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Abstract: This paper presents a joint source-channel coding technique involving arithmetic coding. The work is based
on an existing maximuma posteriori (MAP) estimation approach in which a forbidden symbol is introduced
into the arithmetic coder to improve error-correction performance. Three improvements to the system are
presented: the placement of the forbidden symbol is modified to decrease the delay from the introduction of
an error to the detection of the error; the arithmetic decoder is modified for quicker detection by the introduc-
tion of a look-ahead technique; and the calculation of the MAP metric is modified for faster error detection.
Experimental results show an improvement of up to 0.4 dB for soft decoding and 0.6 dB for hard decoding.

1 INTRODUCTION

A typical digital communication system includes
source coding and channel coding. Source coding
compresses the data to remove unwanted redundancy
in order to make efficient use of the transmission
channel. Channel coding introduces redundancy in
a controlled manner into the data. This redundancy
can be used by a channel decoder to overcome the ef-
fects of noise and interference in the transmission of
the data, thus increasing the reliability of the system.

Multimedia applications have high data rates so
that compression is a very important part of mul-
timedia systems. Multimedia compression methods
usually include several stages; lossy compression
and quantization techniques are used to remove non-
essential features from the source data, then the quan-
tized data is processed by an entropy encoder. Arith-
metic coding (Rissanen, 1976) is a popular form of
entropy coding. It represents data more compactly
than Huffman coding (Huffman, 1952), and adapts
better to adaptive data models. The use of arithmetic
coding is recently increasing, partly owing to the ex-
piration of key patents that somehow hampered earlier
adoption.

Data transmission requires both source coding, for
efficient use of the channel, and channel coding, for
reliable data transmission. Joint source-channel cod-
ing techniques are emerging as a good choice to trans-
mit digital data over wireless channels. Shannon’s
source-channel separation theorem suggests that re-
liable data transmission can be accomplished by sep-

arate source and channel coding schemes (Shannon,
1948). Vembu, Verdù and Steinberg (1995) point out
shortcomings of the separation theorem when dealing
with non-stationary probabilistic channels. The band-
width limitations of the wireless channels, and the
stringent demands of multimedia transmission sys-
tems, are emphasizing the practical shortcomings of
the separation theorem. In practical cases, the source
encoder is not able to remove all the redundancy from
the source. Joint source-channel coding techniques
can exploit this redundancy to improve the reliability
of the transmitted data.

Joint schemes can also provide implementation
advantages. For example, Boyd, Cleary, Irvine,
Rinsma-Melchert and Witten (1997) proposed a joint
source-channel coding technique using arithmetic
codes, and mentioned several advantages, including
(a) saving on software, hardware, or computation time
by having a single engine that performs both source
and channel coding, (b) the ability to control the
amount of redundancy easily to accommodate pre-
vailing channel conditions, and (c) the ability to per-
form error checking continuously as each bit is pro-
cessed.

For error correction, maximuma posteriori
(MAP) decoding (MacKay, 2003) can be used to esti-
mate the transmitted symbols from the received bits.
In MAP decoding, error correction is achieved by
searching for the best path through a decoding tree,
and techniques are required to reduce the complexity
of this tree. In this paper, a MAP decoding scheme by
Grangetto, Cosman and Olmo (2005), which uses a
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forbidden symbol to detect errors in arithmetic codes,
is described, and novel improvements are presented.
The placement of the forbidden symbol is modified to
decrease the delay from the introduction of an error
to detection of the error. The arithmetic decoder is
modified for quicker detection by the introduction of
a look-ahead technique. The calculation of the MAP
metric is also modified for faster error detection.

Section 2 contains an overview of arithmetic cod-
ing and existing joint source-channel coding tech-
niques based on arithmetic coding, with particular
attention to the maximuma posteriori (MAP) esti-
mation approach by Grangetto et al. (2005). These
schemes have recently received greater attention in
the literature (Bi, Hoffman and Sayood, 2010). Sec-
tion 3 presents novel improvements to the MAP joint
source-channel coding scheme. Section 4 presents ex-
perimental results. Finally, Section 5 draws conclu-
sions.

2 ERROR CORRECTION OF
ARITHMETIC CODES

Arithmetic coding (Rissanen, 1976) is a method for
compressing a messageu consisting of a sequence of
L symbolsu1, u2, · · · , uL with different probability of
occurrence. Arithmetic coding requires a good source
model which describes the distribution of probabili-
ties for the input symbols. The source model can be
static or adaptive. In a static model, the distribution of
probabilities remains fixed throughout the message,
that is, it is the same when encoding the first sym-
bol and when encoding the last symbol. In an adap-
tive model, the probability distribution can be updated
from symbol to symbol, so the probability distribution
used to encode the last symbol may be different from
that used to encode the first symbol.

Arithmetic coding can be thought of as represent-
ing a message as a probability interval. At the start
of the encoding process, the interval is the half-open
interval [0, 1), that is, 0≤ x < 1. For each sym-
bol ul to be encoded, this interval is split into sub-
intervals with widths proportional to the probability
of each possible symbol, and the sub-interval corre-
sponding to the symbolul is selected. This interval
gets progressively smaller, so to keep the interval rep-
resentable in computers, it is normalized continuously
(Witten, Neal and Cleary, 1987). When the interval is
small enough, bits are emitted by the encoder and the
interval is expanded.

2.1 Error Detection

Arithmetic coding can compress data optimally when
the source model is accurate. However, arithmetic
codes are extremely vulnerable to any errors that
occur (Lelewer and Hirschberg, 1987). Huffman
codes tend to be self-synchronizing, so errors tend
not to propagate very far; when an error occurs in
a Huffman-coded message, several codewords are
misinterpreted, but before long, the decoder is back
in synchronization with the encoder (Lelewer and
Hirschberg, 1987). Arithmetic coding, on the other
hand, has no ability to withstand errors.

Boyd et al. (1997) propose the introduction of
some redundancy in arithmetic codes. This is done
by forbidding a range from the interval. In common
arithmetic coding techniques, the coding interval is
doubled when required (Witten et al., 1987). Boyd
et al. suggest the interval to be reduced by a factorR
each time the interval is doubled, consequently for-
bidding part of the interval. When this redundancy
is introduced, errors can be detected by the decoder
when the decoding interval falls within a forbidden
part. The delay from the bit error to the detection of
an error is shown to be about 1/(1−R).

Instead of rescaling the interval for every normal-
ization interval doubling, Sayir (1999) suggests in-
troducing forbidden gaps in the interval. After each
source symbol is encoded, the source probabilities are
rescaled by a rescaling factorγ, such that on average,
− log2 γ bits of redundancy are added for every source
symbol. The gap factorε is defined to beε = 1− γ.

2.2 MAP Decoding

The forbidden gap technique is a joint source-channel
method for detecting errors in arithmetic codes. To
perform error correction, we must first encode the
symbols with an encoder that introduces redundancy.

Suppose we have a messageu consisting of a se-
quence ofL symbols,u1, u2, · · · , uL. We encode this
into a bit sequencet, which hasN bits, t1, t2, · · · , tN .
The bit sequencet is then transmitted over a noisy
channel, and the received signal isy. Figure 1 is a
block diagram of the encoding and decoding process.
The task of the decoder is to infer the messageû given
the received signaly. If the inferred messagêu is not
identical to the source messageu, a decoding error
has occurred.

Arithmetic

Encoder

u
Channel

t ûy Arithmetic

Decoder

Figure 1: Block diagram of the encoding and decoding pro-
cess.
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MAP decoding (MacKay, 2003) is the identifica-
tion of the most probable messageu given the re-
ceived signaly. By Bayes’ theorem, thea posteriori
probability ofu is

P(u |y) = P(y |u)P(u)
P(y)

. (1)

Sinceu hasL elements and the signaly hasN ele-
ments, it can be convenient to work in terms of the bit
sequencet instead of the messageu. Since there is a
one-to-one relationship betweenu andt, P(t) = P(u).
Thus, we can rewrite (1) as

P(t |y) = P(y | t)P(t)
P(y)

. (2)

The right-hand side of this equation has three parts.

1. The first factor in the numerator,P(y | t) is the
likelihood of the bit sequencet, which is equal to
P(y |u). For a memoryless channel, the likelihood
may be separated into a product of the likelihood
of each bit, that is,

P(y | t) =
N

∏
n=1

P(yn | tn). (3)

If we transmit+x for tn = 1 and−x for tn = 0
over a Gaussian channel with additive white noise
of standard deviationσ, the probability density of
the received signalyn for both values oftn is

P(yn | tn = 1) =
1

σ
√

2π
exp

(

− (yn − x)2

2σ2

)

(4)

P(yn | tn = 0) =
1

σ
√

2π
exp

(

− (yn + x)2

2σ2

)

. (5)

2. The second factor in the numerator,P(t), is the
prior probability of the bit sequencet. In our case,
this probability is equal toP(u), so that

P(t) =
L

∏
l=1

P(ul). (6)

3. The denominator is thenormalizing constant. The
normalizing constant is the sum ofP(y | t)P(t) for
all possible bit sequencest.

P(y) = ∑
t

P(y | t)P(t) (7)

The normalizing constant has a value such that the
sum ofP(t |y) for all possiblet becomes 1.

∑
t

P(t |y) = ∑
t

P(y | t)P(t)
P(y)

=
∑t P(y | t)P(t)

P(y)

=
∑t P(y | t)P(t)
∑t P(y | t)P(t)

= 1

MAP decoding can be summed up as the process
of identifying the messageu with the highest proba-
bility P(u |y) given the received signaly. So the prob-
lem of decoding arithmetic codes using MAP decod-
ing is a problem of searching for this bestu from all
possible sequencesu.

To search for the requiredu, we build a decod-
ing tree. The tree consists of a number of nodes (or
states) and a number of edges connecting them. The
state may be either the bit state or the symbol state.
If we are using the bit state, each edge will represent
one bit, and each node will have two child nodes, one
corresponding to a0, and the other corresponding to
a 1. When traversing this tree, going from one state
to the next (from one node to its child) happens every
time we decode one bit.

If we are using the symbol state, the edges will
represent symbols instead of bits, and the number of
child nodes depends on the number of possible sym-
bols. This time, going from one state to the next hap-
pens every time we decode one symbol.

For arithmetic codes, the size of the decoding tree
increases exponentially with the number of symbols
in the input sequence. So we have to use techniques
to limit our search on some section of the tree; it is not
feasible to computeP(u |y) for all possible sequences
u.

Guionnet and Guillemot (2003) present a scheme
that uses synchronization markers in the arithmetic
codes. They use two kinds of markers: bit mark-
ers and symbol markers. For bit markers, a number
of dummy bit patterns are introduced into the bit se-
quence after encoding a known number of symbols.
The number of bits required to encode a number of
symbols is not fixed, so these bit markers will occur
at random places in the output bit sequence. The de-
coder then expects to find these bit patterns when de-
coding, and if the patterns are not found, the path is
pruned from the decoding tree. Alternatively, symbol
markers can be used. Instead of inserting a bit pattern,
a number of dummy symbols are inserted into the in-
put sequence after a known number of input symbols.
As for the bit markers, if the decoder does not find
these dummy symbols during decoding, the path is
pruned from the decoding tree.

Grangetto et al. (2005) present another MAP es-
timation approach for error correction of arithmetic
codes. Instead of bit markers or symbol markers, they
use the forbidden gap technique mentioned in Section
2.1. The decoding tree uses the bit state, rather than
the symbol state. Whenever an error is detected in a
path of the decoding tree, that path is pruned. The
number of bitsN is sent as side information. If a path
in the tree hasN nodes but is not yet fully decoded,
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the detector prunes the path. Grangetto et al. com-
pare this joint source-channel scheme to a separated
scheme. In the separated scheme, an arithmetic code
with ε = 0 is protected by a rate-compatible punc-
tured convolutional (RCPC) code. The RCPC code
used was of the family with memoryν = 6 and non-
punctured rate 1/3, proposed by Hagenauer (1988).
The comparison indicated an improvement over the
separated scheme.

In another paper, Grangetto, Scanavino, Olmo and
Benedetto (2007) present an iterative decoding tech-
nique that uses an adapted BCJR algorithm (Bahl,
Cocke, Jelinek and Raviv, 1974) for error correction
of arithmetic codes.

In this paper, the ideas in Grangetto et al. (2005)
are implemented and some novel improvements are
introduced. Recall that in MAP decoding, the prob-
lem is to find the transmitted sequencet which has
the maximum probabilityP(t |y), and that this proba-
bility can be written as

P(t |y) = P(y | t)P(t)
P(y)

.

As shown above, the right-hand side of this equation
has three parts, the likelihoodP(y | t), the prior prob-
ability P(t), and the normalizing constantP(y).

The a posteriori probabilityP(t |y) is the decod-
ing metric used, that is, the decoding algorithm tries
to maximize this value. In the case of memoryless
channels, we can use an additive metricm by taking
logs of the decoding metric.

m = logP(t |y)
m = logP(y | t)+ logP(t)− logP(y). (8)

The additive decoding metricm can be split into
N parts,

m =
N

∑
n=1

mn (9)

wheremn is the part ofm corresponding to thenth
bit. This is convenient as it enables us to update the
metricm for each channel symbolyn we try to decode.
That is, after each bit, we can update the metricm.
Combining (8) and (9) gives us

mn = logP(yn | tn)+ logP(tn)− logP(yn). (10)

Notice that the second term on the right-hand side, the
prior probability, is not very straightforward to evalu-
ate. We know thatP(t) = P(u), because the transmit-
ted bit sequencet has a one-to-one relationship with
the input symbol sequenceu. When decoding a se-
quencey, for each channel symbol, the decoder will
either decode no source symbols, or it will decode one
or more source symbols. Suppose that using bityn,

the decoder decodes the symbolsun. un is a vector
containingI source symbolsun,1, un,2, · · · , un,I. If no
symbols are decoded after bityn, I = 0 andun is an
empty vector. In any case,

logP(un) =
I

∑
i=1

logP(un,i). (11)

We can approximate (10) as

mn = logP(yn | tn)+ logP(un)− logP(yn). (12)

It is worth pointing out that equations (10) and (12)
are not exactly the same. SinceP(t) = P(u), we can
say that∑N

n=1P(tn) = ∑N
n=1 P(un), but this does not

mean thatP(tn) = P(un).
The normalizing constantP(y) is difficult to eval-

uate; (7) indicates that this requires knowledge of all
possible bit sequencest, which is not feasible. To
solve this problem, Grangetto et al. (2005) use an ap-
proximation by Park and Miller (2002). The bit se-
quence containsN bits, so assuming that all 2N bit
sequences are possible, then

P(y)≈
N

∏
n=1

P(yn | tn = 1)+P(yn | tn = 0)
2

. (13)

2.2.1 Hard-decision and Soft-decision Decoding

Suppose we have an additive white Gaussian noise
(AWGN) channel using binary phase-shift keying
(BPSK) modulation with a signal-to-noise ratio
Eb/N0.

For hard-decision decoding the signalyn can be
either 0 or 1. The channel transition probability is

P(yn | tn) =
{

1− p if yn = tn
p if yn 6= tn

(14)

wherep is the probability that a bit is demodulated
in error,p = 1

2 erfc
√

Eb/N0. From (13) and (14) it is
easy to deduce that

P(yn) =
1
2, (15)

so that (12) becomes

mn = logP(yn | tn)+ logP(un)+ log2. (16)

For soft-decision decoding, the metric can be
found in a similar way. As in the case of hard-decision
decoding, suppose we have an AWGN channel using
BPSK modulation with a signal-to-noise ratioEb/N0.
The signalyn will not be constrained to only two val-
ues, 0 and 1. Recall that the probability distribution
for yn is given by equations (4) and (5). For BPSK
modulation and an AWGN channel,x =

√
Eb and
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σ =
√

N0/2. As we have done for the hard-decision
decoding metric, we can approximateP(yn) by

P(yn) =
P(yn | tn = 1)+P(yn | tn = 0)

2
.

Using this approximation, from (4) and (5) we can
find that

P(yn | tn = 1)
P(yn)

=
2exp

(

4Eb
N0

yn√
Eb

)

exp
(

4Eb
N0

yn√
Eb

)

+1
(17)

P(yn | tn = 0)
P(yn)

=
2

exp
(

4Eb
N0

yn√
Eb

)

+1
. (18)

Substituting (17) and (18) into (12) gives us

mn =



























logP(un)+ log2+
(

4Eb
N0

yn√
Eb

)

− log
[

exp
(

4Eb
N0

yn√
Eb

)

+1
] if tn = 1

logP(un)+ log2

− log
[

exp
(

4Eb
N0

yn√
Eb

)

+1
] if tn = 0.

(19)

2.3 Stack Algorithm

Direct evaluation of the MAP metric over all possible
bit sequences is not feasible. The size of the decod-
ing tree would grow exponentially with the number of
symbolsL. To prevent this problem, sequential search
techniques are used.

The decoder proposed by Grangetto et al. (2005)
uses a search algorithm along the branches of a binary
tree. The sequential algorithm used is the stack algo-
rithm (Jelinek, 1969). The tree paths are kept in a list
ordered by their metric; the path with the best metric
is kept at the top of the list.

In each iteration, the best path is removed from the
list and replaced by two paths; one assumingtn = 0,
and the other assumingtn = 1. These two new paths
then have their corresponding metrics updated, and
are suitably placed in the ordered list.

The ordered list has a predefined maximum size
M. When there are more thenM paths, the paths with
the worst metric are removed from the list.

Although the algorithm is called a stack algorithm,
because the concept of a stack is useful for describing
the algorithm, Jelinek (1969) suggests that storing the
paths in a physical stack is not optimal, and that it is
preferable to store the paths in random access storage.
A physical stack would require a sequential compar-
ison of the metric to insert a path, and relocation of
large amounts of data in the required stack position.
As an alternative method, Jelinek proposes splitting
the stack into a number of buckets, each containing
metrics that are close in value.

0 1

2.1 1.6

1.9 3.8 0.2 1.1

0.4 2.2 0.4 3.5 2.1

0.3 1.2 2.9 4.7

0.8 0.9

00

1 2

121143

9 10 5 6 15 16

18178

13 14

7

Figure 2: Example binary decoding tree.

Figure 2 shows an example decoding tree as it
evolves during the decoding process. At the start of
the process, there is only one node, node 0, with met-
ric m0 = 0. In each step, the node with the highest
metric is split into two nodes, the node to the left
assumingtn = 0 and the node to the right assuming
tn = 1. Sometimes a path is pruned because one of
two conditions occurs: either (a) the decoder detects
an error in the path, or (b) the number of nodes in the
tree exceeds the limitM, so the worst path is removed
from the tree.

3 IMPROVED ERROR CONTROL

The MAP decoding scheme presented by Grangetto et
al. (2005) was implemented and some novel improve-
ments were introduced. To enable a fair comparison,
the data encoded during testing is of the same form as
that used by Grangetto et al.

3.1 Placing the Forbidden Gap

We have already seen that a forbidden gap can be used
to detect errors in arithmetic codes. In Sayir (1999),
the gap is placed at the end of the interval. Placing
the gap at a different location may reduce the error-
detection delay.

To investigate this possibility, an arithmetic coder
was used on a binary source with symbolsa andb,
with probabilitiesP(a) and P(b). Experimental re-
sults indicate that, when using the look-ahead tech-
nique presented in Section 3.2 below, ifP(a)> P(b),
the forbidden gap should be placed before the sym-
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(a) a b

bbbaabaa

aaa aab aba baa

(b) b

abaa bbba

bba bbbabb bab

a

Figure 3: Forbidden gaps after three stages when placed
to reduce error-detection delay for (a)P(a) > P(b) and (b)
P(a)< P(b).

bols as shown in Figure 3 (a). IfP(a) < P(b), the
forbidden gap should be placed after the symbols as
shown in Figure 3 (b). IfP(a) = P(b), no advantage
is observed by changing the forbidden gap placement.

Ben-Jamaa, Weidmann and Kieffer (2008) split
the forbidden gap into three parts for binary-source
arithmetic codes, one part before the first symbol sub-
interval, the second between the two sub-intervals,
and the third after the second sub-interval. Their
results show that the worst performance is obtained
when the gap is completely between the two sub-
intervals.

When the model is adaptive, it may be that some-
timesP(a)> P(b) and sometimesP(a)< P(b). This
placement scheme needs some modification to work
with such a model. When encoding a symbol, the
first thing to do is to find the most probable symbol.
The sub-interval for this symbol is then swapped with
the first sub-interval. Then, the forbidden gap can be
placed at the beginning of the interval.

Section 4.1 presents experimental results for plac-
ing the forbidden gap at the beginning, at the middle,
and at the end of the interval.

3.2 Looking Ahead during Decoding

During regular decoding of arithmetic codes (Witten
et al., 1987), two interval values are maintained, one
is the decoding interval, which is the same as the inter-
val produced by the encoder, and the other is the input
codeword interval, which depends directly on the bit
sequence being decoded. For a symbol to be decoded,
the input interval has to lie completely within one of
the sub-intervals of the decoding interval. The for-
bidden gap technique detects an error when the input
interval lies completely within a forbidden gap.

When decoding arithmetic codes with a forbidden

Table 1: Look-ahead decoding steps for each bit.

1: Initially, the input interval is[li, hi),
the decoding interval is split intoS sub-intervals
[l1, h1), [l2, h2), · · · , [lS, hS), and
tn is the assumed transmitted bit.

2: if tn = 0 then
3: hi ⇐ (li + hi)/2
4: else
5: li ⇐ (li + hi)/2
6: end if
7: Search for symbolss with their corresponding

sub-interval[ls, hs) overlapping the input interval
[li, hi), that is,ls < hi andhs > li.

8: if no matching symbols are foundthen
9: Flag an error.

10: else if only one matching symbol is foundthen
11: Add found symbols to the list of decoded sym-

bols.
12: Scale the region[ls, hs) if necessary, scaling[li,

hi) in the same way.
13: Split the scaled[ls, hs) into S new sub-intervals

[l′1, h′1), [l
′
2, h′2), · · · , [l′S, h′S).

14: l1 ⇐ l′1, h1 ⇐ h′1, l2 ⇐ l′2, h2 ⇐ h′2, · · · , lS ⇐
l′S, hS ⇐ h′S

15: Go to 7.
16: else {more than one matching symbol is found}
17: Go to 19.
18: end if
19: End.

gap, sometimes we can decode a symbol even though
the input interval is not completely within the sub-
interval corresponding to the symbol. If the input
interval is divided between one sub-interval and the
forbidden gap, there is only one symbol that can be
decoded, the symbol corresponding to that one sub-
interval. In this case, we can decode the symbol im-
mediately and for the moment assume that the bit se-
quence is not in error. We still need to keep track of
the input interval. When we look ahead in this way,
we may be able to detect errors earlier. Table 1 shows
how the look-ahead decoder handles an input bit.

When using look-ahead, the input interval does
not need to lie completely within the decoding inter-
val. But since the symbol is decoded, the decoding
interval and the input codeword interval have to be
normalized, that is, the intervals have to be doubled
in size. Since the input interval can be larger than the
decoding interval, it is possible for the input interval,
denoted by[li, hi) in Table 1, to extend out of the[0, 1)
interval. So in the implementation, it is important to
cater for the possibility thatli < 0 or thathi ≥ 1.

Section 4.1 presents experimental results indicat-
ing how much the look-ahead technique advances the
detection of errors, while Section 4.2 shows the gain
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obtained when using this technique in MAP decoding
of arithmetic codes.

3.3 Updating the Prior Probability
Continuously

In Section 2.2.1, both the metric for hard-decision de-
coding shown in (14) and the metric for soft-decision
decoding shown in (19) have a component for the
prior probabilityP(u). Recall that this component,
logP(un), is calculated using

logP(un) =
I

∑
i=1

logP(un,i), (11)

whereI ≥ 0 is the number of symbols that can be de-
coded assuming the transmitted bittn.

There is another way to calculate the prior proba-
bility. In arithmetic coding, the width of the interval
is directly related to the probability of the source sym-
bols. Ignoring the forbidden gaps for the moment, we
can say that for an input sequenceu1, u2, · · · , uL,

Interval width= P(u) =
L

∏
l=1

P(ul). (20)

In arithmetic coding algorithms, whenever a bit is
emitted by the encoder, the message interval is scaled
by a factor of 2 (Witten et al., 1987). This normaliza-
tion process always leaves the message interval with a
width in the range(0.25,1]. If to encode the input se-
quenceu the encoder emitsN bits, the interval width
is scaled by a total factor of 2N . Also, the final scaled
width of the interval is in the range(0.25,1], that is,
it is approximately 1. If we ignore termination, which
at most uses two bits (Witten et al., 1987),

2NP(u) = 1 (21)

P(u) = 2−N (22)

logP(u) =−N log2 (23)

logP(un) =− log2. (24)

All we have to do to the additive MAP metric to cater
for the prior probability is to subtract log2 for each
decoded bit.

In the above, we have ignored the effect of forbid-
den gaps on the interval width. Compensating for for-
bidden gaps is not very difficult. Every time there is a
forbidden gap, that is, for each symbol encoded or de-
coded, the interval is reduced by a factor of(1−ε). To
compensate for this, for each decoded symbol we sub-
tract log(1−ε) from the metric. Note that(1−ε)< 1,
so we are subtracting a negative number, and the met-
ric is increasing, not decreasing.

Section 4.2 presents experimental results show-
ing the gain obtained when using this improvement
in MAP decoding of arithmetic codes.

4 RESULTS

4.1 Placing the Forbidden Gap

Experiments were performed to test the forbidden gap
placement mentioned in Section 3.1. The test was per-
formed for a binary source model with alphabet con-
taining symbolsa andb in the following scenarios:

1. Fixed model, forbidden gap placed at the begin-
ning of the interval.

2. Fixed model, forbidden gap placed at the begin-
ning of the interval, look-ahead.

3. Fixed model, forbidden gap placed in the middle
of the interval.

4. Fixed model, forbidden gap placed in the middle
of the interval, look-ahead.

5. Fixed model, forbidden gap placed at the end of
the interval.

6. Fixed model, forbidden gap placed at the end of
the interval, look-ahead.

7. Adaptive model, forbidden gap placed at the be-
ginning of the interval.

8. Adaptive model, forbidden gap placed at the be-
ginning of the interval, look-ahead.

9. Adaptive model, forbidden gap placed in the mid-
dle of the interval.

10. Adaptive model, forbidden gap placed in the mid-
dle of the interval, look-ahead

11. Adaptive model, forbidden gap placed in the be-
ginning of the interval, with the sub-interval for
the most probable symbol moved towards the be-
ginning of the interval.

12. Adaptive model, forbidden gap placed in the be-
ginning of the interval, with the sub-interval for
the most probable symbol moved towards the be-
ginning of the interval, look-ahead.

The error-detection delay was measured for different
values ofP(a), whereP(a) is the probability of the
first symbol. Each test was performed using no look-
ahead and using look-ahead mentioned in Section 3.2.

Figure 4 shows the results for a static source
model with a code rate of 8/9 (scenarios 1–6). With-
out look-ahead, placing the forbidden gap at the be-
ginning of the interval suffers the largest delay, but
with look-ahead, placing the forbidden gap at the be-
ginning of the interval achieves the smallest delay.

When the probability of the first symbol in the
interval is larger than the probability of the second
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Figure 4: Error-detection delay for static source model with
a code rate of 8/9.
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Figure 5: Error-detection delay for adaptive source model
with a code rate of 8/9.

symbol, and the forbidden gap is placed at the begin-
ning of the interval, forbidden gaps tend to cluster to-
gether, as shown in Figure 3 (a). Without look-ahead,
this seems to make the delay larger. This may be be-
cause concentrating the gaps at fewer places makes
it harder for a random interval (a bit error makes the
interval seem random) to find one of the gaps and lie
completely within it. With look-ahead, the situation
is reversed, now having the gaps clustered makes the
look-ahead technique more effective.

Figure 5 shows the results for an adaptive source
model with a code rate of 8/9 (scenarios 7–11). The
performance of scenarios 11 and 12 is similar to the
performance of scenarios 1 and 2. Without look-
ahead, this scheme suffers the largest delay, and with
look-ahead, it achieves the smallest delay.

The results for scenarios 3 and 4 are identical.
This shows that look-ahead does not help when the
forbidden gap is in the middle of the interval. This
may be because with this scheme, forbidden gaps are
never next to each other. In the graphs, only one of

these scenarios is plotted. The same can be said for
scenarios 9 and 10.

Both Figures 4 and 5 show an increase in the de-
tection delay atP(a) = 0.5. This effect is worth ex-
plaining. Since the probability of both symbols is
P(a) = P(b) = 0.5, exactly 1 bit is needed to encode
each symbol. Also, for a code rate of 8/9, an ex-
tra 1/8 of a bit is used for each forbidden gap. As-
suming no rounding errors, after 8 gaps have been in-
serted, the total number of bits used by the gaps is
1 and has no fractional part. Thus, an exact number
of bits have been used, so for the next symbol, the
boundaries of the sub-intervals fora andb will lie on
the bit boundaries, with the consequence that a bit er-
ror will cleanly switch the encoded symbol and will
not be detectable. This occurs for every 8 encoded
symbols, which means that for the given probabilities
and code rate, one every nine bits is susceptible to an
undetectable error. Because of rounding errors, the
number of bits for each forbidden gap will not be ex-
actly 1/8, so the number of bits used for 8 gaps will
have a tiny fractional part, and errors in these sensitive
bits will be detectable, but the sub-interval boundaries
for the sensitive symbols are still very close to the bit
boundaries, resulting in a longer detection delay and
a higher average delay forP(a) = 0.5. This has been
verified experimentally. When the gap is placed in
the middle (scenarios 3/4 and 9/10), the sub-interval
boundaries cannot be on bit boundaries for both sym-
bols, so the effect does not happen. In practice this
effect is not really worrisome; ifP(a) = P(b) = 0.5
throughout the message, the message is not compress-
ible, so arithmetic coding is not used.

4.2 MAP Decoding

Simulations were preformed to test the MAP decod-
ing algorithms. The source used was similar to that
used in Grangetto et al. (2005), to make the compari-
son fair.

Figure 6 shows the packet error rate (PER) for
a static binary source model using hard-decision de-
coding. The stack sizeM = 256, and the gap factor
ε = 0.185. Figure 7 shows the PER for the same con-
ditions using soft-decision decoding.

The performance is improved when the look-
ahead technique of Section 3.2 is used. When this
technique is used, the decoder may detect errors ear-
lier, and it can detect correct symbols earlier as well.
When errors are detected early, incorrect paths can be
pruned earlier from the decoding tree, reducing the
chance that the correct path is removed because of a
stack overflow. Detecting symbols early will enable
the MAP metric to be updated earlier, which can lead
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Figure 6: Performance for MAP hard-decision decoder for
static binary model withM = 256 andε = 0.185; without
look-ahead (NLA) and with look-ahead (LA); and withP(t)
adjusted every symbol (PS) or every bit (PB).
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Figure 7: Performance for MAP soft-decision decoder for
static binary model withM = 256 andε = 0.185; without
look-ahead (NLA) and with look-ahead (LA); and withP(t)
adjusted every symbol (PS) or every bit (PB).

to better decoding. The performance is also improved
with continuous updating of the prior probabilityP(t)
as described in Section 3.3, that is, whenP(t) is ad-
justed every time we decode a bit rather than every
time we decode a symbol. The performance is im-
proved most when the techniques are used together.

Figures 8 and 9 show how the PER changes with
ε whenEb/No is fixed at 5.5 dB for hard-decision de-
coding and soft-decision decoding respectively. The
improved schemes can achieve the error-correction
performance of the original scheme using less redun-
dancy. For example, for a PER of 10−2, the hard-
decision decoder for the original scheme needsε =
0.19, which translates into a code rate of 0.65. For
the same PER, the hard-decision decoder for the im-
proved scheme needsε = 0.13, which translates into
a code rate of 0.73.
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Figure 8: Performance for MAP hard-decision decoder for
static binary model withM = 256 andEb/N0 = 5.5 dB;
without look-ahead (NLA) and with look-ahead (LA); and
with P(t) adjusted every symbol (PS) or every bit (PB).
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Figure 9: Performance for MAP soft-decision decoder for
static binary model withM = 256 andEb/N0 = 5.5 dB;
without look-ahead (NLA) and with look-ahead (LA); and
with P(t) adjusted every symbol (PS) or every bit (PB).

In all graphs, the plot for the scheme with no im-
provements, that is with no look-ahead and with the
prior probabilityP(t) updated after every symbol in-
stead of after every bit, is comparable to the plots pub-
lished by Grangetto et al. (2005).

5 CONCLUSIONS

In this paper, a joint source-channel arithmetic MAP
decoder proposed by Grangetto et al. (2005) for de-
coding arithmetic codes with a forbidden symbol
transmitted over an AWGN channel was analysed.
Novel techniques were introduced to improve the
error-correction performance of the code. The arith-
metic decoder was improved with a look-ahead tech-
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nique that enables it to detect errors earlier. When
using the MAP decoder, this improves the PER at the
cost of a small increase in complexity. The MAP met-
ric calculation was changed by improving the way the
prior probability component of the metric is updated,
leading to faster updating of the metric and, conse-
quently, to a better error-correction performance. This
technique makes the MAP decoder faster as well be-
cause the better path in the MAP tree is found ear-
lier. A coding gain of up to 0.4 dB for soft-decision
decoding and 0.6 dB for hard-decision decoding was
observed for a code rate of 2/3 andM = 256. A num-
ber of multimedia applications are using arithmetic
coding as the final entropy coding stage, making a
joint-source channel coding scheme based on arith-
metic coding attractive for wireless multimedia trans-
mission.
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