1

ˆ  ˆ  ˆ  x,xx,xx,x  (5)

This error measures the sum-of-squares of the 
geometric distances between the image points 

iii xxx   and the corrected data points 

iii xxx ˆˆˆ  , with the latter obeying the trilinear 
constraint Eq. (4) for the estimated tensor T . Thus, 
given three images with overlap, we can estimate the 
trifocal tensor among them and use the above error 
measure to detect outliers accordingly.  

The above method is only applicable to three 
images, we require a method to process an entire 
image sequence and remove the outliers. The 
simplest way is to compute the tensor among three 
consecutive images,  2 ,1 ,  iii , e.g., image triplet, 
 3 ,2 ,1 ,  4 ,3 ,2 , etc, as shown in Fig.1 (a), and 
delete feature points if  they are considered an 
outlier from any independent tensor estimation. 
Besides, we also employ additional image triplets 
for computation, e.g.,  3 ,1 ,  iii , as shown in 
Fig.1 (b). However, the more image triplets that are 
used, the more feature points will be removed if a 
previous decision rule is applied (e.g. once an outlier, 
always an outlier). Our method carries out a number 
of independent tests (each time using a unique 
combination of three images) on each feature point. 
Feature points are only removed if they are 
determined to be outliers more than 50% of the 
times.  

3,2
1T

4,3
2T

5,4
3T  

(a) 

4,2
1T

5,3
2T

6,4
3T  

(b) 

Figure 1: Strategy of outlier removal based on trifocal 
tensor. (a) The three consecutive images  2 ,1 ,  iii  
are used to compute the trifocal tensor. (b) More nearby 
images  3 ,1 ,  iii  are used to remove the outliers from 
the image sequence. 

2.3 Image Alignment 

Today L -norm optimization has been widely used 
in various multiple-view geometry problems (Kahl 
and Hartley, 2008). One of the main advantages of 

L  is that: problems formulated by L  often 
possess a single, hence global, optimum. Besides, it 
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usually leads to a simpler formulation for the same 
problem compared with 2L . 

Without loss of generality, we set the last 
element of the homography H , 33h , to 1 and have 

j
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So the residual of homography estimation between 
image i  and j  can be expressed as 
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(6) 
where T

lh  represents the l -th row of the matrix 
H . So our aim is to solve the following optimization 
problem by minimizing the residual 

 


m

k

j
k

i
kd

1

2
,min xx , s.t.   0sk  

Suppose each residual has an upper bound k , that 
is,        kkkk ff   22

2

2

1 sss . Then the 
formulation in (6) is equivalent to 

m  21min  

s.t.      22

2

2

1 sss kkkk ff  , mk  , ,1  

  0sk   

Then we can use Second-Order Cone Programming 
(Alizadeh and Goldfarb, 2003) to solve this problem. 
Readers can refer to Kahl’s paper for more details 
(Kahl and Hartley, 2008). 

Ideally, after the alignment of all consecutive 
images, we can chain all the images together and 
wrap them onto a reference plane 
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Here image r  is the reference frame. For simplicity, 
it can be the middle image of the whole video 
sequence. 

However, the misalignment error usually 
accumulates by concatenating homographies. This is 
especially evident when the camera goes back to the 
scene previously seen in a long image sequence. The 
accumulation of error may be so great that the first 
and last images are very poorly registered. In other 
words, the homographies are not consistent with 

alignment to a common frame. So we use a strategy 
to minimize the number of good homographies to 
link image i  with reference frame r : 

(1) Find image j , which is the furthest to image 
r  but with enough overlap. Here the overlap 
can be the number of feature correspondences 
between image j  and r  

overlap
rjn ,  

(2) Compute the homography between frame k  
and i , and calculate the mean of the residual 
error 

 
k

j
k

i
krjrj d

n
D xx ,

1
,,  (7)

 
(3) If rjD ,  is small enough, residualrjD , , this 

homography rj ,H  is accepted. Then we start 
from image j , jr  , and find the next 
acceptable homography rj ,H  using step (1) 
and (2). If residualrjD , , we select the image 
next to j  









jrj

jrj
j

 if    1

 if    1
 

and repeat (2) and (3). 

(4) The process will halt until the whole 
homography chain is built. 

Thus, alignment can take advantage of 
homographies linking non-consecutive frames and 
reduces the global registration error. 

2.4 Refinement based on Bundle 
Adjustment 

The bundle adjustment (BA, Triggs et al., 1999) we 
used is different from the ones addressed in 
McLauchlan’s (McLauchlan, and Jaenicke, 2002) 
and Brown’s paper (Brown and Lowe, 2007). In 
their papers, BA was used to solve the rotation 
parameters and focal lengths of all cameras. In this 
paper, BA was performed to find the best 
homography set  ri ,H , mi  , ,1 , that minimize 
the misalignment error.  

   





ri

mi

r
k

rii
kri

,,1

2, ~min
,



xHx
H

 (8)

where rx~  is the reprojecion of all the feature points 
onto frame r . It can be easily computed using Least 
Square method with all the available homographies. 
Then Levenberg–Marquardt algorithm is used to sol-
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         (a)                                (b)                                 (c) 

 
(d) 

 
(e) 

Figure 2: The experimental result of endoscopic images from Totally Endoscopic Coronary Artery Bypass surgery. (a), (b) 
and (c) show the first, middle and last images of the sequence, respectively. (d) displays the mosaicing result of Brown’s 
Method. (e) displays the mosaicing result of the proposed method. 

ve Eq. (8). The C++ code about the generic sparse 
bundle adjustment is available online by courtesy of 
Manolis Lourakis.  

3 EXPERIMENTAL RESULTS 

In this section, the performance of the proposed 

method was evaluated using endoscopic images 
from Totally Endoscopic Coronary Artery Bypass 
(TECAB) surgery and compared with Brown’s 
method (Brown and Lowe, 2007). 

The da VinciTM robotic surgical system (Intuitive 
Surgical, Inc., Sunnyvale, CA, USA) was used to 
obtain images of the heart surface. The video 
endoscopic images were digitized at 25 frames per 
second (fps) using a frame grabber (LFG4 PCI64, 
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Active Silicon, Uxbridge, U.K.). Although da Vinci 
system provides stereo vision, we only use the image 
sequence from left camera to perform the mosaicing 
in order to compare with other methods. 150 images 
were captured from the endoscope but we use only 
30 frames (every 5 frame from the sequence) for the 
mosaicing. Our aim is to create a mosaicing image 
which includes the whole structure of the coronary 
artery. The main challenge is the large complicated 
non-rigid motion introduced by the beating heart 
surface, which is shown in the right bottom of Fig. 2 
(b) and (c). 

Fig. 2 (d) displays the mosaicing result of the 
proposed method. We can notice that the whole 
vessel structure has been built correctly. So the 
surgeon can realize the environment outside the 
current scene when he views a part of the vessel. 
More importantly, the mosaicing image can help him 
link the endoscopic video with the preoperative 
information from CT/MRI scan. Brown’s method  
was also tested using this image sequence and the 
mosaicing result was displayed in Fig. 2 (e). It is 
noticed that only part (around three quarters) of the 
whole vessel had been constructed and the images 
affected badly by the beating heart surface could not 
be used by Brown’s method. The possible reason is 
that SIFT feature descriptor could not find enough 
reliable features from the images with severe 
deformation from the internal organ or soft tissue. 

4 CONCLUSIONS 

In this paper, we proposed a robust video mosaicing 
method for robotic assisted minimally invasive 
surgery. The mosaicing image displays a much wider 
field-of-view of the operation scene and helps the 
surgeon realize the surrounding environment outside 
the current view. Experiments with TECAB 
endoscopic images and FCM images show that the 
proposed method performs better than other typical 
methods. It is robust to deformation caused by 
organs and soft tissues and can even deal with 
artefacts involved in the images.  

Effort in the near future will focus on future 
improvement of robustness to deformation and 
artefacts. Our long term goal is to automatically 
construct mosaicing image of the surgical scene, 
reconstruct the internal organ surfaces and register 
these with the preoperative data (CT or MRI) to 
provide more information for image guided 
diagnosis and treatment. 
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