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Abstract: Troubleshooting complex systems, such as industrial plants and machinery, is a task entailing an articulated
decision making process hard to structure, and generally relying on human experience. Recently probabilistic
reasoning, and Bayesian networks in particular, proved to be an effective means to support and drive decisions
in Troubleshooting. However, troubleshooting a real system requires to face scalability and feasibility issues,
so that the direct employment of Bayesian networks is not feasible. In this paper we report our experience
in applying Bayesian approach to industrial case and we propose a methodology to decompose a complex
problem in more treatable parts.

1 INTRODUCTION

Troubleshooting, i.e. solving failures of, complex
systems is a challenging task assuming that al-
though effects are directly observable, malfunction-
ing sources cannot be deterministically located and
removed. In general, Troubleshooting is aimed at
(i) identifying precisely failure causes, and defini-
tively removing them, (ii) verifying that a failure did
not lead to other breakdowns, (iii) collecting accurate
statistics regarding failures causes and occurrences,
thus providing a feedback to designers and engineers
in order to improve the product. And this requires in-
telligence to be accomplished successfully.

Recent advances in computational techniques,
especially those in the field of Artificial Intelli-
gence, provide new opportunities for supporting
Troubleshooting. In particular, probabilistic reason-
ing represents a natural setting for processing trou-
bleshooting strategies, given uncertainty in linking ef-
fects to malfunction causes. However, troubleshoot-
ing real systems requires to face complexity issues in
modeling a thick network of relationships between ef-
fects and faults, considering their links among parts
and sub-systems. In addition models have to be kept
maintained over the time.

These issues mainly limited a wider adoption of

supporting tools in industrial Service and Mainte-
nance (S&M) activities when plant and machinery
faults occur. These activities still largely rely on the
technical competence of skilled personnel, although
the increasing complexity of systems to maintain, the
shorter retention of knowledge, also due to the higher
personnel turnover, the skill shortage and the lack of
training at enterprise level, and the need of limiting
operational costs demand to assist them more by ma-
chine intelligence.

Therefore, the adoption of supporting tools does
not relate only to mathematical and technological is-
sues, but also and more prominently to issues con-
cerning complexity and management of models. So it
becomes mandatory to to look at complex objects as
systems made of parts and sub-systems, each being a
possible, sometimes hidden, source of failures.

In this paper we report our experience in design-
ing and adopting a support tool based on Bayesian
networks for industrial machinery, focusing more on
usability and maintainability of models than innovat-
ing the mathematical framework. This contribution is
organized as follows: in Section 2 we briefly overview
approaches to Troubleshooting, Section 3 outlined the
Bayesian approach, Section 4 described a method for
modeling real world problems, Section 5 draws con-
clusions and future directions.

344 Troiano L. and De Pasquale D. (2010).
SUPPORTING COMPLEXITY IN MODELING BAYESIAN TROUBLESHOOTING.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Artificial Intelligence and Decision Support Systems, pages
344-349
DOI: 10.5220/0002977703440349
Copyright c© SciTePress



2 TROUBLESHOOTING:
TECHNOLOGIES AND ISSUES

Several technologies relying on Artificial Intelligence
and Decision Making have been proposed over the
time in order to support Troubleshooting activities.

Information Text Retrieval (ITR) systems became
popular in the 90s, especially with respect to docu-
ment management of products and S&M reporting.
Their main function is devoted to store in and retrieve
from a knowledge base information regarding specific
problems, products, past repairing tasks.

A major limitation of this approach resides in the
amount of information that can be effectively man-
aged, as complex industrial products generally entail
a large number of retrievable data and documentation,
thus leading to an excess of information that hides the
actual needs and to read and understand documents
written by others. In addition, often information is not
self contained is one document or section, but split in
several parts, requiring ability in relating sources.

In order to overcome limitations of early ITR ap-
proaches, a more sophisticated class of tools rely on
Case Based Reasoning (CBR). In detail CBR process-
ing can be outlined considering only four main steps:
(i) retrieve: the user describes its problem submitting
it to the CBR system, obtaining a set of cases that sug-
gest which operations to take for solving the current
problem; (ii) reuse: retrieved cases can be re-used to
solve new problems;revise: a case used in the past is
tested against new problems;retain: new cases can be
compiled and retained in the CBR system.

Differently from ITR, users can provide more de-
tailed description of failure events mostly based on
symptoms, thus allowing to retrieve problems solved
in the past by similarity to the current one. This
approach is able to better model the human experi-
ence in problem solving, addressing the issue of re-
fining generic queries as shown by ITR. Therefore
CBR performs better when dealing with large knowl-
edge bases. However, they heavily rely on the case
description given by user in natural language, affect-
ing the quality of results as documents are indexed
by descriptions that can be imprecise, inaccurate and
erroneous.

Both ITR and CBR do not provide a structured
path to problem solution in order to automate Trou-
bleshooting. This led to employ Decision Trees (DT)
to assist S&M operators in taking repairing actions.
DT are able to drive maintenance operations by mod-
eling decision paths and their possible consequences,
including resource costs, utilities, chance event out-
comes and other factors.

Often this approach requires domain experts to de-

sign and validate the tree structure, although param-
eters can be obtained by training the model against
statistical data. During troubleshooting, users can re-
trace the structure, following suggested decisions un-
til the problem is solved. Modeling decision trees
becomes quickly cumbersome and maintaining them
very complex and error prone, especially for unexpe-
rienced users. Human experience still plays a rele-
vant role in keeping up-to-date this kind of models, as
modifications can invalidate the structure producing a
high impact on model maintenance costs.

Maybe Expert Systems (ES) have been the most
widely approach investigated and applied to Trou-
bleshooting. An expert system attempts to solve a
problem by explicitly modeling knowledge and infer-
ring solutions by causal reasoning as human would
do. For this reason, they are generally specific to do-
mains. In using this kind of tools, (i) creation of a
knowledge base is made by capturing the expert’s do-
main knowledge, and (ii) solutions are found by log-
ically inferring conclusions given a set of collected
premises. This leads to have white-box models, thus
more intelligible, while other techniques mainly pro-
vide black-box models. Other advantages are consis-
tent answers for repetitive decisions, robust theoreti-
cal framework in decision making, improved user ex-
perience, and reduced management cost.

Main limitations regard impossibility of obtain-
ing creative and unsuspected responses, as human ex-
perts generally are able to provide. Quality of results
depends on quality of knowledge encoded when the
model is designed, thus often leading to errors and
wrong decisions due partial knowledge. Complex and
dynamic problems are difficult to encode.

3 BAYESIAN APPROACH

Technologies presented so far share in common some
limitations that can be summarized as follows:

1. Troubleshooting inherently deals with uncer-
tainty, as malfunctioning causes cannot be deter-
ministically identified even by humans. Instead
most of outlined approaches make the link be-
tween symptoms and causes deterministic.

2. They generally do not employ a divide-et-conquer
strategy, thus badly fitting real world systems,
made of complex aggregations of parts, each able
to affect correct functioning of the whole system
or of other parts.

3. As knowledge is hard-embedded, models are dif-
ficult to maintain and evolve.
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Bayesian Networks (BN) Perl (Pearl, 1988) pro-
vide an answer to issues above as: (i) they are a prob-
abilistic reasoning technique, thus they naturally and
explicitly model uncertain sources of information; (ii)
they can be built by aggregation or decomposition, ac-
cording respectively to both bottom-up and top-down
design strategies; (iii) they allow to model local rela-
tions but, as they rely on strong theoretical basis given
by Probability Theory, they still preserve coherence
of the whole and make models easy to maintain and
evolve

According to Heckerman, Breese and Rommelse
(Heckerman et al., 1994) the purpose of Trou-
bleshooting is to generate a low cost plan in repairing
a system. A repairing plan consists in a list of tasks,
observations and repairing actions to perform in order
to reach the goal of solving the malfunctioning condi-
tion. They describe a typical Troubleshooting process
as a sequence of the following activities:

1. If the component works properly terminate,

2. If not either

(a) select component to replace or repair
(b) select an unobserved variable for observation or
(c) call Service

3. Go to Step 1

Following this approach, in a Bayesian network
we can link faults (parent nodes) to repairing actions
(children nodes) by probabilistic relations (edges).
This leads to determine how likely an action is able
to repair a specific failure. Similarly, Jensen et al.
(Jensen et al., 2001a) define a troubleshooting strat-
egy as an optimal sequence of repairing actions min-
imizing the overall expected cost1 of the sequence.
In their ground breaking work both Heckerman and
Jensen have introduced the following entities:faults,
repairing actionsandobservations2. Heckerman con-
siders alsonon reparablefaults.

Fault nodes describe observable problems for a
particular system whilerepairing actionsrepresent
operations that can be taken in order to repair at least
one fault. Finallyobservationsrepresent visible op-
erating states of machine/system. ActionsAi have as-
sociated a repairing costCi and repairing probability
Pi . The latter depends on evidence collected so far by
observations, as some faults become more likely than
others.

In order to evaluate an optimal plan, given a se-
quence of repairing actionsA ≡< A1, . . . ,An >, both

1For cost we intend in a general meaning monetary and
non-monetary costs, such as MTTR - Mean Time To Repair
costs.

2Jensen considers observations in terms of questions to
the user.

Heckerman et al. (Heckerman et al., 1994) and Jensen
et al. (Jensen et al., 2001a) argue that the optimal re-
pair sequence is obtained by minimizing the function

ECR(< A1, . . . ,An >) = ∑
i

ECR(i) (1)

whereECRstands for Expected Cost of Repair, each
contribution is given asECR(i) = C(εi−1)P(εi−1),
and εi−1 is the evidence that the firsti − 1 actions
failed. In general, computing (1) can be problematic.
However some simplifying assumptions can be made.
Kalagnanam and Henrion (Kalagnanam and Henrion,
1990) assume the following conditions:

1. There is a single fault and only one component is
responsible of the device failure

2. Cost of repairing actions is independent on the se-
quence of actions

3. There is no observation interleaved between two
repairing actions

Under these circumstances, the optimal repairing se-
quence is the one assuming actions ordered by de-
creasing efficiency defined asCi/Pi|ε.

This order can change as far as we collect evi-
dence on failures, thus varying the repairing proba-
bility Pi |ε of following actions.

Observations are merely considered as state anal-
ysis steps along the troubleshooting process, used to
reduce uncertainty regarding the set of possible faults.
However, they can drastically change the optimal or-
der of repairing actions. Therefore, we can assign a
repairing cost due to observations, i.e.Expected Cost
of Observation(ECO) defined as

ECO(Ob|ε) = ∑
s∈St(Ob)

P(Ob= s|ε)ECR(A|Ob= s,ε)

whereSt(Ob) is the set of possible observation states,
A|Ob= s,ε is the sequence of available actions or-
dered by efficiency given theε andOb= s. Indeed
that is the cost of repair expected when new evi-
dence (i.e. Ob= s) is added to collected evidence
ε. Performing an observation is convenient when
ECO(Ob|ε))> ECR(A|ε).

Bayesian approach to Troubleshooting is ex-
tremely flexible, simple and facilitates the model
maintenance. Examples of commercial applications
of Bayesian Troubleshooting are Microsoft MSBNx
(Kadie et al., 2001), Hewlett Packard SACSO (Jensen
et al., 2001b), and more recently Dezide AdvisorTM.
However modeling structure and estimating param-
eters (i.e. conditional probabilities, costs, etc.) be-
comes soon cumbersome even for slightly complex
problems. So if on one side several large and medium
sized companies have experimented the Bayesian
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Figure 1: BalanceSystems BVK4.

Troubleshooting (Khanafer et al., 2008; Verma et al.,
2004), on the other only smaller and limited case stud-
ies have been considered, as models were not able
to scale complexity, and large effort was required in
designing the Troubleshooting process, in defining
faults, observations and actions, and finally in relat-
ing them. This led to consider the problem of how to
deal with increasing complexity, preserving maintain-
ability and usability of models.

4 A METHOD FOR MODELING
TROUBLESHOOTING

A real system is made of subsystems entailing a large
number of parts, each able to affect the failures of
the whole system. Parts are generally instances of
classes of components, therefore their behavior de-
pends on their design and serial production. This can
lead quickly to complex models that is not possible to
manage at the glance. It would be desirable to reuse
knowledge and decompose the problem in order to
face complexity.

In this section we outline a strategy that makes
possible to model Troubleshooting problems for com-
plex systems using Bayesian approach. As an exam-
ple of a real world system let us consider BVK4, a
balancing machine manufactured by Balance Systems
(see Figure 1).

BVK4 is a class of semi-automatic balancing ma-
chines for rotating parts. The machinery is made by
three three sub-systems:

• Measuring Station aimed at estimating (i) initial
unbalance of parts (ii) an optimal position of parts
to be processed, (iii) unbalance of parts after been
processed

• Working Station performs the balancing of parts

• Control Panel grouping together all controllers,
namely theelectronic controllers, lock off grabs

controllers used for blocking pieces during bal-
ancing anduser input controllersmanaged by Hu-
man/Machine User Interface.

In order to face such a complexity, we propose the
following strategy:

1. Model the system as made of re-usable parts

2. Identify possible failures and organize them in
groups

3. Link the system-level failures to part-level failures

4. Estimate the relative fault frequencies

5. Identify actions able to solve the failures, and re-
lated costs

6. Assign a repairing probability to actions given the
failures

7. Provide a set of observations able to reveal fail-
ures

8. Relate observation states to failures

In describing our approach we will make use of a
prototype supporting tool namedDygnose, part of a
research program led by Balance Systems s.r.l. in co-
operation with University of Sannio. As an example
of application we will consider the troubleshooting of
Internet Service Provider (ISP) connection problems.

Dygnose makes explicit the structure of systems
in parts. Parts can be elementary components or sub-
systems. For example a car is made of parts such as
engine, mechanics and passenger compartment. Each
of these parts is a system itself, thus decomposable it-
self in subsystems. Obviously, failures at system level
depend on failures at part level, and that relations be-
tween parts leads to relations between failures. There-
fore a first step in facing a Troubleshooting modeling
problem consists in decomposing a system in more
elementary components, and to analyze them individ-
ually.

Another source of abstraction relies in the fact that
individuals belong to classes characterized by simi-
lar (or even the same) structure, thus entailing similar
failures, symptoms and repairing actions. For exam-
ple each individual car belong to a series, as produced
according to the same design. Therefore, although
each car is specific, the whole series will entail simi-
lar faults and solutions to them. In addition, general-
ization can be led at different levels of abstraction, so
that different classes can be generalized into a larger
class, in order to pool troubleshooting issues in com-
mon. Each class can refer to a more general class of
systems, inheriting structure, possible failures, symp-
toms and repairing actions.

System are characterized by a set of failures or-
ganized in a tree structure aimed at classifying them.
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Figure 2: Dygnose: Possible ISP connection failures.

Figure 3: Dygnose: Probabilities of repairing actions.

In modeling ISP connection problems, we first create
the fault tree as depicted in Figure 2. In particular, we
have classified failures in two categories: Dial-up and
Lan problems. Each of these is further specified. The
percentage value associated to each fault represents
the relative frequency of happening within the class
of problems it belongs to.

As noted before, there is relationship between the
failures of parts and system they belong to. For exam-
ple if there is a modem failure at connection level, this
is due to a set of possible failures at device level. This
linkage can have a double nature: (i) it can specify at
part level a problem or (ii) it defines a causal relation,
so that a problem at part level produces a side-effect
at system level. Both meanings can be just modeled
by considering a failure cause at system level that is a
proxy of its counter part at component level.

After the failures tree is specified, we can provide
a set of repairing actions as troubleshooting solutions.
Each action is likely able to solve a given failure. This
is done by assigning a repairing probability with re-
spect to each failure, as depicted in Figure 3. As de-
fault we assume that the repairing probability is 0 if
not differently specified.

In addition each repairing action entails a cost
when the action has place. This cost is multi-
dimensional, entailing a usage of different resources

Figure 4: Dygnose: Relating observations to failures.

such as time, budget, people, materials and even
user attitude.

In resolving the ISP connection problem, we con-
sider the following actions:

• Change Internet connection number and retry to
connect (cost=100)

• Replace modem with an other (cost=200)

• Try to connect 10 times (cost=130)

• Check username currently in use (cost=110)

• Retype password and reconnect (cost=110)

• Check modem cable in phone socket (cost=120)

• Try to connect after 10 minutes (cost=130)

• Check proxy browser configurations (cost=130)

• Replace Lan card with an other (cost=200)

• Try a different phone line to connect (cost=140)

Failure symptoms are the last aspects to consider.
Observations are the means by which the failing sys-
tem is looked at and symptoms detected. In par-
ticular, each observation depicts a particular observ-
able aspect of the system by a set of operating con-
ditions. These conditions can reveal some insights
regarding the actual failure. However symptoms are
not deterministically related to failures, and a condi-
tional probability distribution is required to link the
twos. In order to reduce the complexity of specify-
ing such a parameter, observations and failures can be
linked by a correlation index. This index varying be-
tween -1 and 1, makes possible to consider symptoms
able to certainly exclude a failure (correlated−1) and
to identify the failure (correlated+1); we assume 0
when it is not possible to determine such a relation.
An example in modeling observations is provided in
Figure 4. Namely, we considered:
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Figure 5: Dygnose: Supporting the user in solving a failure.

• Connection type (States: Dial-up, Lan)

• No response from server (States: Yes, No)

• ISP account expired (States: Yes, No)

• Phone calls available (States: Yes, No)

Once the Troubleshooting problem has been fully
specified, the model can be translated to a Bayesian
Network. The goal is to collect evidence on what is
the actual failure, according to observations and at-
tempts to remove it.

In executing a troubleshooting model, a Service
employee is supported by suggesting a series of possi-
ble repairing actions ordered by decreasing ECR (see
Figure 5). In addition, observations are listed by de-
creasing ECO.

Although actions and observations are proposed
according to optimal criteria, the user is free to per-
form them in any order until the problem is solved.
As far as new evidence is collected, fault, repairing
action and observation probabilities are updated, and
actions/observations are sorted accordingly.

Modeling real world problems can be problem-
atic. The BVK4 troubleshooting model is currently
described by 9719 lines of text, entailing 2839 prop-
erties and 12687 parameters, even considering a re-
duced structure made of 56 sub-systems and 69 parts.
The model describes 241 possible failures, 102 obser-
vations and 117 repairing actions. However, although
referring a complex system, we were able to complete
the modeling in about a working month employing
three designers: 1 full-time and 2 part-time (2 hours
per day). The model was tested against several prob-
lems, and was able in general to lead the user to the
problem resolution.

5 CONCLUSIONS

Bayesian Troubleshooting provides an interesting
theoretical framework to develop a new generation of
decision support tools in solving failures, able to over-
come limitations of former technologies. Although
strong theoretical basis and availability of computa-
tional methods make this approach really promising,
and effective application to real world problems, such
as servicing industrial machinery, requires to develop
a divide-et-conquer strategy to model complex sys-
tems and tools to make it feasible. In this paper we
presented a method to decompose Troubleshooting
modeling in more treatable steps and Dygnose, a tool
designed to support it. In a preliminary experimen-
tation we successfully considered an industrial ma-
chine. However, developing an effective decompo-
sition strategy is not sufficient by itself. Indeed, new
questions are posing. For instance how to test and
debug a complex model is an open issue we aim at
answering in the future.
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