
SWARM INTELLIGENCE FOR RULE DISCOVERY IN DATA
MINING

Andre B. de Carvalho, Taylor Savegnago and Aurora Pozo
Federal University of Parana, Curitiba PR, Brazil

Keywords: Particle swarm optimization, Rule induction, Multi-objective optimization.

Abstract: This paper aims to discuss Swarm Intelligence approaches for Rule Discovery in Data Mining. The first
approach is a new rule learning algorithm based on Particle Swarm Optimization (PSO) and that uses a Mul-
tiobjective technique to conceive a complete novel approach to induce classifiers, called MOPSO-N. In this
approach the properties of the rules can be expressed in different objectives and then the algorithm finds these
rules in an unique run by exploring Pareto dominance concepts. The second approach, called PSO/ACO2
algorithm, uses a hybrid technique combining Particle Swarm Optimization and Ant Colony Optimization.
Both approaches directly deal with continuous and nominal attribute values, a feature that current bioinspired
rule induction algorithms lack. In this work, an experiment is performed to evaluated both approaches by
comparing the performance of the induced classifiers.

1 INTRODUCTION

Data mining is the overall process of extracting
knowledge from data. In this area, rules are one of
the most used forms to represent the extracted knowl-
edge. This is because of their simplicity, intuitive as-
pect, modularity, and because they can be obtained
directly from a data set (Fawcett, 2001). Therefore,
rules induction has been established as a fundamental
component of many data mining systems.

This work deals with learning classification rules,
or rule induction. In the rule induction process, the
algorithm receives a labeled data set as input. This
data set must contain examples with the descriptor
attributes and the class values. This attributes could
have nominal or discrete values. The algorithm looks
to the examples and identifies patterns. These patterns
are going to be represented in rules. A rule is a pair
<antecedent, consequent> or if antecedent then con-
sequent. The antecedent represents the restrictions in
the values of the attributes and the consequent is the
class value. After the end of the learning process, new
examples that arrive can be classified by the learned
rules.

Although many techniques have been proposed
and successfully implemented, few works take into
account the importance of the comprehensibility as-
pect of the generated models and rules. Other impor-
tant challenge in this area is related to the kind of at-

tributes, previous works with Swarm Intelligence,
have never addressed the case where the data sets con-
tain both continuous and nominal attributes. Consid-
ering this fact, this work discuss two, recently pre-
sented, different algorithms based on Swarm Intel-
ligence for Discovering Rules in data mining con-
text, called MOPSO-N (Carvalho and Pozo, 2008)
and PSO/ACO2 (Holden and Freitas, 2008). Both ap-
proaches directly deal with both continuous and nom-
inal attribute values.

The MOPSO-N (Multi-Objective Particle Swarm
Optimization-N) algorithm is our proposed approach
and was first presented in (Carvalho and Pozo, 2008).
It is based on Particle Swarm Optimization (Kennedy
and Eberhart, 1995) (PSO) and uses a multiobjec-
tive approach where the properties of the rules can
be expressed in different objectives and the algorithm
finds these rules in a unique run. These rules can
be used as an unordered classifier. The proposed al-
gorithm has the goal to generate a good classifier in
terms of the Area Under the ROC Curve, AUC. So,
two objectives were chosen, the sensitivity and speci-
ficity criteria that are directly related with the ROC
curve (Fawcett, 2001). The hypothesis behind these
strategies is that classifiers composed by rules that
maximize these objectives present good performance
in terms of AUC. The MOPSO-N algorithm was val-
idated using the AUC and comparing its performance
to other well known traditional rule induction algori-

314 B. de Carvalho A., Savegnago T. and Pozo A. (2010).
SWARM INTELLIGENCE FOR RULE DISCOVERY IN DATA MINING.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Artificial Intelligence and Decision Support Systems, pages
314-319
DOI: 10.5220/0002966303140319
Copyright c© SciTePress

thms like C4.5, NNge and RIPPER. In this experiment
the algorithm obtained good results, very competitive
with the other algorithms.

The PSO/ACO2, was proposed by Holden and
Freitas in (Holden and Freitas, 2008), uses a hybrid
technique combining Particle Swarm Optimization
and Ant Colony Optimization (Dorigo and Stützle,
2004). The algorithm uses a traditional sequential
covering approach to discover one rule at a time. This
rule is found by a two steps one run of the Ant Colony
algorithm searches a rule based on nominal attributes
and after then a conventional PSO algorithm with
constriction use this rule as a base for the discovery
of a rule with continuous values. The algorithm was
evaluated on 27 public domain benchmark data sets
used in the classification literature, and the authors
showed that PSO/ACO2 is at least competitive with
PART in terms of accuracy and that PSO/ACO2 often
generates a simpler rule sets.

After, the study of these systems, some impor-
tant differences between both systems can be noticed:
the multiobjective versus the sequential covering ap-
proaches, and the hybrid PSO/ACO versus the pure
PSO to deal with nominal and continuous attributes.

In this work, the main aspects of both algorithms
are presented and them an empirical set of experi-
ments is made. This experiments has the goal to com-
pare both Swarm Intelligence algorithms, MOPSO-N
and PSO/ACO2. The algorithms are evaluated com-
paring the performance of the induced classifiers in
respect to the accuracy and ROC graph analysis.

The rest of this paper is organized as follows.
Section 2 reviews mains concepts of Multiple Ob-
jective Particle Swarm and describes the MOPSO-
N algorithm. Section 3 gives a brief review of the
PSO/ACO2 algorithm. In Section 4 the experiments
are discussed. Finally, Section 5 concludes the paper
and discusses future works.

2 RULE LEARNING WITH
MULTIOBJECTIVE PARTICLE
SWARM OPTIMIZATION

This section presents the main aspects of Multiobjec-
tive Particle Swarm Optimization and the proposed al-
gorithm, MOPSO-N. First, Section 2.1 discuss some
interest topics of the MOPSO metaheuristic. In Sec-
tion 2.2, the MOPSO-N algorithm is presented.

2.1 Multiobjective Particle Swarm
Optimization

Particle Swarm Optimization (Kennedy and Eberhart,
1995) (PSO) works with a population-based heuristic
inspired by the social behavior of bird flocking aim-
ing to find food. . In Particle Swarm Optimization the
system initializes with a set of solutions and searches
for optima by updating generations. The set of possi-
ble solutions is a set of particles, called swarm, which
moves in the search space, in a cooperative search
procedure. These moves are performed by an oper-
ator called velocity of a particle and moves it through
an n-dimensional space based on the best positions of
their leader (social component) and on their own best
position (local component).

Optimization problems with two or more objec-
tive functions are called Multiobjective. In such prob-
lems, the objectives to be optimized are usually in
conflict, which means that there is not a single solu-
tion for these problems and the goal is to find a good
trade-off of solutions that represent the better possible
compromise among the objectives. The general multi-
objective maximization problem (with no restrictions)
can be stated as to maximize (1).

−→
f (−→x) = (f1(

−→x), ..., fQ(
−→x)) (1)

subjected to −→x ∈Π, where: −→x is a vector of decision
variables and Π is a finite set of feasible solutions. Let
−→x ∈Π and−→y ∈Π be two solutions. For a maximiza-
tion problem, the solution −→x dominates −→y if:

∀ fi ∈
−→
f , i = 1...Q, fi(

−→x)≥ fi(
−→y),and

∃ fi ∈
−→
f , fi(

−→x)> fi(
−→y)

−→x is a non-dominated solution if there is no solution
−→y that dominates −→x .

The goal is to discover solutions that are not dom-
inated by any other in the objective space. A set of
non-dominated solutions is called Pareto optimal and
the set of all non-dominated objective vectors is called
Pareto Front.

In Multiobjective Particle Swarm Optimization
there are many fitness functions. By exploring Pareto
dominance concepts, it is possible to obtain results
with specific properties. Based on this concept each
particle of the swarm could have different leaders, but
only one may be selected to update the velocity. This
set of leaders is stored in a repository, which contains
the best non-dominated solutions found. The MOPSO
components are defined as follows.

Each particle pi, at a time step t, has a position
x(t) ∈ Rn, that represents a possible solution. The
position of the particle, at time t + 1, is obtained by
adding its velocity, v(t) ∈ Rn, to x(t):

−→x (t +1) =−→x (t)+−→v (t +1) (2)

SWARM INTELLIGENCE FOR RULE DISCOVERY IN DATA MINING

315

The velocity of a particle pi is based on the best posi-
tion already fetched by the particle, −→p best(t), and the
best position already fetched by the set of neighbors
of pi,

−→
Rh(t), that is a leader from the repository. The

velocity update function, in time step t +1 is defined
as follows:
−→v (t +1) = ϖ∗−→v (t)+

+(c1 ∗φ1)∗ (−→p best(t)−−→x (t)) +

+(c2 ∗φ2)∗ (
−→
Rh(t)−−→x (t)) (3)

The variables φ1 and φ2, in Equation 3, are coeffi-
cients that determine the influence of the particle’s po-
sitions. The constants c1 and c2 indicates how much
each component influences on the velocity. The coef-
ficient ϖ is the particle inertia and controls how much
the previous velocity affects the current one.

−→
R h is a

particle from the repository, chosen as a guide of pi.
There are many ways to make this choice. At the end
of the algorithm, the solutions in the repository are
the final output. One possible way to make the leader
choice is called the sigma distance (Mostaghim and
Teich, 2003).

2.2 MOPSO-N Algorithm

MOPSO-N was proposed to handle with both numer-
ical and discrete attributes. In this way, it can be used
in different domains, mainly those ones with contin-
uous attributes. It was first introduced in (Carvalho
and Pozo, 2008). In this section, MOPSO-N aspects,
such as representation and generation of the particles
are described.

The algorithm uses the Michigan approach where
each particle represents a single solution or a rule.
In this context, a particle is an n-dimensional vector
of real numbers. One integer number represents the
value for each discrete attribute and two real numbers
represent an interval for numerical attributes. The in-
terval is defined by its lower and upper values. Each
attribute can accept the value ’?’, which means that,
for that rule, the attribute does not matter for the clas-
sification. In the proposed approach the class value
is set in the beginning of the execution. To represent
the particle as a possible solution, the attributes values
must be codified into real numbers. The codification
of the discrete attributes is conceived by real numbers
related to each attribute value of the database. When a
numerical attribute has a void value, their cells in the
particle representation receive the lower bound value
available on the database.

The rule learning algorithm using MOPSO-N
works as follows. The initialization procedure ran-
domly spreads all particles in the search space and
initializes the components of the particle. In this

process, the discrete attributes are defined by using
a roulette procedure, where the most frequent val-
ues have higher probabilities. The probability of the
generic value of each attribute, ’?’, is a function of the
number of possible values for the attribute. For the
numerical attributes, first, all attributes have the prob-
ability to be empty, prob empty. If an attribute is set
as non-empty, the lower and upper limits are spread
randomly in the interval defined by the minimum and
maximum values for the attribute (obtained from the
data set). After then, the particle’s components, like
velocity and local leader are initialized.

Once the initial configuration is performed, the
evolutionary loop is executed performing the moves
of all particles in the search space. In this work the
stop criterion is the maximum number of generations.
In each iteration, initially, the operations discussed in
the previous section are implemented.

In the position update, a mod operator is applied.
This operation is used to limit the particle into the
search space and to to promote equal probability of
selection to each attribute values. For discrete at-
tributes, the values are bounded to the number of val-
ues for each attribute. For the numerical ones, a mod
operator is proposed. It is executed using the maxi-
mum and minimum values of the attribute. If the new
upper limit overflows the maximum value, the excess
is added to the minimum value, and that is the new
limit. After this process, the smaller value is the new
lower limit, and the larger is the upper. If both val-
ues overflow the limits, the attributes are set to empty
(’?’).

After all particles have been moved through the
search space, they are evaluated using the objectives
and once again the best particles are loaded in the
repository and the global leaders are redefined. A
procedure checks for more general or specific rules
in the repository before a rule is added to it. A rule
is more specific than other rule if it has less attribute
constraints and the same contingency table. Only the
more general rules are kept in the archive.

At the end of the execution, the rules are usually
aggregated into a rule set to build a classifier. After,
the classifier can be used to classify unseen instances.
The classification of a new instance is performed by
a voting process. In the voting process, all rules vote
the class of the instances. The process contains the
following steps: for each class, all rules that cover
the input instance are identified. The identified rules
are sorted according to some ordering criteria. This
work uses the Laplace Accuracy, discussed in (Yanbo
J. Wang and Coenen, 2006). The ordering process is
applied to allow the selection of only the best k rules,
according to the ordering criteria, to vote the class of

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

316

the instance. This number can vary from one rule to
all rules. The next step counts the votes of each class.
Finally, the class that scores higher is declared as the
class of the example.

3 THE PSO/ACO2 ALGORITHM

The PSO/ACO2 (Holden and Freitas, 2008) algorithm
achieves a native support of nominal data by com-
bining ideas from ant colony optimization (Dorigo
and Stützle, 2004) and particle swarm optimiza-
tion (Kennedy and Eberhart, 1995) to create a classifi-
cation metaheuristic that supports innately both nom-
inal and continuous attributes.

The algorithm uses a traditional sequential cover-
ing approach to discover one classification rule at a
time. The sequential covering approach starts with an
empty set of rules. Then, for each class the algorithm
performs a WHILE loop, where TS is used to store
the set of training examples the rules will be created
from. On each iteration of this loop, one run of the
ant colony algorithm finds a rule based on nominal
attributes. This rule is used as a base for the discov-
ery of a rule with continuous values. For the contin-
uous part of the rule, a conventional PSO algorithm
with constriction is used. The PSO algorithm returns
the best discovered rule (BestRule). After the Be-
stRule has been generated it is then added to the rule
set, but, after a pruning procedure inspired by Ant-
Miner’s pruning procedure (Parpinelli et al., 2002).
Finally, the algorithm removes all the examples cov-
ered by the rule from TS and the process is repeated
with the remaining examples, and continues until the
maximum number of uncovered examples per class
(MaxUncovExampPerClass) is reached. When this
threshold has been reached TS is reset by adding all
the previously covered examples. This process means
that the rule set generated is unordered and is submit-
ted to an ordered process, considering a quality mea-
sure. The measure used to estimate the quality of a
rule is the Laplace-corrected Precision. Also, after the
rule set has been ordered it is pruned as a whole. The
pruned process involves tentatively to remove terms
from each rule and seeing if each term’s removal af-
fects the accuracy of the entire rule set. After this pro-
cess is complete, the algorithm also removes whole
rules that do not contribute to the classification accu-
racy.

The algorithm was evaluated on 27 public do-
main benchmark data sets used in the classification
literature, and the authors shown that PSO/ACO2 is
at least competitive with PART, an industry standard
classification algorithm, in terms of accuracy, and that

Table 1: Description of data sets used in the experiments.

Data set Attributes Examples % of Majority Class
1 breast 10 683 65.00
2 bupa 7 345 57.97
3 ecoli 8 336 89.58
4 flag 29 174 91.23
5 glass 10 214 92.05
6 haberman 4 306 73.52
7 heart 14 270 55.00
8 ionosphere 34 351 64.10
9 new-thyroid 6 215 83.72
10 pima 9 768 65.51
11 vehicle 19 846 76.47

PSO/ACO2 often generates much simpler rule sets.
However, the authors also comment that PSO/ACO2
is partly greedy in the sense that it builds each rule
with the aim of optimizing that rule’s quality individ-
ually, without directly taking into account the interac-
tion with other rules.

4 EXPERIMENTS

This Section describes an experiment to compare the
two Swarm Intelligence algorithms, MOPSO-N and
PSO/ACO2. The classification results of MOPSO-
N, PSO/ACO2 are evaluated using the accuracy mea-
sure and through ROC Graph analysis. Section 4.1
presents the methodology used in the experiment and
Section 4.2 presents the results.

4.1 Methodology

For the experiments, both algorithms were evaluated
through 11 databases from the UCI machine learn-
ing repository (Asuncion and Newman, 2007)(Ta-
ble 1). The experiments were executed using 10-fold-
stratified cross validation and for all algorithms were
given the same training and test files.

In the experiments two comparison were made:
comparison of the accuracy and a ROC Graph anal-
ysis. The accuracy (4) relates the total number
of instances correctly classified, True Positive (T P)
and True Negative (T N), to the total number of
instances(Ninst).

Accuracy =
T P+T N

Ninst
(4)

The non-parametric Wilcoxon test, with 5% con-
fidence level, was executed to define which algorithm
is better. It was adopted the methodology presented
in (Demšar, 2006). Here, the Wilcoxon test was ap-
plied with all accuracy values for all data sets.

SWARM INTELLIGENCE FOR RULE DISCOVERY IN DATA MINING

317

Table 2: Average values of accuracy and number of rules
for each algorithm.

Data set MOPSO-N PSO/ACO2
Accuracy # Rules Accuracy # Rules

1 95.18 (1.38) 80.51 96.62 (1.95) 7.4
2 65.78 (5.63) 164.97 69.29 (6.30) 22.3
3 90.60 (32.09) 60.63 89.26 (5.91) 5.6
4 90.76 (3.38) 53.59 89.21 (4.45) 5.4
5 91.61 (16.22) 57.73 90.23 (5.50) 5.4
6 75.30 (10.50) 185.97 73.19 (9.03) 13.2
7 80.00 (8.93) 162.06 80.00 (10.50) 11.4
8 85.14 (6.55) 66.6 83.75 (7.01) 3.9
9 93.52 (9.89) 36.8 94.93 (3.97) 2
10 74.18 (4.59) 243.46 73.95 (6.21) 32.4
11 85.58 (3.2) 142.02 95.02 (2.43) 14.4

The second comparison has the goal to compare
the classification of the Swarm Intelligence algo-
rithms in terms of a ROC Graph analysis. This anal-
ysis is considered a relevant criterion to deal with im-
balanced data, misclassification costs and noisy data.
The ROC Graph relates the false positive rate, f pr,
(axis-x) and the true positives rate, t pr, (axis-y) of a
classifier (Fawcett, 2001).

To compare the classification results of classifiers,
often it is used the Area Under the ROC Curve (AUC).
However the PSO/ACO2 implementation used do not
return this measure. To overcome this limitation, in
this experiment was performed a multiobjective anal-
ysis based on the ROC Graph. To determine which
algorithm has better performance it was applied the
dominance ranking (Zitzler and Thiele, 1999). Dom-
inance ranking stands for a general, preference inde-
pendent assessment method that is based on pairwise
comparisons. Here, each execution of both algorithm
was compared. In this analysis, for each fold of data
set, the execution of both algorithms is compared,
and the test indicates which algorithm dominates the
other, i.e., has greater values of t pr and lower values
of f pr. After the execution of the dominance ranking
between MOPSO-N and PSO/ACO2, the Wilcoxon
test was performed to define which algorithm has the
best ranking.

The MOPSO-N parameter are: 100 generations,
500 particles, for each fold, one run was performed,
ω, φ1 and φ2, randomly vary [0,0.8], [0,1]and[0,1],
respectively, c1 and c2 were defined as 2.05 and
textttprob empty was empirically set to 0.1.

The PSO/ACO2 classification algorithm is freely
available1 and was executed with the default parame-
ters presented in (Holden and Freitas, 2008). There,
the authors used 100 iterations and 100 particles, for
each call to the PSO algorithm, and the fitness func-
tion adopted was the precision of the rule.

1Available at http://sourceforge.net/projects/psoaco2.

Table 3: Average values of tpr and fpr for each algorithm.

Data set
MOPSO-N PSO/ACO2

t pr f pr t pr f pr
1 87.90 (9.89) 2.46 (2.66) 97.53 (2.66) 5.00 (4.73)
2 32.28 (11.47) 10.00 (8.81) 61.95 (16.21) 25.50 (9.55)
3 14.16 (19.26) 0.00 (0.00) 95.84 (3.76) 57.50 (23.38)
4 5.00 (15.81) 0.58 (1.86) 97.71 (2.95) 100.00 (0.00)
5 5.00 (15.81) 1.55 (3.52) 97.71 (2.95) 100.00 (0.00)
6 24.72 (13.20) 4.92 (5.37) 86.71 (7.52) 64.86 (23.76)
7 75.83 (15.44) 17.33 (10.97) 72.50 (11.81) 13.33 (13.69)
8 67.37 (15.06) 2.64 (4.26) 92.43 (6.61) 31.79 (19.30)
9 64.16 (30.18) 0.00 (0.00) 98.88 (3.51) 8.33 (18.00)
10 93.20 (3.55) 60.11 (12.10) 61.86 (11.20) 19.60 (5.94)
11 40.81 (13.14) 0.62 (0.80) 87.97 (6.71) 2.79 (2.05)

Figure 1: Box plot of the accuracy values for MOPSO-N
and PSO/ACO2 for all data sets.

4.2 Swarm Intelligence Algorithms
Comparison

The average values of accuracy and number of rules
(average of 10 folds values) for each data set are pre-
sented in Table 2. The number between brackets indi-
cates the standard deviation.

For the Wilcoxon test, the p-value obtained was
0.3938, so both algorithms have equivalent results.
Figure 1 shows the box plot of the accuracy values
used in the test. This result shows that the MOPSO-
N algorithm has good classification results in terms
of accuracy, although it has the main concern to gen-
erate good values of AUC. However the PSO/ACO2
generates a smaller number of rules than MOPSO-N.
This characteristic is attractive, since a simple classi-
fier can be more understandable.

For the second comparison the values for t pr and
f pr for all data sets were evaluated through the domi-
nance rank test. Table 3 presents the average value of
t pr and f pr (average of 10 folds values) for all data
sets obtained for each algorithm.

In this experiment the MOPSO-N algorithm ob-
tained better results than PSO/ACO2, according to
Wilcoxon test, with p-value = 0.0013. It can be ob-
served that MOPSO obtained very good values of

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

318

f pr, even when dealing with unbalanced data. As
example, for data set 4, MOPSO obtained f pr =
0.58, while PSO/ACO2 obtained f pr = 100, i.e.,
while MOPSO makes few mistakes, the PSO/ACO2
classifies almost every instance as the positive class.
The PSO/ACO2 algorithm obtained better values of
t pr than MOPSO-N, i.e., PSO/ACO2 makes more
hits then MOPSO-N, however these hits are obtained
through a classification that produces a high number
of errors. These very good values of f pr made the
MOPSO algorithm had good results in the dominance
ranking test, since their results are rarely dominated
by the PSO/ACO2 results.

These results stress that our approach has good
classification results when analyzing the results
through the ROC Graph. This confirms the hypothe-
sis that maximizing the Sensitivity and the Specificity
of rules will generate a good classifier.

5 CONCLUSIONS

This work explores the Swarm Intelligence in rule
learning context. Two different algorithms based
on these concepts are discussed: MOPSO-N and
PSO/ACO2. The MOPSO-N algorithm has the fol-
lowing properties: first, MOPSO-N uses a Multiob-
jective approach that allows us to create classifiers in
only one execution. This method works finding the
best non-dominated rules of a problem, by selecting
them in the rules generation process. Second, the al-
gorithm deals with both numerical and discrete data.
The PSO/ACO2 explores a hybrid approach using a
sequential covering algorithm that combines the ant
colony optimization technique to learn the nominal
part of a rule, and the particle swarm optimization
technique to deal with the continuous part of a rule.

Then, an empirical study was made to compare
these two approaches. Both algorithms are equiva-
lent in terms of accuracy, but the MOPSO-N outper-
forms the PSO/ACO2 in ROC Graph Analysis. The
PSO/ACO2 algorithm has the advantage to generate a
smaller set of rules and them to generate a more com-
prehensive model. Also, this study complements the
results presented in (Carvalho and Pozo, 2008) and
showed that the MOPSO-N algorithm has also good
classifications results when compared to a bioinspired
algorithm.

Future works include: the execution of a greater
number of experiments to validate the initial results,
the comparison of our approach with other known al-
gorithms in the literature, and enhancements of the
algorithm to profit a more diverse set of rules with-
out increasing the size of the rule set, for example,

the prune procedure implemented by the PSO/ACO2
algorithm must be investigated.

REFERENCES

Asuncion, A. and Newman, D. J. (2007).
UCI Machine Learning Repository,
[http://www.ics.uci.edu/∼mlearn/MLRepository.html].
Irvine, CA: University of California, School of Infor-
mation e Computer Science.

Carvalho, A. B. and Pozo, A. (2008). Non-ordered data
mining rules through multi-objective particle swarm
optimization: Dealing with numeric and discrete at-
tributes. In Poceedings of Hybrid Intelligent Sys-
tems, 2008. HIS ’08. Eighth International Conference,
pages 495–500.

Demšar, J. (2006). Statistical comparisons of classifiers
over multiple data sets. J. Mach. Learn. Res., 7:1–30.

Dorigo, M. and Stützle, T. (2004). Ant Colony Optimiza-
tion. The MIT Press.

Fawcett, T. (2001). Using rule sets to maximize ROC per-
formance. In IEEE International Conference on Data
Mining, pages 131–138. IEEE Computer Society.

Holden, N. and Freitas, A. A. (2008). A hybrid pso/aco
algorithm for discovering classification rules in data
mining. Journal of Artificial Evolution Applications,
2008(3):1–11.

Kennedy, J. and Eberhart, R. (1995). Particle swarm opti-
mization. In IEEE International Conference on Neu-
ral Networks, pages 1942–1948. IEEE Press.

Mostaghim, S. and Teich, J. (2003). Strategies for finding
good local guides in multi-objective particle swarm
optimization. In SIS ’03 Swarm Intelligence Sym-
posium, pages 26–33. Proceedings of the 2003 IEEE
Swarm Intelligence Symposium. IEEE Computer So-
ciety.

Parpinelli, R., Lopes, H., and Freitas, A. (2002). Data
Mining with an Ant Colony Optimization Algorithm.
IEEE Trans on Evolutionary Computation, special is-
sue on Ant Colony Algorithms, 6(4):321–332.

Yanbo J. Wang, Q. X. and Coenen, F. (2006). A novel rule
ordering approach in classification association rule
mining. International Journal of Computational In-
telligence Research, 2(3):287–308.

Zitzler, E. and Thiele, L. (1999). Multiobjective Evolu-
tionary Algorithms: A Comparative Case Study and
the Strength Pareto Approach. IEEE Transactions on
Evolutionary Computation, 3(4):257–271.

SWARM INTELLIGENCE FOR RULE DISCOVERY IN DATA MINING

319

