
USING ASPECT-ORIENTATION FOR SOFTWARE MIGRATION

Uwe Hohenstein and Michael C. Jaeger
Siemens AG, CT T DE IT 1, Otto-Hahn-Ring 6, D-81730 München, Germany

Keywords: Persistence Framework, Migration, Aspect-orientation, AspectJ, Case Study, Experience Report.

Abstract: A replacement of 3rd party tools such as database systems or persistence frameworks occur quite often in
practice. Possible reasons are license costs, customer requirements or missing functionality. Such a
migration usually means exchanging API calls and dealing with functional differences. Problems occur if
some functionality cannot be emulated. This paper proposes and explains the use of aspect-orientation to
handle severe problems in migration scenarios. A migration project is introduced the goal of which was to
replace the persistence framework Hibernate with OpenJPA. This migration involved challenging problems
where the application of aspect-oriented programming has provided simple and straightforward solutions.

1 INTRODUCTION

Whenever Java and relational database systems
(DBS) are used, object-relational (O/R) persistence
frameworks or tools such as Hibernate, Java Data
Objects (JDO) or Java Persistence API (JPA) come
into play: Application programmers can store and
retrieve Java objects in relational tables without
knowing about the underlying table structure and/or
how to formulate SQL queries. Programming can be
done at an object-oriented level, i.e., by storing and
retrieving Java objects. The O/R framework
translates those object-oriented operations into SQL.

We were involved in an industrial project with
Siemens Enterprise Communications (SEN), where
the Hibernate persistence framework was used. The
project develops a Java-based service-oriented tele-
communication middleware which serves as an open
service platform for the deployment and provision of
communication services (Strunk, 2007). Examples
for such services are the capturing of user presence,
the management of calling domains, administration
functionality for the underlying switch technology,
and so forth. The technical basis is OSGi.

Hibernate was used for managing persistent data
in a relational DBS. Hibernate is a widely used and
popular O/R framework. It is open-source software
and provides only a thin layer upon the Java
Database Connectivity API (JDBC), offering
developers much control on performance-relevant
settings. Hibernate was used for two reasons: First,
to be independent of various DBSs to be supported
in the product, namely solidDB, MySQL, and
PostgreSQL. And second, to benefit from the higher,

object-oriented level of database programming.
In summer 2006, the owner of Hibernate was

accused of violating a patent on O/R frameworks in
the United States. This patent infringement claim
seemed to be a problem of Hibernate at a first
glance. However, every software product that is
shipped to the United States with Hibernate inside is
affected as well; any redistribution of Hibernate
implies the role of a supplier. To avoid the risk of a
patent infringement, the project management
decided to replace Hibernate with another O/R
framework. An additional business issue was the
GNU Lesser General Public License (LGPL) used
by Hibernate. LGPL was not fully compatible with
agreements that SEN has with its business partners.
As a consequence, the project management decided
to replace such LGPL software in general.

The Hibernate replacement started with a first
brief evaluation, where several substitute candidates
were roughly assessed: Proprietary frameworks such
as iBATIS and tools conforming to the JDO or JPA
standards. As a quick result, the OpenJPA frame-
work was chosen because it is open-source and
implements the JPA specification. The JPA standard
seems to be appropriate because it is part of the EJB
3.0 specification and is more recent than JDO. Thus,
OpenJPA could easily be replaced with other JPA-
conforming tools if OpenJPA will also be gripped by
the patent. Moreover, OpenJPA is provided with the
more convenient Apache software license.
Migrating from Hibernate to OpenJPA is merely
straightforward at a first glance: It is possible to
wrap OpenJPA by still offering Hibernate interfaces;
changes are thus minimal. However, during the

30
Hohenstein U. and C. Jaeger M. (2010).
USING ASPECT-ORIENTATION FOR SOFTWARE MIGRATION.
In Proceedings of the Fifth International Conference on Evaluation of Novel Approaches to Software Engineering, pages 30-39
DOI: 10.5220/0002929900300039
Copyright c© SciTePress

migration effort, severe problems raised that were
difficult to detect in an OpenJPA evaluation. Those
issues occurred lately and endangered the success of
migration. In order to cope with them, we found and
applied solutions using Aspect-Orientation (AO).

AO has been proposed for developing software
to eliminate crosscutting concerns, i.e., functionali-
ties that are typically spread over several classes.
Those lead to code tangling and scattering (Elrad et
al., 2001) in conventional programming (Murphy et
al., 2001). Research has shown its usefulness.
(Hannemann and Kiczales, 2002) identify several
crosscutting concerns in the GoF patterns (Gamma
et al., 1995) and extract them into aspects. (Murphy
et al., 2001) and (Burke, 2005) used aspects for de-
signing and building flexible middleware. (Rashid,
2004) discusses several facets of AO in the context
of databases, in particular implementing DBSs in a
more modular manner and an AO-based persistence
framework (Rashid and Chitchyan, 2003). Others
use AO to maintain database statistics (Hohenstein,
2006) or to implement ACID properties (Kienzle
and Gélineau, 2006). It turned out in all these studies
that aspect-orientation increases programming pro-
ductivity, quality and traceability, degree of code
reuse, software modularity, and is better supporting
evolution (Coady and Kiczales, 2003).

In this paper, we discuss another application of
AO, to apply aspects on existing 3rd party software
libraries in order bridge functional differences
between them. Our intent is to show that AO
provides a straightforward solution being suitable
for software migrations in enterprise settings. The
essential and novel value of our AO approach is a
method to address the challenges of integrating 3rd
party software, keeping the original software un-
touched and being able to manage the concerns of
migration in a maintainable manner.

In Section 2, we summarize the general replace-
ment and outline a selection of migration issues that
we solved by applying conventional methods.
Section 3 presents some critical problems that
occurred during the migration, for which
conventional solutions are hard to find and apply.
After having introduced the fundamentals of AO and
AspectJ (Laddad, 2008), Section 4 explains our
solutions using AO. Our lessons learned during the
migration are summarized in Section 5. The paper
ends with Section 6 that gives a summary on our
experiences and our conclusions.

2 MIGRATION IN GENERAL

In order to perform the Hibernate replacement, a

master plan was established in the beginning. This
plan consists of the following steps:
1. The goal was to start a practical migration as

early as possible. A selection and brief assess-
ment of Hibernate substitutes leads to an early
decision for the JPA standard with OpenJPA as
implementation, because obvious similarities
exist between OpenJPA and Hibernate.

2. A checklist was established for those Hibernate
concepts that were seen specific or critical. A
short evaluation of the checklist let appear
OpenJPA appropriate.

3. We transformed our central persistence infra-
structure to OpenJPA, particularly its
configuration and deployment.

4. As a proof of concept, the most complicated
software project was migrated first in a sandbox
environment. By this step, we expected to
identify as many problems as early as possible.

5. The real migration on the affected software
projects was scheduled and planned.

6. Finally, we performed the migration in co-
ordination with the affected development teams.
Training and coaching was also necessary.

The short theoretic evaluation of Step 2 was
successful and no major problems have been detect-
ed at that time. Of course, several differences
between Hibernate and OpenJPA APIs exist. For
instance, we have to use an EntityManager instead
of a Session, EntityManager.persist() instead
of Session.save(), etc. But since most concepts of
Hibernate seemed to have an equivalent counterpart
in OpenJPA, we got an optimistic impression of the
migration. This first impression was also confirmed
by (Vines and Sutter, 2007) who state that it is no
problem to migrate from Hibernate to OpenJPA.

It became clear that obvious differences are easy
to cope with a wrapper approach. Implementing the
Hibernate interface on top of OpenJPA has the
advantage that the old Hibernate interface in use can
still be retained. Only import statements have to be
changed. Even the change of import packages was
not really mandatory, but useful since Hibernate and
OpenJPA could thus run in parallel in an OSGi
container during the migration phase. This allows
for a step by step migration. Ongoing development
work on the middleware is not really affected.

Despite several conceptual similarities, the
practical evaluation of Step 4 brought up some
differences which we would like to mention briefly
(see also (Vines and Sutter, 2007) for further topics).

One problem is that JPQL delete-by-queries do
not work correctly because OpenJPA generates a

USING ASPECT-ORIENTATION FOR SOFTWARE MIGRATION

31

SQL query with a self-reference which cannot be
executed by most DBSs:
DELETE FROM Tab WHERE key IN
 (SELECT key FROM Tab WHERE <condition>)
A solution is to omit delete-by-queries by imple-
menting the functionality manually, i.e., by querying
the objects to be deleted first and then deleting each
object one by one. This poses a performance
problem due to lots of DELETE operations. A sus-
tainable solution is to correct the query generation
by avoiding the unnecessary subquery. The relevant
translation is part of so-called Dictionary classes.
Hence, the change can simply be done by defining a
dictionary class MyMySQLDictionary that extends
the predefined MySQLDictionary in such a way.

Furthermore, the life cycle of the persistent
objects is different. For example, it is possible in
Hibernate to overwrite an existing persistent object
in the database by creating a new object having the
same key values; saving that object overwrites the
existing one. However, OpenJPA treats the
(temporary) object as a new one, which let the
database complain about duplicates.

Hibernate’s Criteria interface for queries is not
supported in OpenJPA release 1.1.0. Thus, Criteria
queries must be re-formulated in the JPQL language.

Smaller differences exist between the query
language HQL and JPQL, e.g., an explicit alias t has
to be used at any place, as in SELECT t FROM Type
t WHERE t.attr=1 instead of FROM Type WHERE
attr=1. This affects conditions that could be
composed as attr=1 in the GUI and now need to
be extended with an alias t.

Hibernate has a special delete-orphan cascade
option: While the ordinary delete-cascade removes
with a father object all depending son objects,
delete-orphan removes son objects in addition when
the association with the father object is destroyed; a
son object cannot exist without a father. Despite
being not supported by the JPA standard, OpenJPA
provides such a feature by means of an extended
mapping annotation. If one stays with XML
mapping files, those cascades must be resolved and
implemented manually.

OpenJPA comes with an easy integration of the
Apache DBCP connection pool, while we used
Hibernate with the C3PO pool. DBCP behaves
differently and performance tests brought up
different connection pool settings for DBCP.

Although those issues represent a very individual
effort, such a correction did not pose any problems
to the progress of the migration.

3 HARDER PROBLEMS

The differences between Hibernate and OpenJPA
explained in the previous section are easy to solve.
However, some problems - being detected in later
phases of the migration unfortunately - endangered
the success of the overall migration and were hard to
solve with conventional programming techniques.
This section discusses those problems in detail. Cor-
responding AO solutions are presented in Section 4.

3.1 Lack of Key Generation

An O/R framework requires mapping information on
how to map classes onto database tables, attributes
to table columns, associations to foreign keys etc.
This can either be done by means of XML mapping
files or by Java-5 annotations in the entity classes.
Our project used XML mapping files. The following
Hibernate mapping example relates a class MyClass
(<class>) to a table MyTable (table=…), fields id
and p2 to table columns pk and c2, respectively.
<class name=”MyClass” table=”MyTab”>
 <id name=”id” column=”pk”>
 <generator class=”sequence”/> </id>
 <property name=”p2” column=”c2”/> ...
</class>
Thereby, <id> defines a key field that uniquely
identifies objects in a class; the corresponding
column pk is used as a database primary key.

Indeed, the mapping specification in OpenJPA is
different; a file orm.xml specifies mappings with a
different syntax. The transformation of Hibernate
mapping files into OpenJPA syntax is straight-
forward and can be achieved by an XSLT script for
most differences. However, some differences are
fundamental. For example, there are various
alternatives for providing <id> values in Hibernate,
e.g., to let the application be responsible for
providing the key values and ensuring their unique-
ness (<generator class= ″assigned″/>), to let
Hibernate generate an id by means of creating a
globally unique identifier, or to use mechanisms that
DBSs offer such as sequence generators (in
solidDB) or auto-increment columns (in MySQL).
These strategies are supported by OpenJPA, too. But
Hibernate also offers a more abstract native key
generation: Depending on what the underlying DBS
supports, either sequence or increment is used.
Since the project must support several DBSs,
especially solidDB, MySQL, and PostgreSQL, and
since the type of DBS should be invisible, such an
abstract strategy is required.

OpenJPA has a similar auto strategy that lets

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

32

OpenJPA decide what to do, but it uses a table for
maintaining highest values instead of taking auto-
increment columns or sequences. This is not
appropriate as database installations already exist at
customers, containing keys generated by either
sequences or auto-increment columns. For these, the
probability is high that auto generates already
existing values. Hence, value clashes are most likely
when upgrading to an OpenJPA-based version.

One solution is certainly to maintain three XML
mapping files, one for each DBS with the supported
strategy. A simple model-driven approach that
generates DBS-specific variants with sequence or
increment, respectively, could help here. This was
regarded as an inappropriate solution as it causes a
problem for deployment. OpenJPA expects the
mapping file in a JAR. The overall project strategy
is to have one unchangeable deployment JAR: All
parameters that might vary from one installation to
another, such as the database URL, its port, user and
password, must be placed outside the deployed JAR
file. This is because only parts of the JDK are
installed on the target machine and unzip/zipping of
JAR files is not available to exchange parts such as
mapping files. Hence, the resulting installation
procedure would now need to handle several JAR
files for deployment, one for each DBS.

The issue with providing different mappings
becomes even worse, since we were forced to use
mapping annotations in some cases. Some OpenJPA
features are only available as annotations, but not in
XML mappings, e.g., a “delete-orphan” cascade (cf.
Section 2): This is a special option that removes son
objects when their association with the father object
is destroyed. On the one hand, using the delete-
orphan option with annotations means that also
several code variants have to be maintained, since
the mapping is part of the source code. On the other
hand, implementing delete-orphan behavior manu-
ally, i.e., deleting objects explicitly whenever they
become parentless can be very cumbersome since
cascades go over several levels in the object model.

Any proposal requires massive changes in the
implementation and deployment infrastructure.

3.2 Failover Problem

The main DBS to be supported in our project is
solidDB. solidDB is not as popular as other DBSs.
However, it is often used in telecommunication
projects. One reason is its hot-standby failover
concept: It is possible to install two DBSs, one
primary and one secondary, the databases of both
being synchronized. If the primary solidDB server

crashes, the secondary becomes the new primary and
silently takes over the work immediately. To apply
failover, applications have to use a specific dual-
node URL of the form jdbc:solid://h1:1315,
h2:1315/usr/pw. This URL specifies two database
servers on host h1 and host h2.

The failover concept is important for our project
and certainly part of the Top-10 list of
“Hibernate/OpenJPA compatibility” checks to be
done. We know that Hibernate and the solidDB
JDBC driver can handle the dual-node URL. Since,
the O/R framework is supposed to pass this URL
through to the JDBC driver, no particular problems
were expected. Moreover, the setup and
accomplishment of failover test scenarios involves
many steps for setup so that the final check has been
postponed in the first assessment of OpenJPA.

When it came to test deployments, the failover
feature of the solidDB DBS did not work for
OpenJPA; connections to the database could not be
established at all with the given URL. The first
problem occurred: How can we find out why no
connections are possible? Debugging is very tedious
as the problem occurred in the depth of OpenJPA
and the JDBC driver. As we are describing later, AO
helped us to detect the cause for the problem.

It turned out that the dual-node URL is damaged
by OpenJPA: Only the first part jdbc:solid://
h1:1315 arrives at the solidDB server. The reason is
that a string is used to set several facets of
connection properties in one openjpa.Connection
Properties, the URL, the driver class name etc.:
String str = "
 Url=jdbc:solid://h1:1315,h2:1315/usr/pw,
 DriverClassName=solid.jdbc.SolidDriver,
 ...";
props.setProperty
 ("openjpa.ConnectionProperties",str);
EntityManagerFactory emf = persProvider.
createEntityManagerFactory("mydb",props);
A deeper investigation brought up that OpenJPA
takes the comma as a separator during the analysis
of openjpa.ConnectionProperties and thus
derives the following units from the properties:
Url=jdbc:solid://h1:1315
h2:1315/usr/pw
DriverClassName=solid.jdbc.SolidDriver
...

That is, h2:1315/usr/pw is taken as a unit of its
own, and since it does not satisfy the form
property=value, it is simply ignored; and the URL
degrades to jdbc:solid://h1:1315.

To solve the problem and to leave the dual-node
URL intact, we obviously have to change the
internal behavior of OpenJPA.

USING ASPECT-ORIENTATION FOR SOFTWARE MIGRATION

33

3.3 Missing Connection Property

Unfortunately, the previous solution solves only half
of the failover problem: It allows establishing con-
nections to solidDB, but no failover occurs. Indeed,
the solidDB JDBC driver requires a special failover
property solid_tf_level to be set for any data-
base connection. OpenJPA allows passing additional
properties, but only OpenJPA properties starting
with “openjpa.”, are analyzed and passed to the
JDBC driver; others are ignored.

A solution must somehow change the behavior
of the solidDB driver, the source code of which is
unavailable.

3.4 Possible Solutions

What are possible solutions to solve the above
problems? There is no easy work around such as
wrapping OpenJPA or JDBC methods because we
have to intervene in the internal behavior.

We can certainly ask the vendor of solidDB to
change its JDBC driver. This is in general expensive
and must be done again and again when a new
version is launched. For patches of OpenJPA, the
open source community could provide solutions.
However, the problem affects the interplay between
OpenJPA and the rather specific solidDB DBS. We
require solidDB-specific patches to the OpenJPA
source code, but solidDB is not officially supported
by OpenJPA. We reported those solidDB specific
issues to the OpenJPA project, but we could not wait
for a solution because this would have caused a
significant delay.

Patching source code is possible, if the code is
available. This is not always the case, e.g., the
sources of the solidDB JDBC driver are unavailable.
In case of OpenJPA, a deeper understanding of the
complete source code is necessary because several
logical parts are involved: The XML parser for
mapping files, the handling of annotations, storing
and using meta-data, interpreting the meta-data to
perform database operations etc. One technical
difficulty is then to patch the code in such a way that
changes apply only for solidDB, but not for other
DBSs. OpenJPA knows the JDBC driver and can
derive the used DBS. However, this information is
needed in a different class. Hence, we have to let
unrelated classes exchange this kind of information,
which means the change cannot be done locally.

Moreover, the build process must be understood
in order to produce a new OpenJPA JAR file. This
could also cause trouble with integrating two
different build approaches such as Ant and Maven.

AO programming provides simpler solutions.

4 ASPECTJ SOLUTIONS

Aspect-orientation is a solution for our problems,
especially if 3rd party tools behave in a wrong
manner and if no source code is available. We
applied AO to change the internal behavior of
OpenJPA and JDBC drivers in order to achieve in
OpenJPA some missing Hibernate functionality.

The most popular AO language is certainly
AspectJ (Laddad, 2008). Special extensions to Java
enable separating the definition of crosscutting
concerns. Programming with AspectJ is essentially
done by Java and by new aspects. The main purpose
of aspects is to change the program flow. An aspect
can intercept certain points of the program flow,
called join points. Examples of join points are
method calls or executions, and attribute accesses.

Join points are syntactically specified by means
of pointcuts. Pointcuts identify join points in the
program flow by means of a signature expression.
For example, a specification can determine exactly
one method. Or it can use wildcards to select several
methods of several classes by * MyClass*.get*
(..,String). A star “*” in names denotes any
character sequence, hence, get* means any method
that starts with “get”. A type “*” denotes any type.
Parameter types can be fixed or left open (..). Inter-
ception of methods can be done at the caller or
callee side. An execution(...) pointcut intercepts
at the callee side, i.e., any caller is affected. In
contrast, call(...) intercepts at the caller side.

Once join points are captured, advices specify
weaving rules involving those joint points, such as
taking a certain action before or after the join points.
Pointcuts can be specified in such a way that they
expose the context at the matched join point, i.e., the
object on which the intercepted method is invoked.
Parameter values can be accessed in advices as well.

The AspectJ language requires a compiler of its
own. Usually, the AJDT plug-in will be installed in
Eclipse. However, a new compiler requires changes
in the build process, which is often not desired, so
for us. Then, using Java-5 annotations such as
@Aspect is an alternative: Aspects can be written in
pure Java. This was important for us, because we
could rely on standard Eclipse with an ordinary Java
compiler, without AJDT. In order to use annotations,
the AspectJ runtime JAR is required in the classpath.
To make the aspect active, we also have to start the
JVM (e.g., in Eclipse) with a -javaagent argument

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

34

referring to the AspectJ weaver. Annotations are
then evaluated and become really active, because
load-time weaving takes place: Aspects are woven
whenever a matching class is loaded.

4.1 Solving the Lack of Key Generation

We now show AspectJ examples that solve our
problems. The basic idea to remedy the lack of key
generation is to accept both strategies sequence and
increment, but to change the internal OpenJPA
behavior in such a way that it uses the strategy
available in the DBS. Hence, if increment has been
chosen, but if the DBS does not supply auto-
increment columns, then let OpenJPA internally
switch to the sequence strategy. This is much easier
than adding a new native strategy for mapping
specifications and/or annotations, which requires a
corresponding modification of the XML parser, the
analysis of annotations, the use of this kind of meta-
data to derive SQL operations adequately etc.

Changing the OpenJPA behavior to handle
increment appropriately according to the type of
DBS can easily be done by the following aspect.
@Aspect
public class KeyGenerationAspect {
 private String db = null;
 @Before("execution(* org.apache.openjpa.
 persistence.PersistenceProviderImpl.
 createEntityManagerFactory(..))
 && args(.., p)")
 public void determineDBS(Properties p) {
 String str = p.getProperty
 ("openjpa.ConnectionProperties");
 if (str != null) {
 if (str.contains("Solid"))
 db = "SOLID";
 else if (str.contains("mysql"))
 db = "MYSQL";
 else if (str.contains("postgresql"))
 db = "POSTGRES";
 }

 @Around("call(* org.apache.openjpa.meta
 .FieldMetaData.getValueStrategy(..))
 && !within(com.siemens.ct.aspects.*)")
 public Object changeStrat(JoinPoint jp) {
 FieldMetaData fmd
 = (FieldMetaData) jp.getTarget();
 int strat = fmd.getValueStrategy();
 if (db.equals("SOLID")
 && strat == STRATEGY_IDENTITY) {
 fmd.setValueSequenceName("system");
 return STRATEGY_SEQUENCE;
 } ... // similar for other DBSs
 return strat;
} }
A @Aspect annotation lets the Java class Key-
GenerationAspect become an aspect. Annotations
are used instead of the AspectJ language. This was

important for us because we could rely on a standard
Eclipse setup with an ordinary Java compiler.

There are two advices: The first one
determineDBS determines the DBS and the second
one changeStrat changes the strategy if necessary.
Both exchange information about the DBS in use by
means of an aspect-local variable db.

Since the method determineDBS is annotated
with @Before, it defines an advice to be executed
before those join points that are specified by the
pointcut string: Any execution of the method
PersistenceProviderImpl.createEntityManag
erFactory with a Properties parameter. The
args(..,p) clause requires at least a Properties
parameter and binds a variable p to that parameter.
The variable also occurs in the method signature and
allows one to access the value inside the advice.
Thus, p.getProperty("openjpa.ConnectionPro
perties") yields the connection properties, i.e., the
comma-separated list we are interested in so that we
can extract the type of DBS. The result is stored in
an internal variable db.

The changeStrat advice uses this information
about the DBS to switch from strategy increment to
sequence in case of solidDB. Hence, the aspect can
simply be used to share and exchange information
even if different parts of code, even of different
JARs, are intercepted. The technical problem how to
determine the type of DBS is solved in an easy way.

The @Around advice changeStrat intercepts
any call of FieldMetaData.getValueStrategy,
which returns the strategy. Due to @Around, the
original logic is replaced in such a way that we
decide when to switch the strategy in the advice.

Please note that !within(com.siemens.ct.
aspects.*) is necessary: Whenever getValue-
Strategy is called, the call is implicitly changed to
calling the @Around method, which performs strat
=fmd.getValueStrategy() inside. This means this
call is again intercepted, resulting in an infinite
recursion. !within excludes any call within the
aspect from being intercepted.

The parameter JoinPoint jp gives access to
context information about the join point, especially
the target object on which the method is invoked
(jp.getTarget()). This is a FieldMetaData
object in this case, which allows determining the
current strategy by means of getValueStrategy().
Instead of returning the original strategy, e.g.,
identity, we can switch for solidDB to sequence
and set the sequence name to the system sequence.

USING ASPECT-ORIENTATION FOR SOFTWARE MIGRATION

35

4.2 Solving the Failover Problem

As explained in Section 3.2, OpenJPA does not
allow connecting to the solidDB DBS with a dual-
node URL jdbc:solid://h1:1315,h2:1315/usr
/pw. Our first problem was to detect the reason why.

Refining the log4j level especially for OpenJPA
produces an overwhelming but useless output of
OpenJPA activities such as initialization, analyzing
mapping specifications, named queries etc.

Debugging works only, if the source code is
available. Even with IDE support, the problem is
hard to detect with debugging, especially since
several dynamic method invocations are interrupting
the execution flow: OpenJPA has a pluggable
connection pool and loads dynamically the one
chosen. And the connection pool dynamically
invokes the JDBC driver for the selected DBS.

According to (Laddad, 2006), one myth about
AOP is to be good only for logging and tracing.
AOP is indeed useful for tracing (but we disagree
with the “only”). We want to show how AO allows
for a better and spontaneous controlling of tracing
that is more dedicated to the problem to solve, i.e.,
without overwhelming and useless trace output.
Thanks to load-time weaving in Eclipse, tracing can
be done in a few minutes: Add the aspectjrt JAR-
file to the classpath, provide an aop.xml file
specifying relevant packages, use –javaagent in
Eclipse, and implement the following advice:
@Before("execution(* *.*(..,String,..))")
public void myTrace(final JoinPoint jp) {
 Object[] args = jp.getArgs();
 for (Object a : args) {
 if (a instanceof String && arg!=null
 && ((String)a).contains("jdbc:solid:"))
 System.out.println("* In: " +

 jp.getSignature() + "->" + a.toString());
} } }
This @Before advice intercepts any execution of any
method (execution(* *.*)) with a String para-
meter ((..,String,..)) and checks whether the
string contains a solidDB URL. If it does, it prints
out that URL. The parameter JoinPoint jp gives
access to context information about the join point.
For instance, jp.getSignature() can be used to
print out the intercepted method signature, and
jp.getArgs() returns the passed parameter values.

These simple changes are done in a few minutes
and lead to the following clear output:
* In: void org.apache.openjpa.lib.conf.Va
lue setString(String)
-> DriverClassName=solid.jdbc.SolidDriver
,Url=jdbc:solid://h1:1315,h2:1315/usr/pw,
defaultAutoCommit=false,initialSize=35
...

* In: Options org.apache.openjpa.lib.conf
.Configurations.parseProperties(String)
-> DriverClassName=solid.jdbc.SolidDriver
,Url=jdbc:solid://h1:1315,h2:1315/usr/pw,
defaultAutoCommit=false,initialSize=35
* In: boolean solid.jdbc.SolidDriver.acce
ptsURL(String)
-> jdbc:solid://h1:1315
* In: Connection solid.jdbc.SolidDriver.c
onnect(String,Properties)
-> jdbc:solid://h1:1315
...
The bold parts are important: They show the
transition from a good to a bad URL. Hence, the
problem lies in the method Configurations.
parseProperties(): The URL is correct before
execution, but truncated afterwards. To detect this
problem, AO tracing is much more effective than
debugging. Thanks to a problem-specific tracing, the
reason for problems can be detected immediately.

Since the problematic method is now known, we
can fix the problem in a second step. Looking at the
OpenJPA code, we see what goes wrong in method
parseProperties. As already explained in 3.2, the
code separates the units by using a comma. Then, if
no “=” is found in a unit, the unit, i.e., the second
part of the dual-node URL, is ignored.

An aspect can correct the URL. Having a
pointcut trapped the execution of this
parseProperties method, an @Around advice can
implement an instead-of behavior: Instead of
executing the original method, we use our
“corrected” implementation without touching the
original source code directly:
@Around("execution(public static Options
 org.apache.openjpa.lib.conf.
 Configurations.parseProperties(String))
 && args(s)")
public Object parseProperties(String s){
 Options opts;
 parse properties string s correctly and
 set the return value opts;
 return opts;
}

4.3 Missing Connection Property

Similarly, we can add the solid_tf_level
connection property by modifying the JDBC driver:
The following advice intercepts the execution of
SolidDriver.connect(...) and adds a solid_tf
_level property to the Properties parameter:
@Before("execution(* solid.jdbc.
 SolidDriver.connect(..,String,..,
 Properties,..)) && args(url, pr)")
public void addSolidTfLevel
 (String url, Properties pr) {
 if (url != null && url.contains("solid"))
pr.setProperty("solid_tf_level","1");

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

36

}
(..,String,..,Properties,..) specifies the
parameters of interest. The args clause binds
variables url and pr to them. The variable url is
used to determine the DBS platform and pr to set
the solid_tf_level property. Again, the JDBC
driver, an external JAR file, is modified.

4.4 Further Problems

We applied AspectJ in a similar manner to solve
other deficits of OpenJPA. We are not going into
technical details, because the techniques are similar.

One problem occurred with class loading in
OpenJPA. In some use cases, we ran into out-of-
memory exceptions sporadically. Our analysis
showed that thousands of class loader objects are
created by OpenJPA. Unfortunately, the garbage
collector places those objects in the system space,
which means that the objects are destroyed too
seldom. Using AspectJ, we detected the places
where the class loaders are created and where they
are used. The result was surprising: OpenJPA
effectively uses only one of those class loaders. To
solve the useless creation of class loaders, we
defined an aspect that intercepts any constructor call.
Instead of calling the original constructor, an around
advice creates a class loader object only for the first
time. Any further call returns that singleton.

Another memory problem is concerned with
OpenJPA’s query compilation cache. This cache is
indispensable for achieving an acceptable perfor-
mance since it relieves OpenJPA from analyzing and
transforming JPQL queries again and again. Its size
is configurable. If the cache is exceeded, an old
query is dropped, however, this query is still kept in
a second hidden cache with a fixed upper size of
1000. Since we have several database projects, each
obtaining such a cache with hundreds of old queries,
we again ran out of memory. An aspect helped us to
reduce the second cache to 0.

Furthermore, we also had some performance
problems due to wrong connection pool settings. An
aspect helped us to monitor whenever a JDBC
connection is requested and released; the difference
determines the number of currently active
connections. Moreover, the aspect detects whenever
a connection is requested directly via JDBC, thus
bypassing OpenJPA; there is a danger of not having
closed the connection. This monitoring is done for
all databases in the system. Hence, we get detailed
statistics of connection usage.

5 LESSONS LEARNED

5.1 General Lessons

The first lesson we learned is not really an
experience, but rather a confirmation of our
approach: The recommendation is to start doing as
early as possible, not spending too much time on
product selection. We decided to quickly choose for
a Hibernate substitute because the real problems are
anyway hard to detect even with an extensive
evaluation of products. The problems are occurring
when starting the doing – and they will certainly
arise. In our case, we checked the most important
issues carefully and early. However, the severe
problems came up quite late during the migration. It
is nearly impossible, in our opinion, to check all
problems for several candidates.

Anyway, there is no need to worry about
potential or suddenly arising problems. Even if hard
problems occur unexpectedly, AO is a very powerful
mechanism to overcome them. Our case study is the
best example.

The wrapping approach, i.e., implementing the
“old” Hibernate interface on top of OpenJPA turned
out to be very helpful and to reduce the migration
time drastically. But there is a difference between
syntactic and semantic success. It is quite easy to get
the migration compile-clean. The harder problems
occur at runtime during the testing, e.g., the different
behavior in Hibernate and OpenJPA when storing
new objects with an existing key. And performance
is not portable anyway.

Especially for achieving the same semantic
behavior, testing turned out to be important. Without
a huge test suite with several thousands of JUnit test
cases, the migration would presumably have failed.
Thanks to the test suite, we could immediately check
the correct behavior after migration. We can
remember only very few errors that came up after
finishing and testing the migration.

5.2 Convincing Project Management

Unfortunately, our project managers are not keen on
using AO or having AspectJ in their projects: There
is always the fear of having uncontrollable behavior
if several developers use AOP. Our experiences go
along with a recent study of AO adoption (Duck,
2006) within non-academic projects, which indicates
that the majority of the interviewed developers are
“early adopters” (according to (Joosen et al., 2006))
of this technology. The current stage of adoption is
that occasionally developers learn the AO concepts
and try to apply them in non-critical phases of
development projects, e.g., for architectural checks

USING ASPECT-ORIENTATION FOR SOFTWARE MIGRATION

37

or performance monitoring, as in (Wiese and
Meunier, 2008). Very rarely the project management
deliberately decides to use AO technologies in a
project. This keeps the obstinate myths living: “AO
is good only for logging/tracing” (Laddad, 2006).

Well, we were able to convince our project
management of using our AspectJ-based solution.
Since we represented a focused team, we did not use
the approach of (Kiczales, 2005) and other authors
who describe several stages for the adoption of AOP
in order to guide single developers getting familiar
with AO. This approach suits well, if a critical mass
of developers can be convinced, which then in turn
influence decisions of their management. We
acknowledge the practical benefit of this approach,
but it did not apply for our case. Even the approach
we propose in (Wiese et al., 2007) could not be
applied, because the advantages of AO we show are
not relevant in this project.

Rather, we faced the lucky situation that we had
to tackle critical problems which imposes a lot of
pressure: The migration must have been successful
in a short time, switching to yet another candidate
than OpenJPA was not feasible because it could
pose again uncertainties. Moreover, there was a lack
of adequate alternative solutions to overcome the
explained problems. The only alternative seemed to
patch source code: This implies that the sources are
available and that building the 3rd party library is
feasible. This could go for a single version of
OpenJPA, but did not work with the solidDB JDBC
driver. Hence, our project management was slightly
forced to accept AO.

5.3 Build Infrastructure

However, AspectJ in its “originally intended” form
is still unacceptable, because the infrastructure has
to change significantly: As a new language, AspectJ
requires a special compiler, for instance given by the
Eclipse AJDT plug-in. Nonetheless, we have used
AspectJ, but it is important that we have used
aspects that are implemented as ordinary Java
classes. All the AspectJ concepts such as aspects,
pointcuts and advices are specified as annotations.
Instead of using load-time weaving (cf. Section 4),
which caused some problems with OSGi class
loading, we preferred an explicit instrumentation.
The aspect classes are compiled with the Java
compiler and then applied to existing JAR files in a
separate step, particularly to 3rd party JAR files such
as OpenJPA or JDBC drivers. Both steps require the
predefined iajc taskdef to invoke the AspectJ
compiler in Ant build scripts. The result is a new
JAR, e.g., myopenjpa.jar, which must be used
instead of the original one. Please note building the
new JAR file requires only a single build file and a

single additional build step. As a consequence, no
source code and no knowledge about the build
process is required for modifications to a 3rd party
tool’s JAR file. Integration into an external build
process, for example by using a tool like Cruise
Control with daily builds and overnight test reports,
does not pose any problems and can be done by ex-
changing the JAR files. And finally, scaling prob-
lems with AspectJ for large projects such as long
compile-times, as reported by (Wiese and Meunier,
2008), are avoided.

5.4 Lessons about AOP

In general, we did not encounter any problems using
AOP. The pointcut language of AspectJ is not too
complex, and pointcuts are easy to define and use.
Moreover, in contrast to (Ostermann et al., 2005) we
did not feel that the power of pointcut languages is
too low.

But we had some technical problems with the
iajc AspectJ command line compiler, which pro-
duces some strange error messages being not helpful
to detect the reason. Using AspectJ in Eclipse, even
with load-time weaving, did not show those errors.

6 CONCLUSIONS

This paper reports on problems that occurred in a
concrete migration scenario in an industrial tele-
communication project where the object-relational
persistence framework Hibernate has been replaced
with OpenJPA due to licensing and patent problems.

At a first glance, the Hibernate replacement has
appeared as a straightforward task, because there are
only syntactic differences in the APIs and in the
mapping specifications of both frameworks. In fact,
putting the Hibernate interface on top of OpenJPA
reduced code changes to simply exchanging
packages. This kept the migration effort low.
However, harder problems occurred and endangered
the success of the migration. For example, OpenJPA
does not offer Hibernate’s native key generation
strategy and OpenJPA prevents a failover between
two solidDB database servers. This functionality is
important for the telecommunication middleware,
and hence, solutions are indispensable!
For these harder problems, we have presented the
successful adoption of aspect-orientation (AO),
especially AO programming with AspectJ (Laddad,
2008). Particularly, with this approach we bridged
the gap of functionality and handled deficits of
internal functionality. The key to success was not
only AspectJ, but the special capability to apply
aspects to external JAR files the source code of

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

38

which is unavailable. By this technique, we were
able to correct the behavior of OpenJPA and JDBC
drivers. Aspects can change the behavior, however,
leave the source code and original JARs intact. Thus,
the essential and novel value of our AO approach is a
method to address the challenges of integrating 3rd
party software, keeping the original software
untouched and being able to manage the concerns of
migration in a maintainable manner.

It is AspectJ that let the migration succeed with
simple solutions in short time. Indeed, AspectJ is a
powerful language and we are simply using this
power to easily solve critical problems quickly.
Moreover, there is a lack of adequate alternative
solutions. The only alternative seems to patch the
source code explicitly – if available at all. The effort
for changing the source code, adding data exchange
between unrelated classes, and building the JAR
leads to more complexity, error proneness, and effort
than our AO-based approach. Moreover, we are
unsure whether the problems could be solved with
conventional techniques since the source code of
JDBC drivers is usually not available.

Another advantage becomes obvious. Although
we exchanged the solidDB JDBC driver twice and
switched from OpenJPA version 0.9.7 to 1.1.0, we
did not touch our aspects, they are stable and still
work correctly with the newer versions.

In future work, we want to apply AO for other
purposes in the project. For example, we currently
use a model-driven approach to generate code from
XML specifications, i.e., several Java classes are
generated by XSL-T transformations. We want to
investigate whether AspectJ could be an alternative.
We hope that such a solution could be easier to use,
better understandable, and evolvable.

REFERENCES

Aksit, M., 2003. Proc. of 2nd Int. Conf. on Aspect-
Oriented Software Development. AOSD 2003

Burke, B., 2005. Implementing Middleware Using AOP. In
Proc. 4th Conf. on Aspect-Oriented Software
Development. (AOSD), Chicago 2005

Coady, Y., Kiczales, G., 2003. Back to the Future: A
Retrospective Study of Aspect Evolution in Operating
System Code. In (Aksit, 2003)

Chapman, M., Vasseur, A., Kniesel, G., 2006. Proc. Of
Industry Track of 3rd Conf. on Aspect-Oriented
Software Development (AOSD), Bonn 2006

Duck, A., 2006. Implementation of AOP in Non-Academic
Projects. In (Chapman, Vasseur and Kniesel, 2006)

Elrad, T., Filman, R., Bader, A., 2001. Theme Section on
Aspect-Oriented Programming. CACM 44(10), 2001

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995.

Design Patterns - Elements of Reusable Object-Oriented
Software. Addison-Wesley 1995

Hannemann, J., Kiczales, G., 2002. Design Pattern
Implementation in Java and AspectJ. In Proc. of the
17th Conf. on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA
2002

Hohenstein U., 2006. Using Aspect-Orientation to
Manage Database Statistics. In: (Chapman, Vasseur
and Kniesel, 2006)

Joosen, W., Sanen, F., Truyen, E., 2006. Dissemination of
AOSD expertise support documentation. AOSD-
Europe Deliverable No.: AOSD-Europe-KUL-8

Kästner, C., Apel, S., Batory, D., 2007. A Case Study
Implementing Features Using AspectJ. In Proc. Int.
Software Product Line Conference (SPLC), Kyoto
2007, IEEE Computer Society

Kienzle, J., Gélineau, S., 2006. AO Challenge –
Implementing the ACID Properties for Transactional
Attributes. In Proc of 5th Int. Conf on Aspect-Oriented
Software Development. Bonn (Germany) 2006

Kiczales, G., 2005. Adopting AOP. In Proc. 4th Conf. on
Aspect-Oriented Software Development; AOSD 2005,
Chicago, ACM Press

Laddad, R., 2006. AOP@Work: Myths about AOP.
http://www-128.ibm.com/developerworks/java/library
/j-aopwork15

Laddad, R., 2008. AspectJ in Action: Practical Aspect-
Oriented Programming (2nd ed.), Manning,
Greenwich (2008)

Murphy, G., Walker, A., Robillard, M., 2001. Separating
Features in Source Code: An Exploratory Study. In
Proc. of 23rd Int. Conf. on Software Engineering 2001

Ostermann, K., Mezini, M., Bockisch, C., 2005.
Expressive Pointcuts for Increased Modularity. In
19th European Conf. on Object-Oriented Program-
ming (ECOOP05), Malaga (Spain) 2005, LNCS 3586

Rashid, A., 2004. Aspect-Oriented Database Systems.
Springer Berlin Heidelberg 2004

Rashid, A., Chitchyan, R., 2003. Persistence as an Aspect.
In (Aksit, 2003)

Soares, S., Borba, P, 2005. Implementing Modular and
Reusable Aspect-Oriented Concurrency Control with
AspectJ. In WASP05, Uberländia, Brazil

Strunk, W., 2007. The Symphonia Product-Line. Java and
Object-Oriented (JAOO) Conference, 2007

Vines, D., Sutter, K., 2007. Migrating legacy Hibernate
applications to OpenJPA and EJB 3.0. http:
//www.ibm.com/developerworks/websphere/techjourn
al/0708_vines/0708_vines.html

Wiese, D., Hohenstein, U., Meunier, R., 2007. How to
Convince Industry of Aspect-Orientation? Industry
Track of 6th Int. Conf. on Aspect-Oriented Software
Development, AOSD 2007, Vancouver

Wiese, D., Meunier, R., 2008. Large Scale Application of
AOP in the Healthcare Domain: A Case Study. In
Industry Track of 7th Int. Conf. on Aspect-Oriented
Software Development (AOSD), Brussels 2008

Zhang, C., Jacobsen, H.-A., 2003. Quantifying Aspects in
Middleware Platforms. In (Aksit, 2003).

USING ASPECT-ORIENTATION FOR SOFTWARE MIGRATION

39

