
COEVOLUTIVE META-EXECUTION SUPPORT
Towards a Design and Execution Continuum

Gilles Dodinet, Michel Zam and Geneviève Jomier

LAMSADE, Univ. Paris-Dauphine, Place du Maréchal de Lattre de Tassigny 75775, Paris, France
KARMICSOFT, 25 avenue de la République, 92500 Bourg La Reine, France

Keywords: Software Evolution, Collaborative Development, Model-driven Engineering.

Abstract: Despite its promises, the lack of support for consistent coevolution of models with theirs meta-models and
instances prevents a broader adoption of MDE. This article presents a coevolution support for reflective
meta-models and their instances tightly integrated into an execution platform. The platform allows
stakeholders, developers and final users to define, update and run models and theirs instances concurrently.
Design changes are reflected immediately in the running applications, hosted by the platform. Both
instances and models are stored in a shared multi-version database that brings persistency, consistency and
traceability support. A web-based implementation of the platform validates the approach and sets the
foundations for a collaborative integrated development environment that evolves continuously.

1 INTRODUCTION

Model Driven Engineering (MDE) considers models
as first-class citizens in the development process.
However, consistent evolution, and thus
coevolution, of target systems, their models and their
meta-models is both a necessity and a challenge.

The last decade has seen a rapid expansion of
MDE techniques and applications, partly due to
hopes of knowledge capitalization. While software
development process is a “multilevel, multiloop
feedback system” involving a variety of actors
(Lehman, 1998), the main responsibility still relays
on the developer’s shoulders. Although the
stakeholder has the best understanding of the
functional requirements, he is still kept away from
the whole development process.

In order to reduce the effect of software aging
(Grubb and Takang, 2005), and the associated
maintenance cost (about 50% to 75% of the global
development cost, McKee, 1980), the stakeholder
must be actively involved in the software process
(Ambler and Jeffries, 2002). As a consequence, in a
MDE context, any model evolution should be
immediately reflected in the system to assert its
validity. To support such requirements, ad hoc tools
must be provided to merge the development and
execution phases. (Agrawal et al., 2009)
acknowledges the need for tools that would give

greater power to stakeholder while empowering the
developer.

The coevolution of models with their own
models (called meta-models) and with their
instances remains a critical issue. (Van Deursen et
al., 2007) points the following paradox: while MDE
approaches have been designed to handle continuous
evolution there’s today little support for model and
meta-model coevolution. This paradox also applies
to coevolution of models and their instances - i.e. the
systems represented by these models. Today models
are essentially static artifacts: they usually do not
evolve easily after the initial development phase.
Once a system is deployed, any modification made
to the structure of its model cannot be propagated to
the running system without going through another
full development cycle.

This article presents a shared execution
environment built upon a collaborative modeling
support that intends to answer the general problem
of coevolution of models and their instances. The
system is decomposed into fine-grain elements
common to the various abstraction levels. They are
used to express both models and their instances,
including application data and programs.

The article focuses on data-centered applications
using relational database to represent models and
meta-models stored as user data and metadata.

The next section describes a typical evolution
scenario spanning all abstraction layers; section 3

143
Dodinet G., Zam M. and Jomier G. (2010).
COEVOLUTIVE META-EXECUTION SUPPORT - Towards a Design and Execution Continuum.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 143-150
DOI: 10.5220/0002930901430150
Copyright c© SciTePress

presents related work; section 4 presents the
proposed solution and section 5 describes an
implementation. Section 6 concludes and opens
perspectives.

2 COEVOLUTION SCENARIO

As requirements change, modifications can occur at
any abstraction level and must be propagated
consistently. The simple, yet representative, scenario
below illustrates such coevolution.

Figure 1: Employee class, version 1.

Figure 1 shows the initial state of the scenario
introducing the Employee class and an instance, e.
Employee is also an instance of the Class class and
defines the hello instance method. A call to hello
prints the class structure (via a call to the show
method defined in the Class class), followed by the
attribute values of e. To simplify, the Attribute class
does not appear. UML 2.x class diagram notation is
used and the pseudo-code is inspired by Python
syntax.

M0, M1 and M2 represent abstraction layers as
defined by the OMG modeling stack (OMG, 2001).
M2 is the meta-model layer. M1 is the model layer.
Any model element defined in M1 is an instance of a
meta-element defined in M2. M0 is the system layer;
every system element in M0 is an instance of a
model element defined in M1. Layers M3 (meta-
meta-model level) and M2 are merged.

The goal is to be able to modify all three layers
dynamically, while the system is still running, and
take the modifications into account immediately
without restarting or redeploying the system.

Figure 2 shows the result of important
evolutions: the introduction of the single inheritance
concept used by the Employee class, while its
instance is subject to an independent update (salary
raise). This is achieved by executing the following
operations:
– Add a reflexive association, super, to the Class

class (M2 layer)
– Accordingly, update the show method to list the

inherited attributes (M2 layer)
– Create the Person class generalizing the

Employee class (M1 layer)
– Move the nickname attribute from Employee to

Person (M1 layer)
– Update the value of e.salary (M0 layer)

Figure 2: Employee class, version 2.

The result of the execution of e.hello() is shown on
the right hand of the M0 layer, Figure 2.

This simple example demonstrates that
modifications can affect all the abstraction layers of
a system. It shows how flexible a coevolutive system
needs to be. More complex scenarios may require a
developer decision regarding whether and how to
propagate the changes through the abstraction layers.

Such a scenario states the requirement of model
executability. It underlines the necessity of
coexistence of target data with models and meta-
models, and the need for merging design-time and
runtime.

3 RELATED WORK

This section presents existing work regarding three
main areas related to the coevolutive support.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

144

3.1 Model Executability

Although it is not a recent research trend, model and
meta-model executability is getting more and more
attention (Mellor and Balcer, 2002). (Breton and
Bezivin, 2001) attempts to identify the main
characteristics of executable meta-models, and
underlines the need of an additional layer to specify
the operational semantics of a model.

Magritte (Renggli et al., 2007) is a reflexive
meta-description framework refining SmallTalk
reflexive meta-model. It allows describing the
business classes of an application, as well as their
respective attributes, operations and constraints. It
abstracts the Type-Object design pattern (Johnson
and Wolf, 1998) and blurs the boundary between
component and property concepts. Magritte
primarily targets web applications and dynamically
interprets the metadata to generate the user interface.
(Ducasse et al., 2009) considers meta-model
executability and expands the applicability of
Magritte’s meta-description to embrace system
classes.

While promising, these approaches based on
source code, are developer oriented. Other
approaches include the use of UML profiles and
static model transformations (Hemel et al., 2008) to
generate fully functional applications or prototypes.
However, the approaches presented here do not
cover data and model consistent coevolution.

3.2 Schema and Data Management

Data consistency is a property guaranteed by any
DBMS, stating that database changes, called
transactions, are processed reliably. However,
traditional database schema evolution remains
complex and heavy and do not match with the fine
grained and frequent rhythm of MDE modeling
evolutions. (Dinu and Nadkarni, 2007) propose a
more flexible modeling technique called the Entity-
Attribute-Value (EAV) model. EAV allows defining
and storing application data in a relational database
without knowing the target schema beforehand.
Application data are stored in three tables: the Entity
table holds the object identities; the Attribute table
holds the attribute definitions; finally the Value table
holds the actual values for a pair Entity/Attribute.

Using this approach, a model modification does
not require the update of the underlying database
schema. The model can then easily be adapted (as
far as only data are concerned). EAV is often used
when data structure must change frequently or is not
known in advance.

Although the EAV approach allows modifying
easily the virtual target schema, the absence of even

basic model constraints is a major drawback.
Therefore, EAV with Class and Relationships model
(EAV/CR, Nadkarni et al., 1999) has been
introduced. It refines the EAV approach with
schema concepts like class and relationship.
Specific tables are used to store metadata. This
allows refining the schema dynamically. However
this solution is not reflexive. As a consequence,
metadata cannot evolve without updating the
relational structure.

It is also important to note that those approaches
(EAV and EAV/CR) do not include operational
semantics: they only deal with persistent data
structure, while the behavior of stored objects is not
defined.

3.3 Software Evolution Management

Source Configuration Management (SCM) tools,
such as CVS, are mainly used to trace software
evolutions. They are well suited for general text-
based artifacts (e.g. java or xml files). For instance
they can be used, in conjunction with bug trackers,
to trace evolution and get a better understanding of
the past changes (D’Ambros et al., 2008).

From a MDE perspective, coevolution refers to
the need for the models to evolve with their meta-
models. However, as files size is usually much
bigger than the size of model elements, SCM are not
well adapted to the fine grain management of the
evolution of strong typed model elements and
change impact.

(Wacshmuth, 2007) proposes a classification of
meta-models based on semantics preservation
properties. Models are incrementally adapted
through a serie of changes represented by high-level
transformations. Those transformations are
executed manually, making the successive evolution
steps explicit.

 (Hôßler et al., 2005) presents a set of usual
transformations used at various abstraction levels to
adapt a meta-model and to migrate its models
automatically. Meta-models are supposed to be
instances of a reference meta-meta-model, i.e. the
M3 layer in the OMG modeling stack. Every model
element is connected to its previous version using a
predecessor relationship.

None of these solutions consider model
executability nor target application data.

The Karma model (Zamfiroiu et Jomier, 1999)
integrates typical software configuration features
(such as check-in, tags, branches, etc.) into relational
databases. Karma is based on a version model
independent of the data model, called DBV, that was

COEVOLUTIVE META-EXECUTION SUPPORT - Towards a Design and Execution Continuum

145

first introduced in (Cellary and Jomier, 1990). Any
data modification is automatically traced and any
previous state of the system can be restored
consistently.

The solutions presented in this section only
address one particular facet of the actual problem. In
order to handle evolution at any abstraction level
throughout the whole software lifecycle, all three
major aspects should be addressed conjointly in a
consistent and generic way: model executability,
schema and data management, and finally consistent
software evolution management.

4 COEVOLUTION SUPPORT

This section introduces a design and execution
platform integrating a coevolution support. All
abstraction layers coexist within the runtime
environment. Every system element is decomposed
into elementary constructs, embracing the EAV
strategy. The coevolution of those elements is
enabled by the Karma model.

We successively cover the coevolution
underlying model, the persistency management and
the traceability of evolutions, designed to fulfill the
evolution requirements introduced in section 2.

4.1 Coevolution Model

In order to understand how to build the integrated
coevolution model, a semantics-free descriptive
layer (atomic level) is first introduced. Above it
stays a logically typed structural semantics level,
called molecular. Finally, an operational layer is
added dynamically.

4.1.1 Atomic and Molecular Layers

The descriptive layer sets the foundations of the
coevolutive execution model. It provides the
building blocks of the system. By convention, any
element of the system is described using undividable
units, called Atoms. Taken separately atoms do not
have additional meaning. The business semantics
will only emerge from their values and their
composition. We call this model “atomic model” by
analogy with the ancient Greek atomic model
(Figure 3).

Figure 3: Atomic model.

An Atom represents (at most) one element of the
system and holds its identity. It always references a
meta Atom, which holds the identity of the element
describing the structure and behavior of its
associated element, even if at this stage we don’t
know how to interpret the structure. An Atom has a
collection of Slots. A Slot represents a primitive
valued property (string, integer, etc…). The Spin is a
particular type of Slot. Its value is a reference to an
Atom.

Pursuing the atomic metaphor, Atoms can be
composed arbitrarily to build more complex
constructs, called Molecules. An Instance is a
particular molecule that represents an object in the
Class-Object paradigm.

In order to be correctly interpreted and validated
(structurally and behaviorally), molecules must be
typed.

Let us consider the Figure 4 below, representing
a simple view on the M2 abstraction layer – where
Class and Attribute are classes. Could they be
represented using atoms and molecules?

Figure 4: M2 layer – Class and Attribute classes.

An atomic and molecular solution is depicted in
Figure 5 below. The Class class is an instance of
itself, and the attributes of the Attribute class are
instances of Attribute.

The « instance of » relationship is concretized in
the atomic model by a “meta” relation between the
Atom representing a given object and the Atom
holding the identity of its class.

Finally, the Class and Attribute classes are
interpreted as typed molecules aggregating
necessary atoms. The aggregation between the Class
class and the Attribute class has no representation in
the Figure 5, for sake of readability.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

146

Figure 5: Atomic and molecular representations of the
Class and Attribute classes.

4.1.2 Operational Semantics Layer

In order to make the model executable the Class and
Attribute classes should be equipped with
operational semantics. The operational semantics
should express how a particular atomic assemblage
must be interpreted and transformed into a
programmatic molecular construct, e.g. how to
reconstruct the Figure 4 from Figure 5.

Thus, the meta relation is equipped with an
instantiation semantics defined by the simple rules
below (Table 1). T is the transformation operation
that creates a molecule from an atom. A is the set of
atoms present in the system. instanceof is an
operator defined at the molecular level, returning
true if the second operand is a representation of the
first operand in the upper abstraction level.
The operational semantics must then assert that the
above rules are always respected. These constraints
can be enforced when an instance of the Molecule
class is created (see Figure 3), or later through
explicit validation.

Although an additional layer is needed to specify
this operational semantics, it can be added
afterwards. Thus, meta-modeling activity can be
decomposed into two distinct phases: (i) assemble
the atoms, giving them a form that reflects the
foreseen semantics, (ii) give the assemblages an
explicit semantics and behavior through the
operational layer that can be refined later
dynamically.

Table 1: Instantiation rules.

(1) ∀ a2 ∈ A ∃ ! a1 ∈ A : a2.meta=a1

(2) ∀ a1, a2 ∈ A
 a2.type='Atom' and
 a2.meta=a1 and
 a1.meta=Class

 ⇔ T(a2) instanceof T(a1)

(3) ∀ a1, a2, a3, a4 ∈ A
 T(a2) instanceof T(a1) and
 T(a3) instanceof T(a4) and
 a1.meta=Class and
 a4.meta=Attribute and
 a3.owner=a2 and
 a3.type='Slot'

 ⇔ T(a2)[a4.name] = a3.value

If atomic structural requirements change, the
operational semantics must be revised as well to
consider the structural modifications. This is
possible because the definition of the operational
layer is dynamic. Both operational semantics
specification and specific behavior implementation
are represented as model operations and as such
decomposed into Atoms as well.

Also, since all abstraction layers have an atomic
representation, they all coexist. So the system as a
whole becomes causally connected, i.e. any change
made to the self-representation of the system is
immediately reflected in its actual state and
behaviour, as defined in (Maes, 1987).

4.2 Persistency and Evolution

We are finally able to consider the persistency of
atoms and molecules, and how their coevolution is
supported.

As every element of the system is ultimately
represented as an atom, it is possible to use a
uniform solution to store the meta-meta-model, all
meta-models, all models, and all terminal instances
as mere data in a relational database.

For instance, atoms, as well as slots and spins (as
described in Figure 3) can be stored in a unique
table. In any case, this database has a fixed schema.
This remarkable property eliminates common
problems due to schema evolution and data
migration. As a consequence, restarting and
redeploying the system is no longer mandatory.

Moreover, querying and manipulating data and
models become uniform and can be expressed at the
atomic level. Thus, specific semantics must be used
in order to interpret the atoms. For instance, since
there is no Employee table anymore, the evaluation

COEVOLUTIVE META-EXECUTION SUPPORT - Towards a Design and Execution Continuum

147

of a query like select * from Employee must be
adapted.

Therefore, the system can run continuously
while still evolving.

4.3 Tracing the Evolution

The database is extended with a traceability
mechanism, based on the Karma and DBV models
(Section 3.3). Thus not only the current state but also
all the previous states of the database are available in
conjunction with the user operation traces. The
database states – successive as well as alternative –
are organized as a global version tree (Cellary and
Jomier, 2000). The database is therefore multi-
version. Each version of the database, called global
version, can be considered as a consistent mono-
version database and contains at most one version of
each atom. In the Karma traceability model, any
elementary evolution creates a new system state
automatically, derived from the previous state. Each
local version of a given Atom is marked with the
global version identifier where the evolution occurs.
Therefore, it becomes easy to extract any previous
state using a version identifier.

It is also possible to derive explicitly an
alternative branch from a given global version.
Finally, any given previous state of the database can
be recovered instantaneously by selecting the
corresponding version identifier in the version tree.

Molecules are always assembled from
appropriate Atom versions in a given global version
of the database. A system state is based on a given
database version. Thus, its atoms and molecules
remain consistent. Since models are composed of
Molecules as well and considered as mere data (and
are treated as such), they are also intrinsically
versioned. That means that all the abstraction layers
– M0, M1, and M2 – benefit in the same way from
the multi-version properties.

Some radical evolutions like splitting or merging
elements can alter the molecular identity. Even in
this case, traces and versions help detecting and
avoiding inconsistencies.

Finally, not only the system can run
continuously while evolving, but its entire history is
recorded and the evolution can follow different
branches. A continuum of design and execution
lifecycle phases is thus achieved as long as every
resource is in fine equipped with an atomic
representation. Then the version substitution
principle can be applied and the system can improve
continuously.

5 IMPLEMENTATION

5.1 General Architecture

The atomic model presented above has been
implemented as an integrated modeling platform,
based on JavaEE. The user interface paradigm
follows the single-page web application style, as
defined in (Mesbah and van Deursen, 2007). The
platform allows the stakeholder and the developer to
create models that can be dynamically instantiated.
Their meta-models can also be refined dynamically.
Any modification is propagated immediately all the
way to target data.

The meta-model executability is achieved
through a bootstrap phase during which the system
operational semantics is dynamically injected, using
a script. Two different implementations of the
bootstrap script have been written (in Javascript and
in Python) and can be run concurrently on the server
side (JSR-223).

Figure 6: Implementation: architecture overview.

Significant modifications of the meta-model
might need to be reflected in the bootstrap script, so
the script must remain modifiable dynamically.

Figure 6 sketches the environment architecture
and interactions. Let us suppose the user wants to
execute a simple script that instantiates the
Employee class. Users interact with the application
using standard internet browsers and specify the
operation to be executed remotely (as a script). First,
the bootstrap script is evaluated to create the
required execution context. Then, the user action is
executed on the server side. This is necessary in
order to transform a Molecule into a python or
javascript object through a SemanticsInterpreter
component and to address it in a way that makes
functional sense. SemanticsInterpreter delegates the
Molecule construction to the InstanceManager
component. Therefore, from a developer
perspective, the Molecule structures are hidden
behind scripted proxies, as illustrated in section 5.2.

Every scripting object that has an underlying
molecular description (section 4.1.1), wraps its

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

148

corresponding Molecule (Java) instance; any read or
write operation applied on such a scripting object is
redirected to its Java counterpart. This also allows
adding strong typing to usually loose typed
languages (i.e. Javascript or Python).

The Karma model has been implemented at two
different levels.

– In the database: additional tables have been
created to store the global versions and the
branches; the Atom table has been changed to a
view in order to generate Atom versions
transparently. Finally a set of stored procedures
has been introduced to navigate through the
timeline and the global version tree.

– In the application framework: an API has been
added at the Java side and in the bootstrap script
to enable global version selection.

Application specific behavior, as well as meta-
model behavior, is implemented through class
operations, which are instances of the Operation
class. Thus, operations are also considered as mere
data. Their body is stored in a Text column. Their
dependencies can then be detected both statically, by
parsing their body, and dynamically, by
automatically collecting their execution traces,
explicitly managed by the Karma model.

5.2 Example

The solution implemented on top of the proposed
model covers the scenario presented in Section 2, as
illustrated in Figure 7 and Figure 8 – those are
screenshots of a scripting console embedded in the
actual platform.

Figure 7: Employee instance creation.

First the Employee class and its instance called
popeye are created and made persistent. At this
stage, the hello method is called on the instance
popeye. The result is shown on Figure 7. Then the
Person class is created and the Employee class is
redefined as a specialization of Person (by setting its
“super” attribute). Next, the nickname attribute is
moved under the Person class and the show method
is dynamically updated. Finally the instance is

loaded again and its salary is raised. Figure 8 shows
the result of calling again the hello method on the
Popeye instance.

Figure 8: M0-M2 layers coevolution.

Meta-model evolution is illustrated Figure 9, below
through the update of the show method of the Class
class. This evolution doesn’t change how Atom
constructs are interpreted and thus doesn’t require
reconsidering the bootstrap phase (although the
introduction of the inheritance concept does).

Figure 9: Show operation.

6 CONCLUSIONS

This article introduces a coevolution support for
reflective meta-models and their instances, tightly
integrated into an MDE execution platform. Any
system element is decomposed into undividable
units, called atoms, allowing a homogeneous
representation of any element, regardless its
abstraction level.

To illustrate our approach we chose to reproduce
the Class-Object paradigm. While the Class-Object
approaches mainly stand at the conceptual level,
Atoms and Molecules constructs are introduced at a
lower abstraction level to allow refining (meta-
)models without having to alter the underlying
storage structure.

Atomic representation of both models and their
instances are stored in a shared multi-version
database. Since models and instances coexist as
high-level atom constructs, their coevolution is
managed in a consistent way, and model evolutions

COEVOLUTIVE META-EXECUTION SUPPORT - Towards a Design and Execution Continuum

149

are instantly reflected into their instances, making
the whole system causally connected.

The prototype we implemented allows
stakeholders, developers and final users to define,
update and run models and theirs instances
concurrently. It has been experimented in a multi
criteria decision aid (MCDA) platform called
DECISIONDECK. Practitioners design formal MCDA
methods using basic user interface to edit and
visualize input data. Although more formal
evaluation is needed the preliminary results are
encouraging.

However, our solution implies a development
paradigm shift, and as such requires appropriate
tools. We need now to focus on the development
environment in order to support the usual industrial
constraints of quality and productivity. These
enhancements will be implemented in the next
version of the system mainly as molecular constructs
and will become a part of its karma.

REFERENCES

Agrawal, R. et al. 2009. The Claremont report on
database research Commun. ACM 52, 6 (Jun. 2009),
pp. 56—65

Ambler, S. W. and Jeffries, R. 2002 Agile Modeling:
Effective Practices for Extreme Programming and the
Unified Process. John Wiley & Sons, Inc.

Breton, E. and Bézivin, J. 2001. Towards an
understanding of model executability. In Proceedings
of the international Conference on Formal ontology in
information Systems - Volume 2001 (Ogunquit, Maine,
USA, October 17 - 19, 2001). FOIS '01. ACM, New
York, NY, 70-80

Cellary W., Jomier G., 1990. Consistency of Versions in
Object-Oriented Databases. VLDB, Brisbane: 432-441

D'Ambros, M., Gall, H., Lanza, M., and Pinzger, M.,
2008. Analyzing software repositories to understand
software evolution. In Mens, T. and Demeyer, S.,
editors, Software Evolution, chapter 3, pages 39--70.
Springer.

Dinu, V., Nadkarni, P., 2007. Guidelines for the effective
use of entity-attribute-value modeling for biomedical
databases. Inernational .Journal. of
Medical.Informatics, 76(11-12), 769—779

Ducasse S., Gîrba T., Kuhn A., Renggli L., 2009. Meta-
Environment and Executable Meta-Language using
Smalltalk: an Experience Report. In Journal of
Software and Systems Modeling (SOSYM). February,
2009. Volume 8, Springer Verlag, pp. 5—19.

Grubb, P., Takang, A. A. 2005. Software Maintenance
Concepts and Practices. World Scientific, second
edition.

Hemel, Z., Kats, L. C., and Visser, E. 2008. Code
Generation by Model Transformation. In Proceedings
of the 1st international Conference on theory and

Practice of Model Transformations (Zurich,
Switzerland, July 01 - 02, 2008).

Vallecillo A., Gray J., Pierantonio A., Eds. Lecture Notes
In Computer Science, vol. 5063. Springer-Verlag,
Berlin, Heidelberg, 183-198.

Hôßler, J., Soden, M., Eichler, H.: Coevolution of models,
metamodels and transformations, 2005. In Bab, S.,
Gulden, J., Noll, T., Wieczorek, T., eds.: Models and
Human Reasoning. Wissenschaft und Technik Verlag,
Berlin (2005), pp. 129—154

Johnson, R., Wolf, B.: Type object. In Martin, R.C.,
Riehle, D., Buschmann, F. 1998. Pattern Languages of
Program Design, Addison Wesley ISBN:0-201-
31011-2

Lehman, M. m. 1998. Software's Future: Managing
Evolution, 1998. IEEE Softw. 15, 1 (Jan. 1998), 40-44.
DOI= http://dx.doi.org/10.1109/MS.1998.646878

Maes, P. Computational reflection. 1987. Ph.D. 1987.
Thesis, Laboratory for Artificial Intelligence, Vrije
Universiteit Brussel, Brussels. 1987

McKee, J.R. 1984. Maintenance as a function of design. In
Proceedings of AFIPS National Computer
Conference, pp. 187—193.

Mellor, S. J. and Balcer, M. 2002. Executable Uml: a
Foundation for Model-Driven Architectures. Addison-
Wesley Longman Publishing Co., Inc.

Mesbah A., van Deursen A., Migrating Multi-page Web
Applications to Single-page Ajax Interfaces, 2007.
Delft University of Technology SERG, Netherlands,
TUDSERG-2006-018

Nadkarni P. et al., 1999. Organization of heterogeneous
scientific data using the EAV/CR representation.
Inernational. Journal of Medical. Informatics 6:478—
93.

OMG, 2001. Architecture Board ORMSC. Model driven
architecture (MDA). OMG document number
ormsc/2001-07-01, available from www.omg.org, July
2001.

Renggli, L., Ducasse, S., Kuhn A., 2007. Magritte — A
Meta-Driven Approach to Empower Developers and
End Users, In Model Driven Engineering Languages
and Systems, Ed. Gregor Engels, Bill Opdyke,
Douglas C. Schmidt and Frank Weil, September,
LNCS, Volume 4735, Springer, pp. 106—120.

Van Deursen, A., Visser, E., Warmer, J., 2007, Model-
Driven Software Evolution: A Research Agenda. In
Proceedings 1st International Workshop on Model-
Driven Software Evolution (MoDSE 07),

Wachsmuth, G., 2007, Metamodel adaptation and model
co-adaptation. In ECOOP 2007: Object-Oriented
Programming, pp. 600—624. Springer

Zamfiroiu M., Jomier G. La traçabilité du processus de
conception en génie logiciel, 1999, INFORSID’99, La
Garde, France.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

150

