
A ROBUST LIMITED-INFORMATION FEEDBACK FOR A CLASS
OF UNCERTAIN NONLINEAR SYSTEMS

Alessio Franci
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Abstract: We propose a variant of the recently introduced strategy for stabilization with limited information recently
introduced in (Liberzon and Hespanha, 2005) and analyze its robustness properties. We show that, if the nom-
inal plant can be made Input-to-State Stable (ISS) with respect to measurement errors, parameter uncertainty
and exogenous disturbances, then this robustness is preserved with this quantized feedback. More precisely, if
a sufficient bandwidth is available on the communication network, then the resulting closed-loop is shown to
be semiglobally Input-to-State practically Stable (ISpS).

1 INTRODUCTION

The always greater use of digital communication de-
vices for control applications makes quantization a
crucial issue. The limitations on the communica-
tion rate between the plant sensors and the con-
troller imposes to develop new approaches that are
able to guarantee good performance even when only
limited information on the plant’s state is available.
Despite strong technological improvements, the bit
rate available for a given control application may in-
deed be strongly limited due to scalability or energy-
saving concerns, or due to harsh environment con-
straints. Stabilization in this context becomes partic-
ularly challenging in presence of model uncertainties,
measurement errors or exogenous disturbances.

These observations explain why limited-
information control feedback has been widely
studied recently: (Nair et al., 2007; Hespanha et al.,
2007; Liberzon, 2009) and references therein for
representative examples. An important literature
already exists for linear systems, (Montestruque
and Antsaklis, 2004; Liberzon, 2003; Petersen
and Savkin, 2001; Nair and Evans, 2004; Jaglin
et al., 2008; Jaglin et al., 2009). In particular, the
results of (Liberzon and Nešić , 2007) provide a
coding/decoding strategy that achieves Input-to-State
Stabilization of quantized linear control systems. The

proposed control strategy relies on a discrete time
zoom-in/zoom-out procedure. This construction is
based on the exact sampled dynamics of the system,
or at most on its discrete time approximation. This
is why the closed-loop system may lack robustness
with respect to parameter uncertainties. These results
were subsequently generalized to nonlinear systems
in (Kameneva and Nešić , 2008).

In (Sharon and Liberzon, 2007), Input-to-State
Stabilization of quantized linear and nonlinear sys-
tems is achieved in the framework of continuous time
quantized control systems, that is exploiting hybrid
dynamics. It is based on a generalization of the dy-
namic quantization approach developed in (Liberzon
and Hespanha, 2005) and (Persis and Isidori, 2004)
for ISS and global asymptotically stable systems re-
spectively. For nonlinear systems, this control strat-
egy leads to local ISS. However, model uncertainties
can seriously compromise the efficiency of the pro-
posed algorithm and no estimates of the domain of
attraction can be obtained in general. We detail these
limitation in Section 5.

The purpose of this paper is to propose an al-
ternative dynamic quantization strategy, able to cope
with (time-varying) model uncertainties. It is based
on a simple and natural modification of the one
proposed in (Liberzon and Hespanha, 2005). We
show that the quantized control strategy ensures
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semiglobal Input-to-State practical Stability. More
precisely, any compact set of initial conditions and for
any bounded time-varying measurement error, distur-
bance and model uncertainty, it is possible to achieve
the desired robustness properties by properly tuning
the controller parameters. On the other hand, practical
stability here does not guarantee convergence to the
origin for vanishing perturbations, although the size
of the stable subset depends on the tuning parameters
and can be somewhat reduced, provided a sufficient
knowledge on the intensity of the perturbations. The
main contributions of our work are the robustness to
model uncertainties and its semiglobal characteriza-
tion for nonlinear systems.

The rest of the paper is organized as follows. In
Section 2 we introduce the needed notation. In Sec-
tion 3 we formally state the problem. In Section 4
we introduce our dynamic quantization strategy. We
then present the main results of the paper and com-
ment them in Section 5. In Section 6 we check their
application on the illustrative example of a DC motor
with nonlinear load. Proofs are given in Section 8.

2 NOTATION

For a set A � R, and a 2 A, A�a denotes the set
fx 2 A : x � ag. jxj denotes the infinity norm of
the vector x, that is, if x 2 Rn, jxj := maxi=1;:::;n jxij.
B(x;R) refers to the closed ball of radius R centered at
x in this norm, i.e. B(x;R) := fz 2 Rn : jx� zj � Rg.
kxk is the infinity norm of the signal x(�), that is, if
x : R�0 ! Rn, kxk = esssupt�0jx(t)j. A continuous
function a : R�0! R�0 is said to be of class K if it
is increasing and a(0) = 0. It is said to be of class K¥

if it is of class K and a(s)! ¥ as s! ¥. A func-
tion b : R�0�R�0! R�0 is said to be of class K L
if b(�; t) 2 K for any fixed t � 0 and b(s; �) is contin-
uous, decreasing and tends to zero at infinity for any
fixed s� 0.

3 PROBLEM STATEMENT

We are interested in the robustness properties of non-
linear plants of the form

ẋ = f (x;µ;u;d) ; (1)

where x2Rn is the state, f :Rn�Rp�Rm�Rh!Rn

is a locally Lipschitz function, µ : R�0 ! P � Rp

is a vector of (possibly time-varying) parameters, u :
R�0 ! Rm is a control input and d : R�0 ! D �
Rh is a vector of measurable and locally essentially
bounded exogenous perturbations. We assume that
f (0;µ;0;0) = 0 for all µ 2 P .

Limited-information feedback imposes that only
an estimate of the state is available to the controller.
This estimate is elaborated based on an encoded mea-
surement of the actual state. This encoded symbol is
then sent over the communication channel. The com-
munication channel is defined by its constant sam-
pling period t and by the number of symbols Nn,
N 2 N>0, that can be transmitted at each sampling
time kt, k 2N. We will assume, in this paper, that the
communication channel is noiseless and delay-free.
The overall structure of the controlled systems can be
summarized by Figure 1.
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ẋ = f (x;µ; û;d)
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Figure 1: Limited information feedback with exogenous
perturbations, measurement errors and uncertainties.

At each reception of a symbol, that is, at each time
instant kt, k 2 N, the decoder computes the state es-
timate that will be used in the applied feedback law.
The decoding is necessarily imprecise due to the lim-
ited bandwidth of the channel. This imprecision is re-
inforced by the uncertainty on the plant parameter µ,
by the presence of exogenous disturbances d and by
the possible measurement errors de. We assume that
only a constant1 approximation n 2 P of the (possi-
bly time-varying) parameter vector µ is available and
define µ�n =: dp 2 Rp as the parameter uncertainty.
Our first assumption imposes that, without communi-
cation constraints, the plant (1) can be stabilized by a
state-feedback law that makes it ISS with respect to
exogenous disturbances, parameter uncertainties and
measurement errors.

Assumption 1 (ISS of the nominal plant). There ex-
ists a continuous feedback law k : Rn�Rp ! Rn, a
continuously differentiable function V : Rn ! R and
class K¥ functions a;a;a;c;G;g such that, for all
x 2 Rn, d 2D , dp 2 P and de 2 Rn,

a(jxj)�V (x)� a(jxj);

jxj � c(jdj)+G(jdpj)+ g(jdej) ) (2a)

1In a second stage one may think of implementing an
adaptive control strategy.
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f (x;µ;k(x+de;µ+dp);d)��a(jxj) : (2b)

Based on the Lyapunov characterization of ISS
systems (Sontag and Wang, 1995), condition (2) is
equivalent to ISS of (1) with respect to d, de, dp (at
least locally as far as d and dp are concerned). As-
sumption 1 therefore constitutes a strong requirement,
but the following remarks may help establishing it in
some particular contexts.
Remark 1 (Systems in strict feedback form). For all
systems in strict feedback form it is possible to achieve
conditions of Assumption 1. Indeed, back-stepping al-
lows to iteratively make each subsystem ISS with re-
spect to (d;dp;de), using part of the state as a “vir-
tual” control input. See (Freeman and Kokotovich,
1993) for details.
Remark 2 (Globally Lipschitz systems). The condi-
tions of Assumption 1 can be achieved for all systems
which can be stabilized by a globally Lipschitz state
feedback that makes it ISS with respect to actuation
errors. Indeed if L denotes the global Lipschitz con-
stant of the nominal control law k, then the effects
due to parameter uncertainties dp and measurement
errors de can be described explicitly as an input dis-
turbance d̃ satisfying jd̃j � L jdpj+ L jdej. Hence,
if g 2 K¥ is the ISS gain, the presence of measure-
ment errors and parameter uncertainties simply adds
g(jd̃j) � g(2L jdpj) + g(2L jdej) to the solution esti-
mate of the closed-loop solutions, hence proving ISS
with respect to (dp;de). Note that all systems which
can be made ISS by differentiable bounded control
trivially satisfy this global Lipschitz condition. Cf.
e.g. (A.Isidori, 1999, Chapters 12,13,14)/

4 QUANTIZED CONTROLLER

In this section, we extend the encoding-decoding pro-
cedure presented in (Liberzon and Hespanha, 2005)
and (Persis and Isidori, 2004) to take into account
exogenous disturbances, measurement errors and pa-
rameter uncertainties. We assume that measurement
errors are bounded by some constant E > 0 such that

kdek � E: (3)

4.1 Quantization Region

Given an estimate x̂ of the actual state x, the quantiza-
tion region Q is defined by its centroid x̂ and its radius
L > 0 as

Q := B(x̂;L):
Due to measurement errors, the information available
to the encoder about the system state, i.e. x+ de, be-
longs to the quantization region Q if and only if the

estimation error e := x� x̂+de is small enough, that
is jej � jx� x̂j+ jEj � L. Note that the presence of the
estimation error e results from the combined effects
of quantization (x� x̂) and measurement errors (de).
Given the number Nn of symbols that can be trans-
mitted through the communication channel, we parti-
tion the quantization region into Nn identical hyper-
cubes. Q is then updated according to the encoding-
decoding procedure described below.

4.2 Dynamics of the Encoder

At each step k 2 N, the centroid update law is given
by the following hybrid dynamics

˙̂x = f (x̂;n;k(x̂;n);0); (4a)
8t 2 [kt;(k+1)t);

x̂(kt) = ĉ(kt); k 6= 0; (4b)
x̂(0�) = 0; (4c)

where ĉ(kt) is the centroid of the sub-region of Q (kt)
in which x(kt)+de lies. This sub-region is identified
by the variable qk, which constitutes the output of the
encoder. In other words, qk 2 N�Nn denotes the in-
dex of the sub-region of Q (kt) to which x(kt) + de
belongs. Then, given some L > 1 (we will make it
precise in the sequel) and any ball of initial conditions
B(0;D) with D > 0, the radius update law is given, at
each step k 2 N, by the following dynamics

L((k+1)t) = L

�
L(kt)

N
+E

�
+E ; (5a)

L(0) = D+E : (5b)

This radius update law is a natural extension of the al-
gorithms proposed in (Liberzon and Hespanha, 2005;
Persis and Isidori, 2004). It takes into account pos-
sible measurement errors. We will show in the se-
quel (cf. Claim 2) that such a dynamics leads to a
sequence fL(kt)gk2N that decreases up to a constant
depending on E, L and N. This in turn imposes a
decrease of the estimation error, modulo the measure-
ment errors, as long as dynamics (5) applies. The idea
behind this dynamics can be roughly summarized as
follows. The parameter L > 1 accounts for the ex-
pansiveness between sampling times. The constant E
appearing inside the brackets of (5a) accounts for the
case in which the encoder individuates a wrong sub-
region due to measurements errors. In such a situation
the error between the real and the measured state is
indeed less than the size of the sub-region, L(kt)=N,
plus the measurement error. The second E appearing
in (5a) prevents the measured state from falling out of
the quantization region while the real one is inside.
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Note that, as long as x(kt)+de lies in Q (kt), the
estimation error satisfies je(kt)j � ē(kt), where

ē(kt) :=
L(kt)

N
+E; 8k 2 N; (6)

is the maximum quantization error. Hence, at each
sampling time, the quantization procedure individu-
ates a hypercube B(x̂(kt); ē(kt)) to which x(kt) be-
longs, provided that x(kt)+de 2 Q (kt).

However, due to uncertainties and disturbances, it
may happen that x(kt)+ de falls out of the quantiza-
tion region anyway. Indeed, the expansion factor L

in (5a) ensures that the updated quantization region
is large enough to contain the measured state only if
the quantization error is large compared to the distur-
bances (see the proof of Theorem 1 for details). This
situation is defined as an overflow. It is represented
by the symbol qk = 0. In particular, as detailed in the
proof of Theorem 1, an overflow can happen at time
(k+ 1)t only if the maximum quantization error (6)
at time kt is strictly smaller than the size of pertur-
bations and uncertainties. If an overflow occurs at the
k0th sampling time, k0 2N>0, the encoder updates the
quantization region as follows:

x̂(k0t) = x̂(k0t
�); (7a)

L((k0 +1)t) = L(E +E)+E; (7b)

where E 2 R>0 will be defined later on. This means
that the hypercube individuated by the quantization
procedure (to which x(kt)) belongs, is no longer
B(x̂(kt); L(kt)

N +E), but rather B(x̂(kt);E +E), while
the rest of the update law remains as in (4),(5).

4.3 Dynamics of the Decoder

By implementing the same evolution laws as
(4),(5),(7), the decoder is able to reconstruct the evo-
lution of the state estimate x̂ from the knowledge of
fqkgk2N.

4.4 Controller

Inspired by the principle of certainty equivalence, and
in view of Assumption 1, the applied control input is
given by

û(t) = k(x̂(t);n); (8)

where x̂(�) is given by (4),(5),(7).

5 MAIN RESULTS

Our first result establishes robustness properties of
the closed-loop system with the proposed limited-

information feedback in the case the number of trans-
mittable bits is fixed and the sampling period can be
adjusted arbitrarily.

Theorem 1 (Fixed N). Let Assumption 1 hold for the
system (1). Then, there exist class K¥ functions c;G;g
and, given any compact sets P � Rp and D � Rd ,
any constant D 2 R>0 and any N 2 N>1, there exist
positive constants t;L;E;E and a class K L function
b such that the trajectories of the closed-loop system

ẋ = f (x;µ; û;d); (9)

where û(t) is the output of the digital controller de-
fined by (4),(5), (7),(8), satisfy, for all x(0) 2 B(0;D),
all n 2 P , all µ : R�0 ! P , all d : R�0 ! D and all
de : R�0! B(0;E),

jx(t)j � b(D; t)+c(kdk)+G(kµ�nk)+d; (10)

where d := g

�
L(E +E)+

�
2+ L+1

1� L
N

�
E
�
:

Theorem 1 states that (9) is semiglobally ISpS
(Input-to-State practically Stable) in the sense of
(Jiang et al., 1994) with the proposed quantized con-
trol strategy. Our proof, provided in Section 8.1, is
constructive. The utilized bit-rate, given by log2(N

n)
t

,
is fixed by the condition that quantization resolution,
given by N�1, is small enough to compensate for the
expansiveness of the system between sampling times
L. An upper bound on this expansiveness expressed
in terms of the (local) Lipschitz constant of the system
L , is given by

L := eLt:

Based on the size of the initial conditions D, our
control strategy permits to build a forward invariant
region where the constant L can be computed (cf.
Claim 1 below). The explicit condition on the data
rate used in the proof is then given by

LN�1 < 1:

It is interesting to note that the required data-rate is the
same as in (Liberzon and Hespanha, 2005), modulo
the size of the constructed forward invariant region.

The comparison functions involved in (10) can be
explicitly given

b(�; t) = a
�1(a(2g(�)g(e�lt)));

c(�) = a
�1(a(4c(�)));

G(�) = a
�1(a(8G(�)));

g(�) = a
�1(a(8g(�))) :

where l :=� 1
t

ln
�

L

N

�
, and the K¥ functions a;a;g;c

and G are defined as in Assumption 1. We note that,
since the function c does not depend on the parame-
ters of the of the controller, but only on the nominal
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comparison functions introduced in Assumption 1, it
is possible for a class of control and disturbance affine
systems to find a continuous feedback law for any de-
sired ISS attenuation gain c (Praly and Wang, 1996;
Teel and Praly, 1998).

Due to the particular design of the encoding-
decoding procedure, measurement errors no longer
appear as an input. Indeed, their effects are embed-
ded in the last term of (10), which depends only on the
parameters of the digital controller. As already antic-
ipated, the constant L is an estimate of the expansion
of the system between two successive sampling times.
On the other hand, the constants E and E are propor-
tional to the upper bound on the size of disturbances-
uncertainties and measurement errors, respectively. In
particular E is defined in (3) and

E = Lmax

(
sup

µ;n2P
jµ�nj; sup

d2D
jdj

)
:

Hence, the last term in (10), which constitutes an up-
per bound to the steady-state error, is a continuous
function of the known upper bound on the size of
exogenous disturbances, that vanishes at zero. This
guarantees that the steady-state error is small if distur-
bances are small, provided a sufficient knowledge of
the plant. Moreover, when no perturbations apply, we
recover the exact same result as (Liberzon and Hes-
panha, 2005).

Robustness to model uncertainties is the main
contribution of this work if compared to the existing
representative examples in the literature ((Kameneva
and Nešić , 2008) and (Sharon and Liberzon, 2007)).
In (Kameneva and Nešić , 2008) this lack of robust-
ness is due to the digital nature of the controller,
which is based on the exact dynamics or at most on
its discrete time approximation (cf. Equation (2) in
that reference). In (Sharon and Liberzon, 2007) this
possible lack of robustness comes from the fact that
ISS of the quantized closed-loop system is achieved
through a cascade reasoning from the quantization er-
ror (which is ISS with respect to external disturbances
thanks to the particular encoding/decoding strategy)
to the system’s state (which is ISS by hypothesis).
This is possible because the evolution of the quanti-
zation error is shown to be independent from both the
controller’s and the system’s state (cf. Equation (12)
in that reference). This is no longer achievable if one
introduces parametric uncertainties, as the state of the
controller is fed back in the evolution equation of the
quantization error. However, it would be interesting
to study if this lack of robustness persists if under As-
sumption 1. Then, it would be worth comparing the
“gains” given by the different methods. These studies
are not presented here.

Another contribution compared to (Sharon and
Liberzon, 2007) is the non-local characterization of
robustness, which turns out to be semiglobal. In
the statement of Theorem 2 in that reference, which
gives an extension of the proposed algorithm to non-
linear systems, the admissible set of initial condi-
tions and external disturbances are built starting from
the K¥ functions bcl and gcl , whose explicit expres-
sion depends on the Lipschitz constant of the system
(cf. proof of Theorem 1 in that reference). Indeed,
given a region where to define the Lipschitz constant
(jxj < lx and jwj < lw), it is possible to find the size
of the ball of admissible initial conditions D and al-
lowed disturbances e by satisfying the two relations
bcl(d)+ g(e)< lx and e < lw. It follows that the value
of D and e cannot be chosen a priori, and may re-
sult impossible to be arbitrarily enlarged, depending
on the explicit expression of the two K¥ functions bcl
and gcl . On the other hand, given a compact set of ini-
tial conditions and a bound on the size of exogenous
disturbances, it is not possible either to build the K¥

functions used in the statement of the theorem, as it is
not possible to build an “overshoot” region in which
the Lipschitz constant would be defined. These obser-
vations show that in (Sharon and Liberzon, 2007) the
extension to nonlinear systems is only local. In this
paper we give a constructive way to build the over-
shoot region starting from an arbitrary ball of initial
conditions and an arbitrary size for the exogenous dis-
turbances.

However, considering the superior performances
in the steady-state error of the algorithm proposed in
(Sharon and Liberzon, 2007) (ISS instead of ISpS),
one may think of implementing some switching strat-
egy between the two methods to benefit from the ad-
vantages of each procedure. In a first step the state
would be estimated with the algorithm proposed here
even in the case of parametric uncertainties. In a sec-
ond time, once the parameters of the systems have
been identified and the state has entered a sufficiently
small region around the origin, one would switch
to the algorithm proposed in (Sharon and Liberzon,
2007).

In case of overflow, the size of quantization region
is set to L(E+E)+E (cf. (7)). It may happen, in par-
ticular for large sampling periods or highly nonlinear
systems, that L gets big. In this case, the quantization
error may become very large as E depends linearly
on L (cf. (21)), leading to a drop in performances.
This can be easily avoided by using a suitable E in
the encoding-decoding procedure. Indeed it follows
from Claim 2 (see below) that, as long as no overflow
occurs, the size of the quantization region converges
to
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Q¥ := s¥E;
where s¥ denotes a positive constant (see (23) be-
low). It follows that the maximum quantization error
(6) converges from above to

e¥ =
�

s¥

N
+1
�

E: (12)

As we show in the sequel (cf. (19)) an overflow can
occur only if the maximum quantization error gets
smaller than some constant h (defined in (16)), which
denotes an upper bound on the size of perturbations
and uncertainties. In other words, it suffices to set E
such that

e¥ � h (13)
to avoid overflows. We then have the following theo-
rem, whose proof follows directly from that of Theo-
rem 1, together with Equations (12) and (13).
Theorem 2 (Fixed N - no overflows). Under the
assumptions of Theorem 1, the design parameters
t;L;E;E can be picked in such a way that (10) holds

with d = g

��
1+ L+1

1� L
N

�
E
�
:

We point out that the size of the steady state error
d defined in Theorem 2 can be either larger or smaller
than the one obtained in Theorem 1, depending on the
parameters involved.

We finally state a similar result for the case when
the sampling period is imposed by technological con-
straints and we can only adjust the number of trans-
mittable bits. In this context, it appears that, due to
the presence of exogenous perturbations, t cannot be
chosen arbitrarily large, as it happens in the ideal case
(cf. (Liberzon and Hespanha, 2005)). This fact is de-
tailed in the proof, given in Section 8.4.
Theorem 3 (Fixed sampling period). Let Assump-
tion 1 hold for the system (1). Then, there exist
class K¥ functions c;G;g and, given any compact sets
P �Rp, D �Rd and any D2R>0, there exists a time
tmax 2 R>0 such that, for all t 2 (0;tmax), there exist
positive constants N;L;E;E and a class K L func-
tion b such that trajectories of the closed-loop system
(9), where û(t) is the output of the digital controller
defined by equations (4),(5), (7),(8), satisfy (10) for
all x(0) 2 B(0;D), all n 2 P , all µ : R�0 ! P , all
d : R�0!D and all de : R�0! B(0;E). That is, (9)
is semiglobally ISpS.

We stress that the functions involved in the trajec-
tories estimate of this result are the same as for Theo-
rem 1.
Remark 3. Theorems 1, 2 and 3 can be easily gen-
eralized to non-constant sampling periods, provided
that the time between two samples does not exceed
the value t defined in the above statements. /

6 ILLUSTRATIVE EXAMPLE

We check the application of our strategy on the con-
trol of a model of a DC motor with a load modeled
as a nonlinear torque. The uncertainty on the load
is modeled by unknown time-varying variables µ and
d1. Actuator errors are represented by an exogenous
disturbance d2:

ẋ1 = x2 +µx3
1 +d1

ẋ2 = u+d2:

For the needs of the numerical simulations, we
have chosen µ(t) = 1+Psin(t), d1(t) = Dsin(t) and
d2(t) = Dcos(t). At each sampling time the measure-
ment available to the encoder is perturbed by the mea-
surement error de(t) = E(sin(t);cos(t))T . The sys-
tem being in strict feedback form, we follow (Free-
man and Kokotovich, 1993) to construct a continu-
ous ISS feedback law. We assume that only 2 bytes
can be transmitted at each sampling time. Our aim
is to stabilize every solution starting in B(0;10) (i.e
D = 10) assuming the following values for the per-
turbation amplitudes, P = 0:5, D = 1:0, E = 0:1.
Note that this correspond to a 50% uncertainty on the
load parameter. Our control scheme with parameters
t = 0:1s; L = 64; E = 64; E and n = 1 successfully
stabilizes the system (cf. Figure 2).

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

time (s)

| x
 |

Figure 2: Evolution of the norm of the state from x(0) =
[�10;�10].

Since E > 0, the size of the quantization region
remains sufficiently large (i.e e¥ � h, cf. (13)) and
no overflow occurs, as stated by Theorem 2. If an
overflow had occurred then the size of the quantiza-
tion region would have jumped to L(E +E)+E (cf.
(7)), leading to a big drop in performances. This il-
lustrates the fact that, even when no measurement er-
ror applies, setting an appropriate E > 0 may be very
profitable in practice.

For D = 5, and the same parameters, the sampling
period can be taken as large as 0:3s. We point out that
the good performance of our strategy are also due to
the ISS characteristics of the feedback strategy pro-
vided in (Freeman and Kokotovich, 1993).
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In conclusion, with only two bytes, with a sam-
pling period of the order of the plant’s time scale,
and with disturbances magnitude of the order of the
nominal controlled dynamics values, our proposed
approach succeeds in stabilizing the system, with a
steady-state error of the same magnitude as the per-
turbations.

7 CONCLUSIONS

The proposed strategy for limited-information feed-
back control of nonlinear plants is shown to be robust
to exogenous disturbances and measurement errors,
even in presence of parametric uncertainty. Its appli-
cation is illustrated by the numerical simulation of a
DC motor control. Possible future extensions concern
output feedback (see (Sharon and Liberzon, 2008) for
a representative example) and robustness to delays.

8 PROOF OF THE MAIN
RESULTS

8.1 Proof of Theorem 1

Contraction of the quantization region: Suppose there
are no measurement errors, i.e E = 0. Then we want
the estimation error to decrease as long as no overflow
occurs, that is, as long as x(kt) 2 Q (kt), we impose
L(kt)< L((k�1)t). This means, in view of (5), that

L

N
< 1: (15)

Divergence between sampling times: During the
time intervals separating two consecutive sampling
times, the estimation error may increase. To eval-
uate this expansion, let us assume that a number
Ŵ > 0 is known2 such that x(t)+ de 2 B(0;Ŵ ) and
x̂(t) 2 B(0;Ŵ ) for all t � 0. In this case, it re-
sults from the continuity of k that, for all t � 0,
jû(t)j � maxx̂2B(0;Ŵ );n2P jk(x̂;n)j =: U < ¥. Let
L(Ŵ ) be the Lipschitz constant of f over the re-
gion f(x;µ;u;d) 2 Rn+p+m+h : jxj � Ŵ ;µ 2 P ; juj �
U;d 2 Dg, then, in view of (4) and exploiting
the Bellman-Gronwell Lemma, it holds that, for
all x; x̂ 2 B(0;Ŵ ), d

dt je(t)j � j f (x;µ(t); û;d(t)) �
f (x̂;n; û;0)j � L(Ŵ )maxfje(t)j;h(t)g, where h(t) =
maxfjµ(t)�nj; jd(t)jg. Note that h(t)� h, where

h = max

(
sup

µ0;n02P
jµ0�n

0j; sup
d02D
jd0j

)
: (16)

2We will demonstrate the existence of such Ŵ , by con-
structing it, in the sequel (cf. Claim 1).

Hence, it holds that, for all t 6= kt, k 2 N,
je(t)j � h(t) ) d

dt je(t)j= L(Ŵ )je(t)j, and
je(t)j< h(t) ) d

dt je(t)j= L(Ŵ )h(t).
By the fact that je(0)jeL(Ŵ )t < je(0)j+hL(Ŵ )t only
if je(0)j < h

L(Ŵ )t
eL(Ŵ )t�1

� h, it follows that, for all t 2
[0;t],

je(0)j � h ) je(t)j � je(0)jeL(Ŵ )t : (17)

Defining L = eL(Ŵ )t, we can give a natural interpre-
tation to (5). The constant N�1 describes the effect of
measuring the state, which individuates a smaller hy-
percube to which the state belongs, while L describes
the increase in the size of this hypercube during the
time before the next sampling to make sure the state
belongs to the new quantization region. Recalling that
je(kt)j � ē(kt) for all k 2 N, we claim that

ē(kt)� h ) je((k+1)t�j � Lē(kt); (18)

that is x((k+ 1)t) 2 Q ((k+ 1)t) and, consequently,
qk+1 > 0 (i.e. no overflow at step k + 1). Indeed,
note that if h � je(kt)j � ē(kt), then (18) follows
from (17), while, if je(kt)j < h, there exists t̃ :=
minft � 0 : je(kt)j+ hL(Ŵ )t � hg. If t̃ � t then
je((k + 1)t�)j < h < Lē(kt), while, if t̃ < t, then,
by (17), je((k+1)t�)j � he(t�t̃)L(Ŵ ) < Lh�Lē(kt),
which shows (18).

Furthermore, by reversing (18), we obtain that
je((k + 1)t�j > Lē(kt) only if ē(kt) < h, that is,
defining E = supd0e2E jdej, je((k+1)t�j+E > L((k+
1)t) only if ē(kt)< h, which implies that an overflow
may occur only when the maximum quantization er-
ror (6) is below the bound h:

qk+1 = 0 ) ē(kt)< h: (19)

Moreover, we establish the following upper bound on
the size of the estimation error right before an over-
flow:

qk+1 = 0 ) je((k+1)t�)j< Lh: (20)

Note that, from (19), there exists a time t̃ 0 := minft >
0 : je(kt)j+ hL(Ŵ )t � hg. If t̃ 0 � t then je((k +
1)t�)j � h < Lh. On the other hand, if t̃ 0 < t then,
by (17), je((k + 1)t�)j � he(t�t̃ 0)L(Ŵ ) < Lh, which
establishes (20).

Trajectory boundness: Fix any L > 1 and let

E = Lh : (21)

By equation (20) and as long as x(t)+ de 2 B(0;Ŵ ),
this implies that, in the eventuality of an overflow at
time k0t (i.e. qk0 = 0),

x(k0t);x(k0t)+de 2 B(x̂(k0t);E +E) ; (22)
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In view of (19) and (7), this implies that x((k0+1)t)2
Q ((k0 +1)t), that is qk0+1 > 0. This means that it is
not possible to have two successive overflows.

Let Wc := fx 2 Rn : V (x)� cg, where
c = a

�
c(supd02D jd0j) + G(supµ0;n02P jµ0 � n0j) +

g
�

max
�

D+E +s¥E;L(E +E)+E
	��

,
where s¥ is defined as

s¥ := (L+1)N=(N�L) : (23)

Let

Ŵ :=W +max
�

D+E +s¥E;L(E +E)+E
	
; (24)

W := max
�

D;supx;z2Wc
jx� zj

	
; (25)

and pick the sampling period t as t = ln(L)
L(Ŵ )

. We prove
the following in Sections 8.2 and 8.3 respectively.

Claim 1. The solutions of the closed-loop system sat-
isfy jx(t)j �W ; jx̂(t)j � Ŵ ; 8t � 0.

Claim 2. As long as no overflow occurs, it holds that
je(t)j � e�ltL(0)+s¥E, where l =� 1

t
ln
�

L

N

�
Conclusion: From the proof Claim 1, it results

that, for all t � 0, je(t)j � max
�
(D + E)e�lt +

s¥E;L(E + E) + E
	
� De�lt + L(E + E) + (2 +

s¥)E; 8t � 0: From Assumption 1, this implies that
the trajectories of the closed loop system (9), with pa-
rameters fN;t;L;E;n;Eg, satisfy

jx(t)j � a�1
�

a

�
g(De�lt) + c(kdk) + G(kµ� nk) +

g(L(E +E)+(2+s¥)E)
��

,

for all x(0) 2 B(0;D), all n 2 P , all µ : R�0! P , all
d : R�0 ! D and all de : R�0 ! B(0;E). From this
and from the fact that s(a+ b) � s(2a)+s(2b) for
all nondecreasing function s and all a;b� 0, the the-
orem is proved with

b(�; t) = a
�1(a(2g(�)g(e�lt))) (26a)

c(�) = a
�1(a(4c(�))) (26b)

G(�) = a
�1(a(8G(�))) (26c)

g(�) = a
�1(a(8g(�))) : (26d)

8.2 Proof of Claim 1

Let Q := infft 2 R>0 : jx(t)j>W or jx̂(t)j> Ŵg.
This time is well defined as jx(0)j � D � W and,
from the fact that q0 > 0 by construction, x̂(0) 2
B(0;D+E) � B(0;Ŵ ). For all t 2 [0;Q), L(Ŵ ) can
be correctly interprated as an upper bound on the ex-
pansion of the system. In particular, Claim 2, (19) and
(20) hold for all t 2 [0;Q).

Define k0t as the time of the first overflow. Then,
by Claim 2, it holds that, for all t 2 [0;min(Q;(k0�
1)t)), je(t)j< L(0)e�lt +s¥E �D+E+s¥E, where

l =
j ln( L

N )j
t

.
If Q < (k0 � 1)t, then, from Assumption 1 and
(A.Isidori, 1999, Section 10.4), it results that
the set Wc̃ = fx 2 Rn : V (x) � c̃g, where c̃ :=
a(c(supd02D jd0j)+G(supµ0;n02P jµ0�n0j)+g(D+E+

s¥E)), is an invariant attractive set, and, noting that
c̃ � c, it follows that Wc̃ � Wc, which, by the defi-
nition of W in (25), implies jx(t)j � W for all t 2
[0;Q]. This in turn ensures that supt2[0;Q] jx̂(t)j �
W + supt2[0;Q] je(t)j � W + D + E + s¥E � Ŵ (cf.
(24)). This contradicts the definition of Q and hence
we conclude that Q� (k0�1)t.

If Q 2 [(k0�1)t;k0t), then, by (19) and (20) and
the definition of E in (21), it results that je(t)j < E
for all t 2 [t0 � t;Q]. With the same arguments as
before, this contradicts the definition of Q and hence
we conclude Q� k0t.

If Q 2 [k0t;(k0 +1)t), by E > h and (22), we get
that je(t)j � L(E +E) for all t 2 [k0t;Q], again con-
tradicting the definition of Q. Hence we can conclude
Q� (k0 +1)t.

If Q = (k0 + 1)t, then by construction qk0+1 > 0
and je((k0 + 1)t)j � L((k0 + 1)t) = L(E + E) + E,
again contradicting the definition of Q. Hence Q >
(k0 +1)t.

The system properties established along the whole
proof being uniform in time, we can set t 0 = t� (k0 +
1)t and apply the same arguments with new “initial”
condition L(0) = L(E +E) +E until the next over-
flow. By reiterating for successive overflows, we con-
clude Q = ¥, which is enough to prove the claim.

8.3 Proof of Claim 2

The first line in (5), can be rewritten as

L(kt) = RkL(0)+E(L+1)
k

å
i=0

Ri < L̃(kt); (27)

where L̃ : R�0! R>0 is defined as

L̃(t) = Rt=tL(0)+E(L+1)
¥

å
i=0

Ri; (28)

and R := L=N < 1 (cf. (15)).
If L is chosen appropriately to compensate for er-
ror divergences between sampling times, if no over-
flow occurs, then, recalling the definition of the maxi-
mum quantization error (6), forall t 2 [kt;(k + 1)t),
je(t)j � L

t�kt
t

�
L(kt)

N +E
�

. Substituting (27) in the
this equation, we obtain that, for all t 2 [kt;(k+1)t),

ICINCO 2010 - 7th International Conference on Informatics in Control, Automation and Robotics

52



je(t)j �
�

L

N

�t=t
L(0) + L

t�kt
t

N E(L + 1)å
k
i=0
�

L

N

�i
+

LE < L̃(t): Recalling finally that the geometric se-
ries in the definition of L̃ (28) converges, å

¥
i=0
�

L

N

�i
=

N
N�L

, this finishes to establish Claim 2 by recalling
the definition of s¥ in (23) and by noticing that the
error can only decrease at the sampling times.

8.4 Proof of Theorem 3

The proof follows along the same lines as that of The-
orem 1. The difference stands in the fact that L can no
longer be chosen arbitrarily. Instead, given any t > 0,
we define L = eL(Ŵ )t, where Ŵ is defined as before
(cf. (24)). Note that L enters the definition of Ŵ , in
particular Ŵ and L(Ŵ ) are both continuous increas-
ing functions of L. Hence, L is required to satisfy the
following two equations L = eL(Ŵ )t and Ŵ = Ŵ (L).
This set of equations admits other solutions than the
trivial one (L = 1, t = 0) provided that

teL(Ŵ (L))t d
dL

L(Ŵ (L))
���
L=1

< 1 :

By continuity of the equations in t and L, we con-
clude that there exists tmax > 0 such that a solution
exists for all t 2 (0;tmax). The rest of the proof fol-
lows that of Theorem 1.
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