
COLOURED PETRI NETS WITH PARALLEL COMPOSITION
TO SEPARATE CONCERNS

Ella Roubtsova
Open University of the Netherlands, Heerlen, Netherlands

Ashley McNeile
Metamaxim Ltd, London, U.K.

Keywords: Concerns, Modeling, Coloured Petri nets, Protocol modeling, CSP composition, Observational consistency,
Local reasoning.

Abstract: We define a modeling language based on combining Coloured Petri Nets with Protocol Modeling semantics.
This language combines the expressive power of Coloured Petri Nets in describing behavior with the ability
provided by Protocol Modeling to compose partial behavioral descriptions. The resultant language can be
considered as a domain specific Coloured Petri Net based language for deterministic and constantly evolving
systems.

1 INTRODUCTION

Conquering complexity of business models inevitably
stimulates the work on separation of concerns.

The problem of separation of concerns is central
to all modern modeling approaches. Mahoney et
al (M.Mahoney, A.Bader, T.Elrad and O. Aldawud:,
2004) use the semantics of statecharts defined by
D. Harel (D. Harel, M. Politi, 1998) and exploit
the ”AND-composition” of several independent
(orthogonal) statecharts. ”The key feature of orthog-
onal statecharts that events from every composed
statechart are broadcast to all others and can cause
transitions in two or more orthogonal statecharts
simultaneously”. But this semantics does not define
what happens if one of orthogonal statecharts is in a
such a state where it cannot accept the broadcasted
event. As the result of this semantics, the composition
of orthogonal statecharts is a computation tree that
represents partial behaviour of the system when the
orthogonal statecharts are in the suitable states to
accept broadcasted events.

Several approaches (T.Elrad, O.Algawud,
A.Baber, 2002; G.Zhang, M.Hlzl, A.Knapp, 2007)
try to separate concerns in the UML statecharts. The
approach High-Level Aspects (HiLA) (G.Zhang,
M.Hlzl, A.Knapp, 2007) uses the UML State
Machines with declarative specification of concerns

such as synchronization of orthogonal regions or
history-based behaviors. The authors use the Behav-
ioral State Machines (BSM) semantics defined in the
UML Superstructure document v.2.1 and v2.2 (OMG,
2009). (The UML State Machine package defines two
behavioral semantics for finite state transition sys-
tems: Behavioral State Machines (BSM) and Protocol
State Machines (PSM).) The authors of HiLA notice
that the ”UML state machines work fine as long as the
only form of communication among states is the acti-
vation of the subsequent state via a transition. More
often than not, however, an active state has to know
how often some other state has already been active
and/or if other states (in other regions) are also active.
Unfortunately, behavior that depends on such infor-
mation cannot be modeled modularly in UML state
machines.”

Separation of concerns is actual for Coloured Petri
Nets (CPN). If a CPN model with conventional se-
mantics becomes complex it is either cut into sub-
models by duplicating places (forlinear mergingof
sub-models), or transformed by replaced sub-nets
with hierarchical transitions(K. Jensen, 1997). Both
composition mechanisms in CPN demand a function
definition. The concerns that crosscut other function-
ality in several places cannot be presented by a one-
to-one relation and cannot be separated in CPN mod-
els. Neither linear merging nor hierarchical transi-

501Roubtsova E. and McNeile A. (2010).
COLOURED PETRI NETS WITH PARALLEL COMPOSITION TO SEPARATE CONCERNS.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Information Systems Analysis and Specification, pages
501-504
DOI: 10.5220/0002971005010504
Copyright c© SciTePress



tions preserve the initial functionality as the model
evolves. Separation of concerns in Coloured Petri
Nets has been investigated, for example, in work of
Palanque et al. (P. Palanque, R. Bastide, L. Dourte,
C. Sibertin-Blanc, 1993) and Elkoutbi and Keller (M.
Elkoutbi, R. Keller, 1998). But both works use con-
ventional CPN semantics and does not provide a se-
mantic basis for composition of concerns. The se-
curity and operability concerns in workflow systems
have been modeled in work of Jacob et al. (T. Ja-
cob, O. Kimmer, D. Moldt, U. Ultes-Nitsche, 2002).
They discuss theRenew(REference NEt Workshop)
tool for executing reference nets. ”Reference nets are
high-level Petri nets that implement the net-within-
nets concept and incorporate Java annotations. Java
annotations control enabling a transition and can cre-
ate side effects when a transition is fired. Firing a
transition can also create a new instance of a subnet
in such a way that a reference to the new net instance
will be put as a token into a place. Communication of
subnets occurs through synchronous channels associ-
ated with transition. A net instance can also commu-
nicate with the net whose subnet it is. The complex
composition rules of this approach allow for compos-
ing of aspects but the behavior of a subnet that mod-
els an aspect can only be determined by an analysis of
whole composed net.

In this paper we propose another solution for sep-
aration of concerns inColoured Petri Nets. In order
to enrich CPN with ability to model interaction and
compose partial behaviour we propose to apply some
elements of Protocol Modelling (A. McNeile, N. Si-
mons, 2006) semantics to CPN. The PM approach it-
self does not pre- or pro-scribe any particular nota-
tion for the components of a model. This suggests
that it may be possible to extend CPN with the event
handling semantics (in particular, to include event re-
fusal) so that PM models (allowing parallel compo-
sition) can be built using CPN notation. The pro-
posed notation PM-CPN can be successfully applied
to modeling and evolution of event-driven determinis-
tic systems, both embedded and business information
systems.

2 DEFINITION OF PM-CPN

In this section we explain the extensions to conven-
tional CPN and some restrictions on conventional
CPN required in PM-CPN, and illustrate this by the
account example and its logging and security exten-
sions.

Figure 1: PM-CPN of a bank account with logging and se-
curity concerns.

Interface Places. First of all we define distin-
guishedinterface placesin PM-CPN. An interface
place is a place of a CPN that has no input arcs,
and its purpose is to receive events that are presented
to the model by its environment. PlacesToOpen,
ToDeposit, ToClose andToWithdraw in Figure 1
areinterface places. Each interface place has a
color. The color of an interface place specifies the
attributes (attribute schema) of events that it can re-
ceive. In other words, the color of an interface place
represents an event type.

Event Tokens. In PM-CPN, anevent instanceis
represented as a token with the color corresponding
to its event type. Figure 1 shows event"Withdraw
from account "123" 50 Euro" presented by to-

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

502



ken1‘(Withdraw, "123", 50).

Local Storage. The local storage of a PM-CPN ma-
chine is represented by its marking. A PM-CPN ma-
chine can read tokens from places of the local storage
of another PM-CPN, but cannot modify them. This
situation is presented byshared places. A shared
place is a place owned by one machine, from which
other machines can take a token and put it back to ob-
tain read-only access to the value of the token. If one
PM-CPN uses a place of another PM-CPN, the name
of this place includes the name of PM-CPN owner.
For example, the PM-CPNLOGGING (Figure 1) shares
placeAccount.Active of the PM-CPNACCOUNT.

The semantics of shared places is different from
semantics of fused places in CPN.

- Only the owner of the shared place (Account in
our example) can change the value of the tokens it
contains.

- Access to the token (or tokens) on the shared
place is serialized, so that each machines puts token(s)
back before the next has use of them. (Otherwise one
process might fail as the token on the shared place is
currently being used by another).

- The PM-CPN machine that owns the shared
place is the last to get use of the token(s) it contains
and can change the token(s). Other machines there-
fore see the values of the tokens in there state before
update for the current event (as in PM, machines ac-
cessing the local storage of composed machines see
the values before the current event).

In our example, during aDeposit event (a
LoggableEvent), first theLogging machine takes a
token from shared placeAccount.Active and puts
it back. Then theAccount machine takes the to-
ken from this place and modifies it as a result of the
Deposit event.

Alphabet. The alphabet of a PM-CPN machine is
the set of event-types it recognizes: i.e., for which
it has interface places. The alphabet of theAccount
(Figure 1) is:{Open, Withdraw, Deposit, Close}.

Behavior. A PM-CPN machine is quiescent when
no transition is enabled. A PM-CPN machine accepts,
ignores or refuses events presented to it as follows:
- An PM-CPN machine ignores an event iff the type
does not belong to its alphabet. This corresponds to
the conventional semantics of CPN.
- An event is refused by a PM-CPN machine iff the
event belongs to the alphabet but, when placed on
the machine’s interface place, makes no transition en-
abled. A refused event thendisappears from the in-
terface placebecause it cannot be handled. This se-

mantics is different from the conventional semantics
of CPN as, in conventional CPN, a tokenstays in a
place in it even if it does not enable any transition.
Event(Withdraw ,"123",50) in Figure 1 is refused
and disappears, because the account 123 is empty and
(0−50)< 0 and so no transitions are enabled.
- An event is accepted by a PM-CPN machine iff,
when placed on its interface place, it causes a tran-
sition in the machine to become enabled. In Figure 1
event(Open,"123",250) is accepted because it en-
ables transitionOpen. The acceptance semantics of
PM-CPN completely corresponds to the conventional
semantics of CPN.

The local storage of a PM-CPN machine can be
changed only in response to acceptance of an event.
For example, in response to event(Open,"123",250)
the local storage of the PM-CPN in Figure 1 will be
changed to:
{(ToOpen, /0),(Active,(”123”,250)),
(Closed, /0), (ToDeposit, /0),
(ToClose, /0), (ToWithdraw, /0))}.

PM behavioral rules of ignoring, accepting and re-
fusing events make PM-CPN suitable for specifica-
tion of interactive behavior.

Abstractions of Events and States. An event ab-
straction is a new abstract event type presented as a
bag of different colors. Such an abstract event corre-
sponds to some subset of the alphabet of events in the
model. An interface place for this abstract event type
is capable of receivingany eventin the subset. The
protocol rules (for acceptance or refusal) are identical
for all the events of the abstract.

For example, all event types of the PM-CPN
Account form the event abstraction for the PM-CPN
Logging (Figure 1):
LoggableEvent= {Open,Close,Deposit,Withdraw}.

Any event that belongs to this set that is ac-
cepted by the model as a whole will be logged by the
LOGGING machine. Because an event will only be ac-
cepted by the model if accepted by both theACCOUNT
machine and theLOGGING machine, and because the
LOGGING machine itself cannot refuse any event pre-
sented to it, everyLoggableEvent that is accepted by
theACCOUNT will be logged.

Two event abstractions are used in theSECURITY
machine (Figure 1):

SetupEvent = {Open}
SecureEvent = {Deposit, Withdraw, Close}

The first of these only contains a single event, and
therefore simply renames it. However, when reusing
theSECURITY machine in another context, there may
be more than one event that plays the role of setting
up the password.

COLOURED PETRI NETS WITH PARALLEL COMPOSITION TO SEPARATE CONCERNS

503



3 PROPERTIES OF PM-CPN

Local Reasoning. PM-CPN modeling allows local
reasoning about the behavior of the model as a whole
based on the definition of the composed machines,
as proven in (A. McNeile, E. Roubtsova, 2008).
Consider, for instance, the following sequence of
events:
S =<("Open","123",250) ("Login","123","fish")
("Withdraw","123",300) ("Logoff","123")
("Logoff","123")>
It is possible to determine thatS is not a trace of
the model based on examination of the Account
machine alone, as follows: The subsetS restricted to
the alphabet ofACCOUNT is: <("Open","123",250)
("Withdraw","123",300)>.

This would not be accepted by theACCOUNT
machine as it would fail the guard condition on the
Withdraw transition, as 300> 250. This reasoning
is based on theACCOUNT machine alone, and remains
true whatever other machines are composed with it.
It is also possible to determine thatS cannot be a
trace of the model based on theSECURITY machine,
which does not allow twoLogOff events without an
interveningLogOn.

Determinism. The basis of the PM semantics is that
the machines being composed have deterministic be-
havior. To achieve this requires that certain rules be
observed in the formation of the model.
(1) A PM-CPN should contain only one interface
place for each event type. If there were more than one
interface place in a PM-CPN for a given event type,
there would be potential indeterminism in the behav-
ior based on which is chosen to receive an event.
(2) Nets should be constructed so that, if a transition
ever has a choice of tokens to consume, the result of
the transition is independent of which is chosen.

There is no assumption that non-determinism
will not need to be introduced at physical design time.

4 CONCLUSIONS

In this paper we have extended the semantics of
Coloured Petri Nets with Protocol Modeling seman-
tics, and proposed the PM-CPN modeling language
for deterministic and constantly evolved systems. We
have demonstrated that PM-CPN is suitable for sep-
arate modeling of concerns, their composition and
modular reasoning about system behavior using com-
posed descriptions. Moreover, PM-CPN enables
modeling of interactive behavior. PM-CPN produces

scalable models. The CSP composition built into the
PM-CPN supports evolution of PM-CPNs by adding
or deleting models of new concerns without redraw-
ing and rewriting of previous models. The traces of
sub-models a preserved in the result of model compo-
sition. Applying the PM semantics to Coloured Petri
Nets we aimed to extend the applicability of Coloured
Petri nets for evolving systems.

REFERENCES

A. McNeile, E. Roubtsova (2008). CSP parallel composi-
tion of aspect models.AOM’08: Proceedings of the
2008 AOSD Workshop on Aspect-Oriented Modeling,
Brussels, Belgium, pages 13–18.

A. McNeile, N. Simons (2006). Protocol Modelling.
A modelling approach that supports reusable be-
havioural abstractions.Software and System Model-
ing, 5(1):91–107.

D. Harel, M. Politi (1998).Modeling Reactive Systems with
Statecharts: The STATEMATE Approach. McGraw-
Hill.

G.Zhang, M.Hlzl, A.Knapp (2007). Inhancing UML State
Machines with Aspects.In, G. Engels, B. Opdyke,
D. C. Schmidt, and F. Weil, editors. Proc. 10th Int.
Conf. Model Driven Engineering Languages and Sys-
tems (MoDELS’07). LNCS 4735, pages 529–543.

K. Jensen (1997).Coloured Petri Nets. Springer.

M. Elkoutbi, R. Keller (1998). Modeling Interactive Sys-
tems with Hierarchical Colored Petri Nets.Proc. of
the Conference on High Performance Computing.

M.Mahoney, A.Bader, T.Elrad and O. Aldawud: (2004).
Using Aspects to Abstract and Modularize State-
charts. In the 5th Aspect-Oriented Modeling Work-
shop In Conjunction with UML 2004.

OMG (2009). Unified Modeling Language, Superstructure,
v2.2. OMG Document formal/09-02-02 Minor revi-
sion to UML, v2.1.2. Supersedes formal 2007-11-02.

P. Palanque, R. Bastide, L. Dourte, C. Sibertin-Blanc
(1993). Design of User-Driven Interfaces Using Petri
Nets and Objects.LNCS 685.

T. Jacob, O. Kimmer, D. Moldt, U. Ultes-Nitsche (2002).
Implementation of Workflow Systems using Refer-
ence Nets. Security and Operability aspects.Proc. of
the workshop CPN02.

T.Elrad, O.Algawud, A.Baber (2002). Aspect-oriented
modelling-Briging the gap Between Design and Im-
plementation.Proceedings of the First ACM Interna-
tional Conference on Generative PRogramming and
Component Engineering GPCE), pages 189–202.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

504


