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Abstract: In time critical applications, anytime mode of operation offers a way to ensure continuous operation and to 
cope with the possibly dynamically changing time and resource availability. Soft Computing, especially 
fuzzy model based operation proved to be very advantageous in power plant control where the high 
complexity, nonlinearity, and possible partial knowledge usually limit the usability of classical methods. 
Higher Order Singular Value Decomposition based complexity reduction makes possible to convert 
different classes of fuzzy models into anytime models, thus offering a way to combine the advantages, like 
low complexity, flexibility, and robustness  of fuzzy and anytime techniques.  By this, a model based 
anytime control methodology can be suggested which is able to keep on continuous operation using non-
exact, approximate models of the plant, thus preventing critical breakdowns in the operation. In this paper, 
an anytime modeling method is suggested which makes possible to use complexity optimized fuzzy models 
in control. The technique is able to filter out the redundancy of fuzzy models and can determine the near 
optimal non-exact model of the plant considering the available time and resources. It also offers a way to 
improve the granularity (quality) of the model by building in new information without complexity 
explosion. 

1 INTRODUCTION 

Nowadays, solving control problems model-
integrated computing has become very popular. This 
integration means that the available knowledge is 
represented in a proper form and acts as an active 
component of the procedure to be executed during 
the operation. 

For linear problems, well established methods 
are available and they have been successfully 
combined with adaptive techniques to provide 
optimum performance. 

In case of nonlinear techniques, fuzzy modeling 
seems to result in a real breakthrough even when no 
analytical knowledge is available about the system, 
the information is uncertain or inaccurate, or when 
the available mathematical form is too complex to 
be used. Although, major limitation of fuzzy models 
is their exponentially increasing complexity. An 
especially critical situation is, when due to failures 

or an alarm appearing in the modeled system, the 
required reaction time is significantly shortened and 
one has to make decisions before the needed and 
sufficient information arrives or the processing can 
be completed. 

In such cases, anytime techniques can be applied 
advantageously to carry on continuous operation and 
to avoid critical breakdowns. Anytime systems are 
able to provide short response time and are able to 
maintain the information processing even in cases of 
missing input data, temporary shortage of time, or 
computational power (Zilberstein, 1996). The idea is 
that if there is a temporal shortage of computational 
power and/or there is a loss of some data, the actual 
operations should be continued to maintain the 
overall performance “at lower price”, i.e., 
information processing based on algorithms and/or 
models of simpler complexity (and less accuracy) 
should provide outputs of acceptable quality to 
continue the operation of the complete system. 
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There are a few approaches aiming to exploit the 
advantages of anytime control however mostly in the 
field of linear control. To mention two of the 
characteristic approaches, Fontanelli at al. 2008 
applies a hierarchical anytime control design 
strategy with stochastic scheduling conditioning 
resulting in usually acceptable worst-case execution 
time and almost sure stability while Battacharya et 
Balas 2004 uses balanced truncation and 
residualization of models to generate a set of 
reduced-order controllers in order to ensure smooth 
switching between the truncated models. 

There are mathematical tools, like Singular 
Value Decomposition (SVD), which offer a 
universal scope for handling the complexity problem 
by anytime operations. SVD proved to be very 
advantages at different fields of (linear) control, like 
receding horizon control (RHC) where the 
application of the technique may offer a sub-optimal 
control strategy, see e.g. Rojas et al. 2004. 

Embedding fuzzy models in anytime systems 
extends the advantages of the Soft Computing (SC) 
approach with the flexibility with respect to the 
available input information and computational 
power.  

In this paper, we deal with the applicability of 
fuzzy models in dynamically changing, complex, 
time-critical, anytime systems. The analyzed models 
are generated by using (Higher Order) Singular 
Value Decomposition ((HO)SVD). This technique 
provides a uniform frame for a family of modeling 
methods and results in low (optimal or nearly 
optimal) computational complexity, easy realization, 
and robustness. The accuracy can also easily and 
flexibly be increased, thus both complexity 
reduction and the improvement of the approximation 
can be implemented. 

The paper is organized as follows: In Section 2 
the generalized idea of anytime processing is 
introduced. Section 3 summarizes the basics of 
Singular Value Decomposition. Section 4 is devoted 
to the SVD based complexity reduction and density 
improvement of fuzzy models. Section 5 briefly 
deals with anytime fuzzy control. Finally, in Section 
6, conclusions are drown. 

2 ANYTIME PROCESSING 

In recourse, data, and time insufficient conditions, 
anytime algorithms, models, and systems 
(Zilberstein, 1996) can be used advantageously. 
They are able to provide guaranteed response time 
and are flexible with respect to the available input 

data, time, and computational power. This flexibility 
makes these systems able to work in changing 
circumstances without critical breakdowns in the 
performance. The main goal of anytime systems is to 
keep on the continuous, near optimal operation 
through finding a balance between the quality of the 
processing and the available resources. 

Iterative algorithms/models are popular tools in 
anytime systems, because their complexity can 
easily and flexibly be changed.  These algorithms 
always give some, possibly not accurate result and 
more and more accurate results can be obtained, if 
the calculations are continued. When the results are 
needed, by simply stopping the calculations, the, in 
the given circumstances best results are got.  

Unfortunately, the usability of iterative 
algorithms is limited. Because of this limitation, a 
general technique for the application of a wide range 
of other types of models/ computing methods in 
anytime systems has been suggested in Várkonyi-
Kóczy, et al. 2001, however at the expense of lower 
flexibility and a need for extra planning and 
considerations. 

3 SINGULAR VALUE 
DECOMPOSITION 

SVD has successfully been used to reduce the 
complexity of a large family of systems based on 
both classical and soft techniques (Yam, 1997). An 
important advantage of the SVD complexity 
reduction technique is that it offers a formal measure 
to filter out the redundancy (exact reduction) and 
also the weakly contributing parts (non-exact 
reduction). This implies that the degree of reduction 
can be chosen according to the maximum acceptable 
error corresponding to the current circumstances. In 
case of multi-dimensional problems, the SVD 
technique can be defined in a multidimensional 
matrix form, i.e. HOSVD can be applied.   

The SVD based complexity reduction algorithm 
is based on the decomposition of any real valued F  
matrix: 
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nonzero singular values is . The 
singular values indicate the significance of the 
corresponding columns of
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For n-dimensional cases, HOSVD based 
reduction ( )(),,,(

1
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be made in n steps, in every step one dimension of 
matrix F , containing the  consequences is 
reduced.  

yi in1,...,

The first step sets FF =1
 . In the followings, 

i
F is generated by step i-1. The i-th step of the 
algorithm (i>1) is 

1, Spreading out the n-dimensional matrix 
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The SVD based complexity reduction can be 
applied to various types of fuzzy systems, see e.g. 
Takács et Várkonyi-Kóczy, 2002, and Takács et 
Várkonyi-Kóczy, 2003. 

4 ANYTIME MODELING: 
COMPLEXITY REDUCTION 
AND IMPROVING THE 
APPROXIMATION 

With the help of the SVD-based reduction not only 
the redundancy of the rule-bases of fuzzy systems 
can be removed, but further reduction can also be 
obtained, considering the allowable error. This latter 
can be done adaptively according to the temporal 
conditions, thereby offering a way to use fuzzy 
models in anytime systems.  

The method also offers a way for improving the 
model if later on we get into possession of new 
information (approximation points) or more 
resources. An algorithm can be suggested, which 
finds the common minimal implementation space of 
the compressed original and the new approximation 
points, thus the complexity will not explode as we 
include new information into the model. These two 
techniques, non-exact complexity reduction and the 
improvement of the approximation accuracy, ensure 
that we can always cope with the temporarily 
available (finite) time/resources and find the balance 
between accuracy and complexity. 

4.1 Reducing the Complexity of the 
Model 

For creating anytime models, first a practically 
“accurate” fuzzy system is to be constructed. The 
rule-base can be determined e.g. by using expert 
knowledge. In the second step, the redundancy of 
this model is reduced by (HO)SVD. The (non-exact) 
anytime models can be obtained either by applying 
the iterative transformation algorithm described in 
Takács et Várkonyi-Kóczy, 2004 or in the general 
frame of modular architecture (for details, see 
Várkonyi-Kóczy et al., 2001). 

In the first case, the transformation can be 
performed off-line and the model evaluation can be 
executed till the control action/results are needed. 
The newest output corresponds to the, in the given 
circumstances obtainable best results. nn

1+i
F  

In the latter case, the models resulted by the 
HOSVD reduction will differ in their accuracy and 
complexity. An intelligent expert system, monitoring 
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the actual state of the supervised system, can 
adaptively determine and change for the units (rule 
base models) to be applied according to the available 
computing time and resources at the moment. These 
considerations need additional computational 
time/resources (further reducing the resources). 

It is worth mentioning, that the SVD based 
reduction finds the optimum, i.e., minimum number 
of parameters which is needed to describe the 
system. 

One can find more details about the intelligent 
anytime monitor and the algorithmic optimization of 
the evaluations of the model-chain in Zilberstein, 
1993 and Várkonyi-Kóczy et Samu, 2004. 

4.2 Improving the Approximation of 
the Model 

The complexity of the control can be tuned both by 
evaluating only a degraded model (decreasing the 
granulation) and both by improving the existing 
model (increasing the granulation) in the knowledge 
of new information. This latter means the 
improvement of the density of the approximation 
points. Here a very important aim is not to let to 
explode the complexity of the compressed model 
when the approximation is extended with new 
points. Thus, if approximation A is extended to B 
with a new set of approximation points and basis, 
then the question is how to transform Ar to Br 
directly without decompressing Ar, where Ar and Br 

are the reduced forms of A and B. In the followings, 
an algorithm is summarized for the complexity 
compressed increase of such approximations. 

To enlighten more the problem, let us show a 
simple example. Assume that we deal with the 
approximation of function  (see Fig. 1). For 
simplicity, assume that the applied approximation A 
is a bi-linear approximation based on the sampling 
of  over a rectangular grid (Fig. 2), so, the 
bases are formed of triangular fuzzy sets (or first 
order B-spline functions). After applying SVD based 
reduction, the minimal dimensionality of the basis is 
defined. In Fig. 3, as the minimum basis, two basis 
functions are shown on each dimension instead of 
the original three as depicted in Fig. 2.  

),( 21 xxF

),( 21 xxF

Let us suppose that at a certain stage, further 
points are sampled (Fig. 4) in order to increase the 
density of the approximation points in dimension X1, 
hence, to improve approximation A to achieve 
approximation B.  The new points can easily be 
added to approximation A shown in Fig. 2 to yield 
approximation B with an extended basis, as is shown 
in Fig. 5. Usually, however, once reduced 

approximation Ar is found then the new points 
should directly be added to Ar (where there is no 
localized approximation point) to generate a reduced 
approximation Br (see Fig. 6). Here again, as an 
illustration, two basis are obtained in each 
dimension, hence the calculation complexity of Ar 
and Br are the same, but the approximation is 
improved. 

In more general, the crucial point is to inject new 
information, given in the original form, into the 
compressed one. If the dimensionality of Br is larger 
than Ar then the new points and basis lead to the 
expansion of the basis’ dimensionality of the 
reduced form Ar. On the other hand, if the new 
points and basis have no new information on the 
dimensionality of the basis then they are swallowed 
in the reduced form without the expansion of the 
dimensionality, however the approximation is 
improved. Thus, the approximation can get better 
with new points without increasing the calculation 
complexity. This implies a practical question, 
namely: how to apply those extra points taken from 
a large sampled set to be embedded, which have no 
new information on the dimensionality of the basis, 
but carry new information on the approximation? 

For fitting of two approximations into a 
common basis system, we use the transformation of 
the rational general form of PSGS and Takagi-
Sugeno-Kang fuzzy systems. The rational general 
form (Klement et al., 1999) means that these 
systems can be represented by a rational fraction 
function 
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Figure 1: Sampling  over a rectangular grid. ),( 21 xxF
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Figure 2: Bi-linear approximation A of function 
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Figure 3: Approximation Ar, which is the reduced form of 
approximation A. 
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Figure 4: Sampling further approximation points. 
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Figure 5: Approximation B. 
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Figure 6: Reduced approximation Br. 

where  and 

, which is essential in complexity 
reduction.  
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Let us suppose that two n-variable 
approximations are defined on the same domain with 
the same basis functions 

i
μ . One is called 

“original” and is defined by matrix O  of size  

pee n ×××1  where p is m or  (see (3) and 
(4)). 

1+m

The other one is called “additional” and is given by 
matrix A of the same size. Let us assume that both 
approximations are reduced by the HOSVD 
complexity reduction technique as: 

)(),,,( 1 OHOSVDRONN r
n = and 

)(),,,(
1

AHOSVDRAGG r

n
= , where the sizes 

of matrices 
iN , rO , 

iG , and rA  are , 

, , and , 
respectively, and  and . This 
implies that the size of 

o
ii re ×

pr a ×1

i

prr oo ××× 11
a

ii re ×
o

iri∀ :

r a ××1

a
i eri ≤∀ :ie≤

rO  and rA  may be different, 
thus the number and the shape of the reduced basis 
of the two functions can also be different. The 
method detailed in the following finds the minimal 
common basis for the reduced forms. The reduction 
can be exact or non-exact, the dimension of the 
minimal basis in the non-exact case can be defined 
according to a given error threshold like in case of 
HOSVD. 

For finding the minimal common basis 
),,( ao

iU ΦΦ  for (
iN , rO ) and (

iG , rA ) , the 
following steps have to be executed in each ni ..1=  
dimension 
( :i∀ ),,,,(),,( r

i

r

i

ao

i
iunify AGONΦΦU = ):  

The first step of the method is to determine the 
minimal unified basis )( iU  in the i-th dimension. 
Let us apply [ ]),(),(

iiii
GNireductZU = where 
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function ),( Bdreduct  reduces the size of an n-
dimensional (  ) matrix in the d-th 
dimension. The results of the function are matrices 

nee ××1

N  and rB . The size of N  is ,   ; the 
size of 

r
dd ee × d

r
d ee ≤

rB  is  , where  and 
. (The algorithm of the function is 

similar to the HOSVD reduction algorithm, i.e. the 
steps are: spread out, reduction, re-stack.) Thus, as a 
result, we get 

ncc ××1

i

r
dd ec =

i ecdii =≠∀ :,

ii ZU ,  where the size of 
iU  is 

(“u” denotes unified) and the size of u
ii re × iZ  is 

.  )( a
i

o
i

u
i rrr +×

The second step of the method is the 
transformation of the elements of matrices rO  and 

rA  to the common basis:  
Let 

iZ  be partitioned as [ ]iTii S=Z  where the 
sizes of 

iS  and 
iT   are  and  

respectively.

o
i

u
i rr × a

ir×u
ir

oΦ and aΦ are the results of 
transformations ),,( r

i OSiproduct=oΦ  and 

)rA,,( i
a Ti=Φ product  where function 

)L,,()( NdA = product  multiplies the multi-
dimensional matrix L  of  by matrix 

nee ××1 N  in 
the d-th dimension. If the size of N  is  then hg × L  
must hold . The size of the resulted matrix hd =e A  
is  where , andna×a ×1 ii ead =:ii∀ , ≠ gad = .  

Let us return to the original aim, which is 
injecting the points of additional approximation A 
into Or , the reduced form of the original 
approximation O. According to the problem, the 
union of A and Or must be done without the 
decompression of Or. For this purpose the following 
method is proposed:  

Let us assume that an n-variable original 
approximation O is defined by basis functions o

i
μ , 

 and matrix ni ..1= O  of size  in the 
form of (3) (see also Fig. 2). Let us suppose that the 
density of the approximation grid lines is increased 
in the k-th dimension (Figs. 4 and 5). Let the 
extended approximation E be defined by matrix 

pee o
n

o ×××1

E  
whose size agrees with the size of O  except in the 
extended k-th dimension where it equals 

 (  indicates the number of additional 
basis functions) (Fig. 5). The basis of the extended 
approximation is the same as the original one in all 
dimensions except in the k-th one, which is simply 

the joint set of the basis functions of  approximations 
O and A  

a
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k
e
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k
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μ
μ
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a
k

μ  is the vector of the additional basis functions. P  

stands for a perturbation matrix if some special 
ordering is needed for the basis functions in e

k
μ . The 

type of the basis functions, however, usually 
depends on their number due to various 
requirements of the approximation, like non-
negativeness, sum normalization, and normality. 
Thus, in case of increasing the number of the 
approximation points, the number of the basis 
functions is increasing as well and their shapes are 
also changing. In this case, instead of simply joining 
vectors o

k
μ  and a

k
μ , a new set of basis e

k
μ  is defined 

according to the type of the approximation like in 
Fig. 4. Consequently, having approximation O and 
the additional points, the extended approximation E 
can easily be obtained as ),,( AOkfitE =  where 
function ),,,( 1 zLLdfitA =  is for fitting the same 
sized, except in the d-th dimension, matrices in the 
d-th dimension: Matrices ][ ,,, 1 niikk lL =  have the size 
of , nkk ee ,1, ×× zk ..1= to the subject that 

ik ik eedii =≠∀ .:,, . The resulted matrix A  has the 

size as nee ××1 , where  and the 

elements of  
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(More precisely, according to the perturbation 
matrix in (5) )),,(,,( Pkproduct AOkfitE = ). 

Embedding the New Approximation A into the 
reduced Form of O. The steps of the method are as 
follows:  

First, the redundancy of approximation A is 
filtered out by applying 

)(),,,( 1 AHOSVDRAGG r
n = . As next, the 

merged basis of Or and Ar is defined. The common 
minimal basis is determined in all, except the k-th, 
dimensions.  

Let rOW =]1[
 and rAQ =

]1[
. Then, for t= 1…n-1 

evaluate ),,,,(),,(
][][]1[]1[ tjtjttj QGWNjunifyQWU =
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where 0  contains only zero elements and P  can 
ensure any  special ordering, as used in (5). 

kN  and 

kG  are full rank matrices which means that no 
further (exact) reduction of M  can be obtained. 

According to the basis, matrices oΦ  and aΦ  are 

unified as ),,( aokfitF ΦΦ= . 
Finally, the redundancy, i.e., the linear 

dependence between matrices oΦ  and aΦ is filtered 

out of F  by ),(),( FkreductEK r = . Thus, 
KMU k = .  

(Here we would like to note again that K  is full 

rank matrix, i.e., no further (exact) reduction of 
kU  

can be obtained.) Matrix
iU , having the size of 

, is to transform the basis as u
ii re × e

ii
u
i

U μμ T= . The 

size of matrix rE  is . (For more 
details, see Baranyi et Várkonyi-Kóczy, 2002) 

prr u
n

u ×××1

5 ANYTIME TS FUZZY 
CONTROL 

There are numerous successful applications of 
anytime control which affect on the analysis and 
design of anytime control systems (see e.g. Andoga 
et al., 2008, Madarasz et al., 2009, and Várkonyi-
Kóczy, 2008). The previously discussed ideas can 
fruitfully be applied in plant control if Takagi-
Sugeno (TS) fuzzy modeling and Parallel 
Distributed Compensation (PDC) (Tanaka et Wang, 
2001) based controller design is used (Fig. 7). If the 
model approximation is given in the form of TS 
fuzzy model, the controller design and Lyapunov 
stability analysis of the nonlinear system reduce to 
solving the Linear Matrix Inequalities (LMI) 
problem (Tanaka et al., 1999). This means that first 
of all we need a TS model of the nonlinear system to 
be controlled. The construction of this model is of 
key importance. This can be carried out either by 
identification based on input-output data pairs or we 
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Figure 7: TS fuzzy observer based control scheme. 

can derive the model from given analytical system 
equations. 

The PDC offers a direct technique to design a 
fuzzy controller from the TS fuzzy model. This 
procedure means that a local controller is determined 
to each local model. This implies, that the more 
complex the system model is, the more complex 
controller will be obtained. According to the 
complexity problems outlined in the previous 
sections we can conclude that when 
theapproximation error of the model tends to zero, 
the complexity of the controller explodes to infinity. 
This pushes us to focus on possible complexity 
reduction and anytime use.SVD based complexity 
reduction can be applied on two levels in the TS 
fuzzy controller. First, we can reduce the complexity 
of the local models (local level reduction). Secondly, 
it is possible to reduce the complexity of the overall 
controller by neglecting those local controllers, 
which have negligible or less significant role in the 
control (model level reduction). Both can be applied 
in an anytime way, where we take into account the 
“distance” between the current position and the 
operating point, as well. The model granularity or 
the level of the iterative evaluation can cope with 
this distance: the further we are, the more rough 
control actions can be tolerated. Although, 
approximated models may not guarantee the stability 
of the system, this can also be ensured by 
introducing robust control (see e.g. Tanaka et al., 
1999). 

6 CONCLUSIONS 

In this paper, the applicability of (Higher Order) 
Singular Value Decomposition based anytime fuzzy 
models in control is analyzed. It is proved that the 
presented technique can be used for both complexity 
reduction and for improving the approximation 
without complexity explosion. The introduced 
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anytime models can advantageously be used in many 
types of time critical applications during resource 
and data insufficient conditions. 
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