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Abstract: Despite its promises, the lack of support for consistent coevolution of models with theirs meta-models and 
instances prevents a broader adoption of MDE. This article presents a coevolution support for reflective 
meta-models and their instances tightly integrated into an execution platform. The platform allows 
stakeholders, developers and final users to define, update and run models and theirs instances concurrently. 
Design changes are reflected immediately in the running applications, hosted by the platform. Both 
instances and models are stored in a shared multi-version database that brings persistency, consistency and 
traceability support. A web-based implementation of the platform validates the approach and sets the 
foundations for a collaborative integrated development environment that evolves continuously.  

1 INTRODUCTION 

Model Driven Engineering (MDE) considers models 
as first-class citizens in the development process. 
However, consistent evolution, and thus 
coevolution, of target systems, their models and their 
meta-models is both a necessity and a challenge.  

The last decade has seen a rapid expansion of 
MDE techniques and applications, partly due to 
hopes of knowledge capitalization. While software 
development process is a “multilevel, multiloop 
feedback system” involving a variety of actors 
(Lehman, 1998), the main responsibility still relays 
on the developer’s shoulders. Although the 
stakeholder has the best understanding of the 
functional requirements, he is still kept away from 
the whole development process. 

In order to reduce the effect of software aging 
(Grubb and Takang, 2005), and the associated 
maintenance cost (about 50% to 75% of the global 
development cost, McKee, 1980), the stakeholder 
must be actively involved in the software process 
(Ambler and Jeffries, 2002). As a consequence, in a 
MDE context, any model evolution should be 
immediately reflected in the system to assert its 
validity.  To support such requirements, ad hoc tools 
must be provided to merge the development and 
execution phases. (Agrawal et al., 2009) 
acknowledges the need for tools that would give 

greater power to stakeholder while empowering the 
developer. 

The coevolution of models with their own 
models (called meta-models) and with their 
instances remains a critical issue. (Van Deursen et 
al., 2007) points the following paradox: while MDE 
approaches have been designed to handle continuous 
evolution there’s today little support for model and 
meta-model coevolution. This paradox also applies 
to coevolution of models and their instances - i.e. the 
systems represented by these models. Today models 
are essentially static artifacts: they usually do not 
evolve easily after the initial development phase. 
Once a system is deployed, any modification made 
to the structure of its model cannot be propagated to 
the running system without going through another 
full development cycle.  

This article presents a shared execution 
environment built upon a collaborative modeling 
support that intends to answer the general problem 
of coevolution of models and their instances. The 
system is decomposed into fine-grain elements 
common to the various abstraction levels. They are 
used to express both models and their instances, 
including application data and programs.  

The article focuses on data-centered applications 
using relational database to represent models and 
meta-models stored as user data and metadata.  

The next section describes a typical evolution 
scenario spanning all abstraction layers; section 3 

143
Dodinet G., Zam M. and Jomier G. (2010).
COEVOLUTIVE META-EXECUTION SUPPORT - Towards a Design and Execution Continuum.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 143-150
DOI: 10.5220/0002930901430150
Copyright c© SciTePress



presents related work; section 4 presents the 
proposed solution and section 5 describes an 
implementation. Section 6 concludes and opens 
perspectives.  

2 COEVOLUTION SCENARIO 

As requirements change, modifications can occur at 
any abstraction level and must be propagated 
consistently. The simple, yet representative, scenario 
below illustrates such coevolution.  
 

 
Figure 1: Employee class, version 1. 

Figure 1 shows the initial state of the scenario 
introducing the Employee class and an instance, e. 
Employee is also an instance of the Class class and 
defines the hello instance method. A call to hello 
prints the class structure (via a call to the show 
method defined in the Class class), followed by the 
attribute values of e. To simplify, the Attribute class 
does not appear. UML 2.x class diagram notation is 
used and the pseudo-code is inspired by Python 
syntax. 

M0, M1 and M2 represent abstraction layers as 
defined by the OMG modeling stack (OMG, 2001). 
M2 is the meta-model layer. M1 is the model layer. 
Any model element defined in M1 is an instance of a 
meta-element defined in M2. M0 is the system layer; 
every system element in M0 is an instance of a 
model element defined in M1. Layers M3 (meta-
meta-model level) and M2 are merged. 

The goal is to be able to modify all three layers 
dynamically, while the system is still running, and 
take the modifications into account immediately 
without restarting or redeploying the system.  

Figure 2 shows the result of important 
evolutions: the introduction of the single inheritance 
concept used by the Employee class, while its 
instance is subject to an independent update (salary 
raise). This is achieved by executing the following 
operations:   
– Add a reflexive association, super, to the Class 

class (M2 layer) 
– Accordingly, update the show method to list the 

inherited attributes (M2 layer) 
– Create the Person class generalizing the 

Employee class (M1 layer) 
– Move the nickname attribute from Employee to 

Person (M1 layer) 
– Update the value of e.salary (M0 layer) 
 

 
Figure 2: Employee class, version 2. 

The result of the execution of e.hello() is shown on 
the right hand of the M0 layer, Figure 2. 

This simple example demonstrates that 
modifications can affect all the abstraction layers of 
a system. It shows how flexible a coevolutive system 
needs to be. More complex scenarios may require a 
developer decision regarding whether and how to 
propagate the changes through the abstraction layers.  

Such a scenario states the requirement of model 
executability. It underlines the necessity of 
coexistence of target data with models and meta-
models, and the need for merging design-time and 
runtime.  

3 RELATED WORK 

This section presents existing work regarding three 
main areas related to the coevolutive support. 
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3.1 Model Executability 

Although it is not a recent research trend, model and 
meta-model executability is getting more and more 
attention (Mellor and Balcer, 2002). (Breton and 
Bezivin, 2001) attempts to identify the main 
characteristics of executable meta-models, and 
underlines the need of an additional layer to specify 
the operational semantics of a model. 

Magritte (Renggli et al., 2007) is a reflexive 
meta-description framework refining SmallTalk 
reflexive meta-model. It allows describing the 
business classes of an application, as well as their 
respective attributes, operations and constraints. It 
abstracts the Type-Object design pattern (Johnson 
and Wolf, 1998) and blurs the boundary between 
component and property concepts. Magritte 
primarily targets web applications and dynamically 
interprets the metadata to generate the user interface. 
(Ducasse et al., 2009) considers meta-model 
executability and expands the applicability of 
Magritte’s meta-description to embrace system 
classes. 

While promising, these approaches based on 
source code, are developer oriented. Other 
approaches include the use of UML profiles and 
static model transformations (Hemel et al., 2008) to 
generate fully functional applications or prototypes. 
However, the approaches presented here do not 
cover data and model consistent coevolution. 

3.2 Schema and Data Management  

Data consistency is a property guaranteed by any 
DBMS, stating that database changes, called 
transactions, are processed reliably. However, 
traditional database schema evolution remains 
complex and heavy and do not match with the fine 
grained and frequent rhythm of MDE modeling 
evolutions. (Dinu and Nadkarni, 2007) propose a 
more flexible modeling technique called the Entity-
Attribute-Value (EAV) model. EAV allows defining 
and storing application data in a relational database 
without knowing the target schema beforehand. 
Application data are stored in three tables: the Entity 
table holds the object identities; the Attribute table 
holds the attribute definitions; finally the Value table 
holds the actual values for a pair Entity/Attribute.  

Using this approach, a model modification does 
not require the update of the underlying database 
schema. The model can then easily be adapted (as 
far as only data are concerned). EAV is often used 
when data structure must change frequently or is not 
known in advance. 

Although the EAV approach allows modifying 
easily the virtual target schema, the absence of even 

basic model constraints is a major drawback. 
Therefore, EAV with Class and Relationships model 
(EAV/CR, Nadkarni et al., 1999) has been 
introduced. It refines the EAV approach with 
schema concepts like class and relationship. 
Specific tables are used to store metadata. This 
allows refining the schema dynamically. However 
this solution is not reflexive. As a consequence, 
metadata cannot evolve without updating the 
relational structure. 

It is also important to note that those approaches 
(EAV and EAV/CR) do not include operational 
semantics: they only deal with persistent data 
structure, while the behavior of stored objects is not 
defined. 

3.3 Software Evolution Management 

Source Configuration Management (SCM) tools, 
such as CVS, are mainly used to trace software 
evolutions. They are well suited for general text-
based artifacts (e.g. java or xml files). For instance 
they can be used, in conjunction with bug trackers, 
to trace evolution and get a better understanding of 
the past changes (D’Ambros et al., 2008).  

From a MDE perspective, coevolution refers to 
the need for the models to evolve with their meta-
models. However, as files size is usually much 
bigger than the size of model elements, SCM are not 
well adapted to the fine grain management of the 
evolution of strong typed model elements and 
change impact.  

(Wacshmuth, 2007) proposes a classification of 
meta-models based on semantics preservation 
properties. Models are incrementally adapted 
through a serie of changes represented by high-level 
transformations. Those   transformations are 
executed manually, making the successive evolution 
steps explicit. 

 (Hôßler et al., 2005) presents a set of usual 
transformations used at various abstraction levels to 
adapt a meta-model and to migrate its models 
automatically. Meta-models are supposed to be 
instances of a reference meta-meta-model, i.e. the 
M3 layer in the OMG modeling stack. Every model 
element is connected to its previous version using a 
predecessor relationship.  

None of these solutions consider model 
executability nor target application data.  

The Karma model (Zamfiroiu et Jomier, 1999) 
integrates typical software configuration features 
(such as check-in, tags, branches, etc.) into relational 
databases. Karma is based on a version model 
independent of the data model, called DBV, that was 
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first introduced in (Cellary and Jomier, 1990). Any 
data modification is automatically traced and any 
previous state of the system can be restored 
consistently. 

The solutions presented in this section only 
address one particular facet of the actual problem. In 
order to handle evolution at any abstraction level 
throughout the whole software lifecycle, all three 
major aspects should be addressed conjointly in a 
consistent and generic way: model executability, 
schema and data management, and finally consistent 
software evolution management.  

4 COEVOLUTION SUPPORT  

This section introduces a design and execution 
platform integrating a coevolution support. All 
abstraction layers coexist within the runtime 
environment. Every system element is decomposed 
into elementary constructs, embracing the EAV 
strategy. The coevolution of those elements is 
enabled by the Karma model.  

We successively cover the coevolution 
underlying model, the persistency management and 
the traceability of evolutions, designed to fulfill the 
evolution requirements introduced in section 2.  

4.1 Coevolution Model 

In order to understand how to build the integrated 
coevolution model, a semantics-free descriptive 
layer (atomic level) is first introduced. Above it 
stays a logically typed structural semantics level, 
called molecular. Finally, an operational layer is 
added dynamically.  

4.1.1 Atomic and Molecular Layers 

The descriptive layer sets the foundations of the 
coevolutive execution model. It provides the 
building blocks of the system. By convention, any 
element of the system is described using undividable 
units, called Atoms. Taken separately atoms do not 
have additional meaning. The business semantics 
will only emerge from their values and their 
composition. We call this model “atomic model” by 
analogy with the ancient Greek atomic model 
(Figure 3).  
 
 

 
Figure 3: Atomic model. 

An Atom represents (at most) one element of the 
system and holds its identity. It always references a 
meta Atom, which holds the identity of the element 
describing the structure and behavior of its 
associated element, even if at this stage we don’t 
know how to interpret the structure. An Atom has a 
collection of Slots. A Slot represents a primitive 
valued property (string, integer, etc…). The Spin is a 
particular type of Slot. Its value is a reference to an 
Atom. 

Pursuing the atomic metaphor, Atoms can be 
composed arbitrarily to build more complex 
constructs, called Molecules. An Instance is a 
particular molecule that represents an object in the 
Class-Object paradigm. 

In order to be correctly interpreted and validated 
(structurally and behaviorally), molecules must be 
typed.  

Let us consider the Figure 4 below, representing 
a simple view on the M2 abstraction layer – where 
Class and Attribute are classes. Could they be 
represented using atoms and molecules? 

 

 
Figure 4: M2 layer – Class and Attribute classes. 

An atomic and molecular solution is depicted in 
Figure 5 below. The Class class is an instance of 
itself, and the attributes of the Attribute class are 
instances of Attribute. 

The « instance of » relationship is concretized in 
the atomic model by a “meta” relation between the 
Atom representing a given object and the Atom 
holding the identity of its class.  

Finally, the Class and Attribute classes are 
interpreted as typed molecules aggregating 
necessary atoms. The aggregation between the Class 
class and the Attribute class has no representation in 
the Figure 5, for sake of readability.  
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Figure 5: Atomic and molecular representations of the 
Class and Attribute classes. 

4.1.2 Operational Semantics Layer 

In order to make the model executable the Class and 
Attribute classes should be equipped with 
operational semantics. The operational semantics 
should express how a particular atomic assemblage 
must be interpreted and transformed into a 
programmatic molecular construct, e.g. how to 
reconstruct the Figure 4 from Figure 5.  

Thus, the meta relation is equipped with an 
instantiation semantics defined by the simple rules 
below (Table 1). T is the transformation operation 
that creates a molecule from an atom. A is the set of 
atoms present in the system. instanceof is an 
operator defined at the molecular level, returning 
true if the second operand is a representation of the 
first operand in the upper abstraction level. 
The operational semantics must then assert that the 
above rules are always respected. These constraints 
can be enforced when an instance of the Molecule 
class is created (see Figure 3), or later through 
explicit validation.  

Although an additional layer is needed to specify 
this operational semantics, it can be added 
afterwards. Thus, meta-modeling activity can be 
decomposed into two distinct phases: (i) assemble 
the atoms, giving them a form that reflects the 
foreseen semantics, (ii) give the assemblages an 
explicit semantics and behavior through the 
operational layer that can be refined later 
dynamically.  

 

Table 1: Instantiation rules. 

(1) ∀ a2 ∈  A ∃ ! a1 ∈  A : a2.meta=a1

(2) ∀ a1, a2 ∈  A 
  a2.type='Atom' and  
  a2.meta=a1 and  
  a1.meta=Class 

   ⇔ T(a2) instanceof T(a1) 

(3) ∀ a1, a2, a3, a4 ∈  A 
  T(a2) instanceof T(a1) and  
  T(a3) instanceof T(a4) and 
  a1.meta=Class and  
  a4.meta=Attribute and 
  a3.owner=a2 and 
  a3.type='Slot'  

   ⇔ T(a2)[a4.name] = a3.value 
 
If atomic structural requirements change, the 
operational semantics must be revised as well to 
consider the structural modifications. This is 
possible because the definition of the operational 
layer is dynamic. Both operational semantics 
specification and specific behavior implementation 
are represented as model operations and as such 
decomposed into Atoms as well.  

Also, since all abstraction layers have an atomic 
representation, they all coexist. So the system as a 
whole becomes causally connected, i.e. any change 
made to the self-representation of the system is 
immediately reflected in its actual state and 
behaviour, as defined in (Maes, 1987). 

4.2 Persistency and Evolution 

We are finally able to consider the persistency of 
atoms and molecules, and how their coevolution is 
supported. 

As every element of the system is ultimately 
represented as an atom, it is possible to use a 
uniform solution to store the meta-meta-model, all 
meta-models, all models, and all terminal instances 
as mere data in a relational database. 

For instance, atoms, as well as slots and spins (as 
described in Figure 3) can be stored in a unique 
table. In any case, this database has a fixed schema. 
This remarkable property eliminates common 
problems due to schema evolution and data 
migration. As a consequence, restarting and 
redeploying the system is no longer mandatory.  

Moreover, querying and manipulating data and 
models become uniform and can be expressed at the 
atomic level. Thus, specific semantics must be used 
in order to interpret the atoms. For instance, since 
there is no Employee table anymore, the evaluation 
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of a query like select * from Employee must be 
adapted. 

Therefore, the system can run continuously 
while still evolving. 

4.3 Tracing the Evolution 

The database is extended with a traceability 
mechanism, based on the Karma and DBV models 
(Section 3.3). Thus not only the current state but also 
all the previous states of the database are available in 
conjunction with the user operation traces. The 
database states – successive as well as alternative – 
are organized as a global version tree (Cellary and 
Jomier, 2000). The database is therefore multi-
version. Each version of the database, called global 
version, can be considered as a consistent mono-
version database and contains at most one version of 
each atom. In the Karma traceability model, any 
elementary evolution creates a new system state 
automatically, derived from the previous state. Each 
local version of a given Atom is marked with the 
global version identifier where the evolution occurs. 
Therefore, it becomes easy to extract any previous 
state using a version identifier.  

It is also possible to derive explicitly an 
alternative branch from a given global version. 
Finally, any given previous state of the database can 
be recovered instantaneously by selecting the 
corresponding version identifier in the version tree. 

Molecules are always assembled from 
appropriate Atom versions in a given global version 
of the database. A system state is based on a given 
database version. Thus, its atoms and molecules 
remain consistent. Since models are composed of 
Molecules as well and considered as mere data (and 
are treated as such), they are also intrinsically 
versioned. That means that all the abstraction layers 
– M0, M1, and M2 – benefit in the same way from 
the multi-version properties.  

Some radical evolutions like splitting or merging 
elements can alter the molecular identity. Even in 
this case, traces and versions help detecting and 
avoiding inconsistencies.  

Finally, not only the system can run 
continuously while evolving, but its entire history is 
recorded and the evolution can follow different 
branches. A continuum of design and execution 
lifecycle phases is thus achieved as long as every 
resource is in fine equipped with an atomic 
representation. Then the version substitution 
principle can be applied and the system can improve 
continuously. 

 
 

5 IMPLEMENTATION  

5.1 General Architecture  

The atomic model presented above has been 
implemented as an integrated modeling platform, 
based on JavaEE. The user interface paradigm 
follows the single-page web application style, as 
defined in (Mesbah and van Deursen, 2007). The 
platform allows the stakeholder and the developer to 
create models that can be dynamically instantiated. 
Their meta-models can also be refined dynamically. 
Any modification is propagated immediately all the 
way to target data. 

The meta-model executability is achieved 
through a bootstrap phase during which the system 
operational semantics is dynamically injected, using 
a script. Two different implementations of the 
bootstrap script have been written (in Javascript and 
in Python) and can be run concurrently on the server 
side (JSR-223).  

 

 
Figure 6: Implementation: architecture overview. 

Significant modifications of the meta-model 
might need to be reflected in the bootstrap script, so 
the script must remain modifiable dynamically.  

Figure 6 sketches the environment architecture 
and interactions. Let us suppose the user wants to 
execute a simple script that instantiates the 
Employee class. Users interact with the application 
using standard internet browsers and specify the 
operation to be executed remotely (as a script). First, 
the bootstrap script is evaluated to create the 
required execution context. Then, the user action is 
executed on the server side. This is necessary in 
order to transform a Molecule into a python or 
javascript object through a SemanticsInterpreter 
component and to address it in a way that makes 
functional sense. SemanticsInterpreter delegates the 
Molecule construction to the InstanceManager 
component. Therefore, from a developer 
perspective, the Molecule structures are hidden 
behind scripted proxies, as illustrated in section 5.2.   

Every scripting object that has an underlying 
molecular description (section 4.1.1), wraps its 
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corresponding Molecule (Java) instance; any read or 
write operation applied on such a scripting object is 
redirected to its Java counterpart. This also allows 
adding strong typing to usually loose typed 
languages (i.e. Javascript or Python).  

The Karma model has been implemented at two 
different levels.  

– In the database: additional tables have been 
created to store the global versions and the 
branches; the Atom table has been changed to a 
view in order to generate Atom versions 
transparently. Finally a set of stored procedures 
has been introduced to navigate through the 
timeline and the global version tree. 

– In the application framework: an API has been 
added at the Java side and in the bootstrap script 
to enable global version selection. 

Application specific behavior, as well as meta-
model behavior, is implemented through class 
operations, which are instances of the Operation 
class. Thus, operations are also considered as mere 
data. Their body is stored in a Text column. Their 
dependencies can then be detected both statically, by 
parsing their body, and dynamically, by 
automatically collecting their execution traces, 
explicitly managed by the Karma model.  

5.2 Example 

The solution implemented on top of the proposed 
model covers the scenario presented in Section 2, as 
illustrated in Figure 7 and Figure 8 – those are 
screenshots of a scripting console embedded in the 
actual platform.  
 

 
Figure 7: Employee instance creation. 

First the Employee class and its instance called 
popeye are created and made persistent. At this 
stage, the hello method is called on the instance 
popeye. The result is shown on Figure 7. Then the 
Person class is created and the Employee class is 
redefined as a specialization of Person (by setting its 
“super” attribute). Next, the nickname attribute is 
moved under the Person class and the show method 
is dynamically updated. Finally the instance is 

loaded again and its salary is raised. Figure 8 shows 
the result of calling again the hello method on the 
Popeye instance.  
 

 
Figure 8: M0-M2 layers coevolution. 

Meta-model evolution is illustrated Figure 9, below 
through the update of the show method of the Class 
class. This evolution doesn’t change how Atom 
constructs are interpreted and thus doesn’t require 
reconsidering the bootstrap phase (although the 
introduction of the inheritance concept does). 
 

 
Figure 9: Show operation. 

6 CONCLUSIONS 

This article introduces a coevolution support for 
reflective meta-models and their instances, tightly 
integrated into an MDE execution platform. Any 
system element is decomposed into undividable 
units, called atoms, allowing a homogeneous 
representation of any element, regardless its 
abstraction level.  

To illustrate our approach we chose to reproduce 
the Class-Object paradigm. While the Class-Object 
approaches mainly stand at the conceptual level, 
Atoms and Molecules constructs are introduced at a 
lower abstraction level to allow refining (meta-
)models without having to alter the underlying 
storage structure.  

Atomic representation of both models and their 
instances are stored in a shared multi-version 
database. Since models and instances coexist as 
high-level atom constructs, their coevolution is 
managed in a consistent way, and model evolutions 
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are instantly reflected into their instances, making 
the whole system causally connected.  

The prototype we implemented allows 
stakeholders, developers and final users to define, 
update and run models and theirs instances 
concurrently.  It has been experimented in a multi 
criteria decision aid (MCDA) platform called 
DECISIONDECK. Practitioners design formal MCDA 
methods using basic user interface to edit and 
visualize input data. Although more formal 
evaluation is needed the preliminary results are 
encouraging.   

However, our solution implies a development 
paradigm shift, and as such requires appropriate 
tools. We need now to focus on the development 
environment in order to support the usual industrial 
constraints of quality and productivity. These 
enhancements will be implemented in the next 
version of the system mainly as molecular constructs 
and will become a part of its karma.  
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