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Abstract: “Simple regret” algorithms are designed for noisy optimization in unstructured domains. In particular,
this literature has shown that the uniform algorithm is indeed optimal asymptotically and suboptimal non-
asymptotically. We investigate theoretically and experimentally the application of these algorithms, for auto-
matic parameter tuning, in particular from the point of view of the number of samples required for “uniform”
to be relevant and from the point of view of statistical guarantees. We see that for moderate numbers of arms,
the possible improvement in terms of computational power required for statistical validation can’t be more
than linear as a function of the number of arms and provide a simple rule to check if the simple uniform al-
gorithm (trivially parallel) is relevant. Our experiments are performed on the tuning of a Monte-Carlo Tree
Search algorithm, a great recent tool for high-dimensional planning with particularly impressive results for
difficult games and in particular the game of Go.

1 INTRODUCTION

We consider the automatic tuning of new modules.
It is quite usual, in artificial intelligence, to design
a module, for which there are several free parame-
ters. This is natural in supervised learning, optimiza-
tion (Nannen and Eiben, 2007b; Nannen and Eiben,
2007a), control (Lee et al., 2009; Chaslot et al., 2009).
We will here consider the particular case of Monte-
Carlo Tree Search (Chaslot et al., 2006; Coulom,
2006; Kocsis and Szepesvari, 2006; Lee et al., 2009).

Consider a program, in which a new module with
parameterθ ∈ {1, . . . ,K} has been added. In the ban-
dit literature,{1, . . . ,K} is referred to as the set of
arms. Then, we’re looking for the best parameter
θ ∈ {1, . . . ,K} for some performance criterion; the
performance criterionL(θ) is stochastic. We have a fi-
nite time budgetT (also termed horizon), we can have
access toT realizations ofL(θ1),L(θ2), . . . ,L(θT) and

we then choose somêθ. The game is as follows:

• The algorithm choosesθ1 ∈ {1, . . . ,K}.

• The algorithm gets a realizationr1 distributed as
L(θ1).

• The algorithm choosesθ2 ∈ {1, . . . ,K}.

• The algorithm gets a realizationr2 distributed as
L(θ2).

• . . .

• The algorithm choosesθT ∈ {1, . . . ,K}.

• The algorithm gets a realizationrT distributed as
L(θT).

• The algorithm chooseŝθ.

• The loss isrT = maxθEL(θ)−EL(θ̂).
The performance measure is the simple regret(Bubeck
et al., 2009), i.e.rT = maxθEL(θ)−EL(θ̂), and we
want to minimize it. Then main difference with noisy
nonlinear optimization is that we don’t use any struc-
ture on the domain.

We point out the link with No Free Lunch the-
orems (NFL (Wolpert and Macready, 1997)), which
claim that all algorithms are equivalent when no prior
knowledge can be explored. Yet, there are some dif-
ferences in the framework: NFL considers determin-
istic optimization, in which testing several times the
same point is meaningless. We here consider noisy
optimization, with a small search space: all the dif-
ficulty is in the statistical validation, for choosing
which points in the search space should be tested
more intensively.
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Useful notations:

• #E is the cardinal of the setE;

• Nt(i) is the number of times the parameteri has
been tested at iterationt, i.e.

Nt(i) = #{ j ≤ t;θ j = i}.

• L̂t(i) is the average reward for parameteri at iter-
ationt, i.e.

L̂t(i)
1

Nt (i)
∑

j≤t;θ j=i

r j .

(well defined ifNt(i)> 0)

Section 2 recalls the terminology of simple regret
and discusses the relevance for Automatic Parame-
ter Tuning (APT). Section 3 mathematically consid-
ers the statistical validation, which was not yet, to the
best of our knowledge, considered for simple regret
algorithms; we will in particular show that the depen-
dency of the computational cost as a function of the
number of tested parameter values is at best linear,
and therefore it is not possible to do better than this
linear improvement in terms of statistical validation
- we will then switch to experimental analysis, and
we’ll show that the improvement is indeed improved
by far less than a linear factor in our real world setting
(section 4).

2 SIMPLE REGRET: STATE OF
THE ART AND RELEVANCE
FOR AUTOMATIC
PARAMETER TUNING

We consider the case in whichL(θ) is, for all
θ, a Bernoulli distribution. (Bubeck et al., 2009)
states that (i) the naive algorithm distributingθi uni-
formly among the possible parameters, i.e.θi =
mod(i,K)+1 with mod the modulo operator, with
θ̂ = argmaxi L̂(i), has simple regret

ErT = O(exp(−c ·T)) (1)

for some constantc depending on the Bernoulli pa-
rameters (more precisely, on the difference between
the parameters of the best arm and of the other arms).
This is forθ̂ maximizing the empirical reward,i.e.

θ̂ ∈ argmin
θ

L̂T(θ)

and this is proved optimal.
If we consider distribution-free bounds (i.e. for

a fixed T, we consider the supremum ofErT for

all Bernoulli parameters), then (Bubeck et al., 2009)
shows that, with the same algorithm,

sup
distribution

ErT = O(
√

K logK/T), (2)

where the constant in theO(.) is a universal constant;
Eq. 2 is tight within logarithmic factors ofK; there’s
a lower bound for all algorithms of the form.

sup
distribution

ErT = Ω(
√

K/T).

Importantly, the best known upper bounds for
variants of UCB(Auer et al., 2002) are significantly
worse than Eq. 1 (the simple regret is then only poly-
nomially decreasing) and significantly worse than Eq.
2 (by a logarithmic factor ofT) - see (Bubeck et al.,
2009) for more on this.

However, it is clearly shown also in (Bubeck et al.,
2009) that for small values ofT, using a variant of
UCB for choosing theθi and θ̂ is indeed much bet-
ter than uniform sampling. The variant of UCB is as
follows, for some parameterα > 1:

Θ̂t = argmax
i

Nt (i).

Θi = mod(i,K)+1 if i ≤ K

Θi = argmax
i

L̂t(i)+
√

α log(t −1)/Nt−1(i) otherwise.

Simple regret is a natural criterion when working
on automatic parameter tuning. However, the theo-
retical investigations on simple regret did not answer
the following question: how can we validate an arm
selected by a simple regret algorithm when a baseline
is present ? In usual cases, for the application to pa-
rameter tuning, we know the score before a modifica-
tion, and then we tune the parameters of the optimiza-
tion: we don’t only tune, we validate the tuned mod-
ification; this question is nonetheless central in many
applications in particular when modifications are in-
cluded automatically by the tuning algorithm (Nan-
nen and Eiben, 2007b; Nannen and Eiben, 2007a;
Hoock and Teytaud, 2010). We’ll see in next sections
that the naive solution, consisting in testing separately
each arm, is not so far from being optimal.

3 MULTIPLE SIMULTANEOUS
HYPOTHESIS TESTING IN
AUTOMATIC PARAMETER
TUNING

As pointed out above, a goal different from mini-
mizing the simple regret consists in finding a good
arm could be (i) finding a good arm if any (ii)
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avoiding selecting a bad arm if there’s no good arm
(no arm which outperforms the baseline). We’ll
briefly show how to apply Multiple Simultaneous Hy-
pothesis Testing (MSHT), and in particular its sim-
plest and most well known variant termed the Bon-
ferroni correction, to Automatic Parameter Tuning.
MSHT(Holm, 1979; Hsu, 1996) is very classical in
neuro-imagery(Pantazis et al., 2005), bioinformatics,
tuning of optimizers(Nannen and Eiben, 2007b; Nan-
nen and Eiben, 2007a).

MSHT consists in statistically testing several hy-
pothesis in same time: for example, when 100 sets of
parameters are tested simultaneously, then, whenever
each set is tested with confidence 95%, and whenever
all sets of parameters have no impact on the result,
then with probability 1− (1− 0.05100) ≃ 99.4% at
least one set of parameters will be validated. MSHT
is aimed at correcting this effect, so that taking into
account the multiplicity of tests we can have modified
tests so that the overall risk remains lower than 5%.

Assume that we expect arms with standard
deviation σ (we’ll see that for our applications,σ
is usually nearly known in advance; it can also be
estimated dynamically during the process). Then,
the standard Gaussian approximation says that with
probability 90%1, the difference between̂Lt(θ) and
Lt(θ) for armθ is lower than 1.645σ/

√

Nt(i):
with probability 90%,

|L̂t(θ)−Lt(θ)| ≤ 1.645σ/
√

Nt(i). (3)

The constant 1.645 directly corresponds to the
Gaussian probability distribution (the precise value is
Φ−1((1+0.9)/2) = 1.645); a Gaussian standard dis-
tribution is≤ 1.645 in absolute value with probability
90%. If we consider several tests simultaneously, i.e.
we considerK arms, then Eq. 3 becomes Eq. 4:
with probability 90%,

∀θ ∈ {1,2, . . .K}|L̂t(θ)−Lt(θ)| ≤ tKσ/
√

Nt(i) (4)

where, with the so-called Bonferroni correction,tK =
−Φ−1(0.05/K) where Φ is the normal cumulative
distribution function2. This is usually estimated with

exp(−t2
K)

tK
√

2π
= 0.05/K (5)

and therefore if we expect improvements of sizeδ, we
can only validate a modification with confidence 90%

1The constant 90% is arbitrary; it means that we decide
that results are guaranteed within risk 10%.

2Note that a tighter formula istK = −Φ−1(1− (1−
0.05)K); this holds thanks to independence of the different
arms.

with n experiments per arm iftK solving Eq. 5 verifies
tKσ/

√
n≤ δ; a succinct equation for this is

s= δ
√

n/σ (6)

exp(−s2)

s
√

2π
≤ 0.05/K (7)

This shows that for other quantities fixed,n has a log-
arithmic dependency as a function ofK.

A numerical application forδ = 0.02,K = 49 and
σ = 1

2 is

s= 0.04
√

n,
exp(−s2)

s
√

2π
= 0.05/49.

which impliesn≥ 3219; this implies that for our con-
fidence interval, we require 3219 runs per arm (i.e.
infθ NT(θ)≥ 3219). We’ll see that this number is con-
sistent with our numerical experiments later. Interest-
ingly, with only one arm,i.e. K= 1, we getn≥ 1117;
this is not so much better, and suggests that whatever
we do, it will be difficult to get significant results with
subtle techniques for pruning the set of arms: if there
is only one arm, we can only divide the computational
cost for this arm byO(log(K)). In case of perfect
pruning,n is also naturally multiplied byK (as all the
computational power is spent on only one arm instead
of K arms); this provides an additional linear factor,
leading to a roughly linear improvement in terms of
computational power as a function of the number of
arms, in case of perfect pruning.

Bernstein Races

This paper is devoted to the use of simple regret algo-
rithms to APT, compared to the most simple APT al-
gorithm, namely uniform sampling (which is known
asymptotically optimal for simple regret); Bernstein
races are therefore beyond the scope of this paper.
Nonetheless, as our results emphasize the success of
uniform sampling (at least in some cases), we briefly
discuss Bernstein races. In (Mnih et al., 2008; Hoock
and Teytaud, 2010), Bernstein races were considered
as tools for discarding statistically bad arms: this is
equivalent toUni f orm, except that tests as above are
applied periodically, and statistically bad arms are
discarded. This discards arms earlier than the uni-
form algorithm above which just checks the result at
the end, but increases the quantityK involved in tests
(as in Eqs. 6 and 7),even if no arm can be rejected.
The fact that testing arms for discarding on the fly has
a cost, whenever no arm is discarded, might be sur-
prising at first view - it is a known effect that when
multiple tests are performed, then the number of sam-
ples required for a same confidence rate on the re-
sult is much higher. This approach can therefore at
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most divide the computational power byK log(K) be-
fore an arm is validated, and the computational power
is indeed increases when no early discarding is pos-
sible. Nonetheless, this sound approach is probably
the best candidate when the visualization is not cru-
cial - Uni f orm can provide nice graphs as shown in
the experimental section from http://hal.inria.fr/inria-
00467796/.

4 EXPERIMENTAL VALIDATION:
THE TUNING OF MOGO

Due to length constraints, the experimental section is
reported to http://hal.inria.fr/inria-00467796/.

5 DISCUSSION

We have surveyed simple regret algorithms. They are
noisy optimization algorithms, and they don’t assume
any structure on the domain. We comparedUni f orm
(known as optimal for sufficiently large horizon, i.e.
sufficiently large time budget) andUCB for automatic
parameter tuning. Our results are as follows:

• MSHT (even the Simple Bonferroni Correc-
tion) is relevant for Automatic Parameter Tun-
ing. It predicts how many computational power
is required forUni f orm; when the numberK
of tested sets of parameters depends on a dis-
cretization, MSHT can be applied for choosing
the grain of the discretization. TheUni f orm ap-
proach combined with MSHT by Bonferroni cor-
rection might be the best approach when the com-
putational power is large in front ofK, thanks to
its statistical guarantees, the easy visualization,
the optimality in terms of simple regret. How-
ever, non-asymptotically, it is not optimal and the
rule below is here for deciding the relevance of
Uni f ormwhenK andT are known.

• Choosing between the Naive Solution
(Uni f orm sampling) and Sophisticated Al-
gorithms. The naiveUni f orm algorithm is
provably optimal for large values of the horizon.
We propose the following simple rule for choos-
ing if it is worth using something else than the
simple uniform sampling:

– Compute
s= δ

√
n/σ.

where
∗ δ is the amplitude of the expected change in

reward;

∗ σ is the expected standard deviation;
∗ n is the number of experiments you can per-

form for each arm with your computational
power.

– Test if exp(−s2)

s
√

2π ≤ 0.05/K whereK is the num-
ber of arms.

– If yes, then uniform sampling is ok. Other-
wise, you can try UCB-like algorithms (but,
in that case, there’s no statistical guarantee),
or Bernstein races. At first view, our choice
would be Bernstein races for an implementa-
tion aimed at automatically tuning and vali-
dating several modifications (as in (Hoock and
Teytaud, 2010)) as soon as conditions above are
not met by the computational power available;
if the computational power available is strong
enough,Uni f orm has nice visualization prop-
erties.

– What if Uniform Algorithms can’t do it? If
K is not large, nothing can be much better than
uniform; at most the required horizon can be
divided byK log(K). What if K is large ?UCB
is probably much better whenK is large. A
drawback is that it does not include any sta-
tistical validation, and is not trivially paral-
lel; therefore, classical algorithms derived far
from the field of simple regret, like Bernstein
races(Bernstein, 1924), might be more relevant.
Bernstein races are close to theUni f orm algo-
rithm, except that they discard arms as early as
possible (Mnih et al., 2008; Hoock and Tey-
taud, 2010) by performing statistical tests on
the fly. A drawback is that Bernstein races do
not provide a complete picture of the search
space and of the fitness landscape asUni f orm;
also, if no arm can be discarded early, the hori-
zon required for statistical validation is bigger
than forUni f ormas tests are performed during
the run. Yet, Bernstein races might be the most
elegant tool for doing better thanUni f orm as
they adapt to various frameworks(Hoock and
Teytaud, 2010): when many arms can be dis-
carded easily, they will save up a lot of compu-
tational power.

• Results on our Application to MCTS. For the
specific application, the results were significant
but moderate; however, it can be pointed out that
many handcrafted modifications around Monte-
Carlo Tree Search provide such small improve-
ments of a few percents each. Moreover, as
shown in (Hoock and Teytaud, 2010), improve-
ments performed automatically by bandits can be
applied incrementally, leading to huge improve-
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ments once they are cumulated.

• Comparing Recommendation Techniques:
Most Played Arm is Better. The empirically
best arm and the most played arm in UCB are
usually the same (this is not the case for various
other bandit algorithms), and are much better
than the “empirical distribution of play” tech-
nique. The most played arm and the empirical
distribution of play obviously do not make sense
for Uni f orm. Please note that it is known in
other settings (see (Wang and Gelly, 2007)) that
the most played arm is better(Wang and Gelly,
2007). MPA is seemingly a reliable tool in many
settings.

A next experimental step is the automatic use of the
algorithm for more parameters, or e.g. by extending
automatically the neural network used in the Monte-
Carlo Tree Search so that it takes into account more
inputs: instead of performing one big modification,
apply several modifications the one after the other,
and tune them sequentially so that all the modifica-
tions can be visualized and checked independently.
The fact that the small constant 0.1 was better in UCB
is consistant with the known fact that tuned version of
UCB (with p related to the variance) provides better
results; using tuned-UCB might provide further im-
provements(Audibert et al., 2006).
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