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Abstract: Phase retrieval problem is a problem of reconstructing a signal or the phase of Fourier transform of the 
signal from the magnitude of its Fourier transform. In this paper we address the problem of reconstructing 
an unknown signal from the magnitude of its Fourier transform and the magnitude of Fourier transform of 
another signal that is given by the addition of a known reference signal. In addition to a brief summary of 
the uniqueness conditions under which a signal can be uniquely specified from the given information, we 
present a simple justification that an iterative algorithm converges to the unknown original signal. And we 
compare three of the iterative algorithms developed so far. 

1 INTRODUCTION 

The phase retrieval problem is the problem of 
reconstruction of a signal from the magnitude of its 
Fourier transform (or Fourier intensity). This 
problem arises in a variety of different applications 
including X-ray crystallography, electron 
microscopy, astronomy, optics, and signal 
processing (Hayes 1980, Ramachandran 1970, 
Hayes 1982). This problem, however, is not easy to 
solve because this problem does not have a unique 
solution in general. For example, suppose we have 
the magnitude of the Fourier transform of a signal. If 
the signal is one-dimensional, we can make an 
infinite number of different sequences which have 
the same magnitude by convolving many different 
all-pass sequences. Even though we restrict the 
signal to be finite, we can find many other signals 
which have the same Fourier transform magnitude 
by the process called `zero flipping' (Hayes 1980). If 
the signal is two-dimensional, even though we know 
that almost all two-dimensional sequences have 
irreducible z-transforms and can be uniquely defined 
to within a trivial ambiguity, we cannot present a 
practical and efficient algorithm to perform the 
reconstruction. 

To overcome the difficulties associated with the 
reconstruction of a signal from its Fourier intensity, 
a group of researchers have proposed many different 
methods by adding additional information (Kim 
1990a, Kim 2004, Fiddy 1983) or using window 
functions (Nakajima 1987, Kim 1993, Kim 2008), or 

using partial information such as one bit of phase 
information (Van Hove 1983).  

Among these, in (Kim 1990a), the authors 
considered the phase retrieval using a known 
additive signal. The authors presented several 
conditions under which a signal is determined 
uniquely from the two magnitudes of Fourier 
transforms: one is the magnitude of the Fourier 
transform of an unknown, desired signal and the 
other is the magnitude of the Fourier transform of 
another signal that is given by the addition of the 
desired signal and a known ‘reference’ signal. Also, 
the authors presented closed-form algorithms that 
can determine the unknown, desired signal from the 
given information. These closed-form algorithms, 
however, may be very sensitive to noise especially 
to computational noise, which may cause the 
propagation of errors because they are derived from 
the autocorrelations so that they are composed of 
recursive equations. As results, the noise levels are 
different at different locations of the solution. On the 
other hand, iterative algorithms have two important 
advantages over recursive algorithms. One is that, at 
each stage of the iterative algorithms, we can put 
various constraints such as the positivity, the finite 
region of support, or the magnitude constraints. The 
other is that with the control over the number of 
iterations, the iterative algorithms may be terminated 
at any time before the effects of noise becomes 
serious.  

In (Kim 1990b), the author had presented an 
iterative algorithm and shown a justification that the 
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algorithm converges in the sense that the defined 
error criterion converges to zero. Also, the paper had 
presented an example that shows that the solution 
signal actually converges to the unknown desired 
signal. However, the paper had not given a proof 
that the updated signal converges to the exact 
solution signal. 

In this paper we consider the same phase 
retrieval problem that had been considered in (Kim 
1990a). After we mention some of the uniqueness 
conditions given in (Kim 1990a), we present a 
corollary that may be used during the development 
of the algorithm and develop an iterative algorithm. 
We introduce the iterative algorithm developed in 
(Kim 1990b) and present a simple justification at the 
algorithm actually converges to the unknown desired 
signal. Finally we present performance analysis 
among the 3 iterative algorithms that can be applied 
to the phase retrieval problem, i.e., Fienup algorithm 
(Gerchberg-Saxton algorithm), the algorithm 
developed in (Kim 1990b), and an adaptive 
relaxation algorithm. 

2 UNIQUENESS 

In this section, we present some of the uniqueness 
conditions in (Kim 1990a). Since the properties of 
the one-dimensional signals are very different from 
those of two- or higher dimensional signals, we first 
mention the one-dimensional signals (Kim 1990a). 

2.1 One-dimensional Case 

To begin with, we assume that )(nx  be an unknown 
desired signal that is a real and discrete-time 
sequence of length N. To be more specific, we 
assume that )(nx  has its region of support 

]1,0[ −NR , 0)0( ≠x , and 0)1( ≠−Nx . Let 
)(ny be another sequence which is derived from 
)(nx by the addition of a known reference sequence 
)(nh , i.e., 

 
)()()( nhnxny +=                       (1) 

 
Now, we assume that the given information is the 
two magnitudes of Fourier transforms, |)(| ωjeX , 

|)(| ωjeY , and the known signal )(nh .   
According to Theorem 3 in (Kim 1990a), the 

unknown desired signal )(nx  can be uniquely 
defined from the given information if the z-
transform of the nonlinear phase part of )(nh does 
not divide )(zX  the z-transform of )(nx . In 
mathematical terms, let )(zH be factored as 

 

)()()( zHzAzH lp= ,                       (2) 
 

where )()( 02 zHzzH lp
n

lp
−±= is the z-transform of a 

finite length linear phase signal )(nhlp . 
This uniqueness condition can be put this way. 

Let )(ˆ nx be another signal such that its satisfies all 
the conditions given to )(nx . Then the phase of 
Fourier transform of )(ˆ nx is related with the phase 
of the Fourier transform of )(nx by either 

)()(ˆ ωφωφ XX =  or )()(2)(ˆ ωφωφωφ XHX −= . If 
)(nx  is uniquely defined from the given condition 

such as in Theorem 3 in (Kim 1990a), then )(ˆ ωφX  
should satisfy )()(2)(ˆ ωφωφωφ XHX −≠ . This can 
be summarized into the next corollary. 
Corollary 1 
Let )(nx  and )(ny  be real, non-symmetric, finite-
length sequences such that they satisfy all the 
conditions given in Theorem 3 in (Kim 1990a) such 
that )(nx  can be determined uniquely from the 
given conditions. Let )(ˆ nx  and )(ˆ ny  be other 
signals that satisfy all the conditions given to )(nx  
and )(ny  as in Theorem 3 in (Kim 1990a), 
respectively. If )(nx is uniquely defined from the 
given conditions, then  
 

)()(2)(ˆ ωφωφωφ XHX −≠ ,                  (3) 
 

where )(ˆ ωφX , )(ωφX , and )(ωφH are the phases of 
the Fourier transforms of )(ˆ nx , )(nx , and )(nh , 
respectively. 

The proof can be done easily. Let )(ˆ nx  and 
)(ˆ ny  be other signals that satisfy all the conditions 

given in the corollary 1. Then, we have 

))()(cos(|)(||)(|2                        
|)(||)(||)(| 222

ωφωφωω

ωωω

HX
jj

jjj

eHeX
eHeXeY

++

+=

))()(cos(|)(||)(ˆ|2                       

|)(||)(ˆ||)(ˆ|

ˆ

222

ωφωφωω

ωωω

HX
jj

jjj

eHeX

eHeXeY

++

+=

Equating the two equations, we get  
))()(cos())()(cos( ˆ ωφωφωφωφ HXHX +=+  

If we solve this equation, then we get either  
)()(ˆ ωφωφ XX =  

or 
)(2)()(ˆ ωφωφωφ HXX −= .  

Since the first equation means )()(ˆ nxnx = , the 
satisfaction of the second equation means there 
exists more than one signal that satisfies all the 
conditions given, which violates the uniqueness 
condition. Thus )(ˆ ωφX  should be 

)(2)()(ˆ ωφωφωφ HXX −≠ . 
As a simple example, suppose that the given 

additive reference signal )(nh  is a point sequence 
such that  
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)()( 0nnAnh −= δ                     (4) 
 

According to Theorem 2 in (Kim 1990a), there 
exist only two sequences that satisfy the given two 
magnitudes conditions. There are )(nx  and 

)2( 0 nnx −  (Kim 1990a). Furthermore, if we specify 
the region of support of the sequences, then we can 
remove this ambiguity. Since without loss of 
generality we can assume that )(nx  is a finite length 
sequence such that it has its region of support 

]1,0[ −NR  with 0)0( ≠x  and 0)1( ≠−Nx . Then 
the two signals )(nx  and )2( 0 nnx −  will have the 
same region of support only when N  is odd and 

2/)1(0 −= Nn . 

2.2 Two- or Higher-dimensional Case 

For the two- or higher-dimensional signals, the 
uniqueness conditions are very similar to those of 
the one-dimensional signals except that the 
properties of two- or higher-dimensional signals are 
very much different from those of one-dimensional 
signals. Unlike the z-transforms of one-dimensional 
signals, the z-transforms of almost all the multi-
dimensional signals are irreducible such that almost 
all of the z-transforms of the two- or higher 
dimensional signals are composed of only one factor 
(Hayes 1982b). This means that unless the additive 
reference signal )(nh  is a point signal, in almost all 
cases the uniqueness condition can be guaranteed.  

3 ITERATIVE ALGORITHM  
AND ITS CONVERGENCE  

Having established conditions under which a signal 
is uniquely defined in terms of the two magnitudes 
of Fourier transforms, we consider an iterative 
algorithm that may reconstruct the desired unknown 
signal from the given information. The main frame 
of the algorithm is given in (Kim 1990b). In (Kim 
1990b), the author had shown that the algorithm 
converges in the sense that the defined error 
criterion )(ωkE converges to 0. In this section, we 
first introduce the algorithm briefly and present a 
simple justification that the algorithm converges to 
the desired solution signal.  

To develop the iterative algorithm, note from (1) 
that the magnitude of the Fourier transform )(ny is. 
related to Fourier transforms of )(nx  and )(nh as 
follows 

 

)()()()(                 
|)(||)(||)(|

**

222

ωωωω

ωωω

jjjj

jjj

eHeXeHeX
eHeXeY
++

+=
  (5) 

Now we define 
222 |)(||)(||)(|)( ωωωω jjjj eHeXeYeK −−=    (6) 

Then from Eq. (5), we have 
)()()()()( ** ωωωωω jjjjj eHeXeHeXeK +=    (7) 

 
where )( ωjeK can be determined uniquely from the 
given information, i.e., two Fourier intensities and 
the given additive reference signal. Using the 
method of successive approximations, we may then 
establish the following update equation for the 
iterative algorithm for finding a solution )( ωjeX . 
 

)]()()()(                         
)()[()()(

**

1

ωωωω

ωωω ωβ
jj

k
jj

k

jj
k

j
k

eHeXeHeX
eKeXeX
−−

+=+  (8) 

 
Here, )(ωβ  is a function that is used to control the 
convergence of the algorithm. To see how this 
algorithm works, define the error )(1

ωj
k eE + at the 

)1( +k st stage of the iteration as follows 
 

)()(                                            
)()()()(

*
1

*
11

ωω

ωωωω

jj
k

jj
k

jj
k

eHeX
eHeXeKeE

+

++

−

−=
  (9) 

 
Using (5) in (6) it may be shown that the error at the 

)1( +k st stage is related to the error at the k th stage 
by 

)()}]()(Re{21[
)()()()()()(

*

*
1

*
11

ωω

ωωωωωω

ωβ j
k

j

jj
k

jj
k

jj
k

eEeH
eHeXeHeXeKeE

⋅−=

−−= +++ (10) 

 
Now, if we let )(ωβ  be a real-valued function 

of ω , it follows that )( ωj
k eE will converge to 0 

provided 
1)}()(Re{0 * << ωωβ jeH              (11) 

 
Therefore, if we set 
 

0)}](sgn[Re{)( βωβ ω ⋅= jeH            (12) 
 

where 0β  is a positive constant such that 
 

|})](Re{/(max{|10 0
ωβ jeH<<         (13) 

 
then, for each ω , )()(1 ωω kk EE <+ will converge to 
0 as ∞→k and )()()()(* ωωωω jj

k
jj

k eHeXeHeX +  
converges to )( ωjeK .  

Now, we are going to show that )(ωkE  converges 
to 0 means that )( ωj

k eX  converges to )( ωjeX . 
From Eq. (8), this equation can be rewritten as 

 

)()(                         
)]()()()(                     

)()[()]()([
**

1

ωωβ

ωβ
ωωωω

ωωω

k

jj
k

jj
k

jj
k

j
k

E
eHeXeHeX

eKeXeX

=
−−

=−+

   (14) 
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From (14), we get 

1
)(
)(

)()(
)()( 1

1

121 <=
−
− +

+

+

ω
ω

ωω

ωω

k

k
j

k
j

k

j
k

j
k

E
E

eXeX
eXeX           (15) 

 
Thus, as k goes to infinity, the update equation (8) 
converges to some signal, say )( ωjeX ∞ .  

Now, we are going to see the converged signal 
)( ωjeX ∞  converges to the desired signal )( ωjeX . If 

we take a limit ∞→k  to (8), we get 
 

)]()()()(                         
)()[()()(

** ωωωω

ωωω ωβ
jjjj

jjj

eHeXeHeX
eKeXeX

∞∞

∞∞

−−

+= (16) 

 
or, combining (7), we get 
 

))()(cos(|)(||)(|          
))()(cos(|)(||)(|

ωφωφ
ωφωφ

ωω

ωω

hX
jj

hX
jj

eHeX
eHeX

−=

−

∞∞

 (17) 

 
where ))(exp(|)(|)( ωφωω

∞∞∞ = X
jj jeXeX . 

If we solve the equation above, we get either 
 

  )()( ωφωφ XX →
∞

                         (18) 
or 

)()(2)( ωφωφωφ XHX −→
∞

            . (19) 
 

According to Corollary 1, )(nx  can be uniquely 
determined from the given condition, if 

)()(2)( ωφωφωφ XhX −≠
∞

. This means that 
)()( ωφωφ XX →

∞
 and the update equation )( ωj

k eX  
converges to )( ωjeX , which means )()(ˆ nxnx → , 
in turn. 

The block diagram of the developed iterative 
algorithm is shown in Figure 1. 

4 RECONSTRUCTION 

In this section, we consider the performance 
comparison of 3 iterative algorithms. One is the 
described in Section 3. The second is Gerchberg- 
Saxton algorithm, also known as Fienup algorithm, 
which is the most basic and fundamental one to the 
algorithms in phase retrieval problem area 
(Gerchberg 1972). The block diagram of the GS 
algorithm is given in Figure 2. This algorithm has a 
very simple structure. Basically while we take 
Fourier transform and inverse Fourier transform the 
solution signal back and forth, we put various 
constraints to the solution signal. For example, if the 
solution is in time-domain,  then the constraints of 
finite-support, non-negativity, real signal are used. If 
the solution signal is in Fourier domain, then we use 
magnitude or phase constraints. One of the 
characteristics of the Gerchberg-Saxton algorithm is 

that if the problem satisfies the uniqueness as in the 
magnitude retrieval problems, then this algorithm 
has a tendency to find the exact solution (Hayes 
1980). If not, as in the general phase retrieval 
problem, this algorithm usually does not 
converge to the solution. 
 

222
0

|)(||)(||)(|)(

0)(

ωωωω

ω

HXYK

X

−−=

=

0)}(sgn{Re{)( βωωβ ⋅= H

)]()()[()()(
)()()()()(

1

**

ωωωβωω
ωωωωω

kkk

kkk

KKXX
HXHXK
−+=

+=

+

|)(||)(| 1 ωω XXk =+

)(1 ω+kX

)(1 nxk+

)(1 nxk +

 
Figure 1: The block diagram of the iterative algorithm. 

|)(||)(| 1 ωω XXk =+

)(1 ω+kX

)(1 nxk+

)(1 nxk +

 
Figure 2: The block diagram of Gerchberg-Saxton 
algorithm. 

The final algorithm is the combination of the first 
iterative algorithm and adaptive relaxation algorithm. 
The adaptive relaxation algorithm is an algorithm 
whose update equation is given as  
 

)}({)()1()(1 nxTnxnx kkkkk λλ +−=+        (20) 
 

where )}({ nxT k  is an constraint operator such as 
time-domain or frequency-domain constraint 
operator as is given in GS algorithm or the iterative 
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algorithm in Figure 1 and kλ  is the relaxation 
parameter (Hayes 1982a). This parameter can be 
determined to minimize the error energy such that   
 

2]}{[

)]}{([

kk
F

kkk
F

k xxT

xxTx

−

−
−=
∑
∑

λ                 (21)  

 
where F implies the region that the constraints are 
applied to (Hayes 1982a). The block diagram of the 
algorithm is given in Figure 3. 

As a simulation, we present a result that shows the 
performance of the algorithm. Fig. 4 (a) is the 
picture of a two dimensional original signal having 
128 x 128 pixels which is assumed to be unknown 
and the magnitude of its Fourier transform is given. 
The additive reference signal is shown (b). The 
reference signal ),( nmh  is assumed to be given as  

⎩
⎨
⎧ ×∈

=
otherwise

nm
nmh

0
]56,55[]51,50[),(255

),(  

 

222
0

|)(||)(||)(|)(

0)(

ωωωω

ω

HXYK

X

−−=

=

0)}(sgn{Re{)( βωωβ ⋅= H

)]()()[()()(
)()()()()(

1

**

ωωωβωω
ωωωωω

kkk

kkk

KKXX
HXHXK
−+=

+=

+

|)(||)(| 1 ωω XXk =+

)(1 ω+kX

}{)()1()(1 kkkkk xTnxnx λλ +−=+

)(1 nxk +

kλ )1( kλ−

 
Figure 3: The block diagram of the combination of the 
iterative algorithm in Figure 2 and adaptive relaxation. 

which is a 2x2 square box but may look like a 
blurred point signal.  

Then the another magnitude of the signal  
),(),(),( nmhnmxnmy +=  

 is assumed to be given. Since the maximum value 
of ),( 21 ωω jj eeH is 255*2*2 = 1020, the 
convergence constant 0β  should be greater than 
zero and less than 1/(255*2*2)= 041089039.9 −×  and 

in this case we picked 04
0 1089039.9 −×=β . Figure 

(c), (d), and (e) show the images that are 
reconstructed by Gerchberg-Saxton algorithm , 
Iterative algorithm, and Adaptive relaxation 
algorithm, respectively, after 20 iterations. In these 
pictures, we can see that while the result from 
Gerchberg-Saxton algorithm does not converge to 
the desired signal, the signals reconstructed by the 
other two algorithms looks similar to the desired 
signal and thus converge to the desired signal. 
 

 
Figure 4: The original signal and the reconstructed signals 
after 20 iterations; (a). the original signal, (b) the additive 
reference signal, (c) the reconstructed signal using the GS 
algorithm, (d) using the iterative algorithm, and (e) the 
algorithm with adaptive relaxation.  

Figure 5 shows the comparison between the 
performances of the 3 algorithms. The mean squared 
error here is defined as  

[ ]
NM

nmxnmx
MSE ro

×
−

= ∑
2),(),(

 

where NM ×  is the number of pixels in ),( nmx . 
As we can see in this picture, the Gerchberg-Saxton 
algorithm does neither diverge nor converge. On the 
`other hand, the iterative algorithm converges as 
iteration goes on constantly. On the other hand, in 
the beginning part of the simulation, the algorithm 
with adaptive relaxation converges quickly. 
However, the algorithm saturated and does not 
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converge any more. Obviously, the optimal 
algorithm is in the beginning part of the iteration, the 
algorithm needs to follow the adaptive relaxation 
property and later to follow the iterative algorithm. 
 

 
Figure 5: Comparison of the convergence properties 
between the GS algorithm, the iterative algorithm, and 
algorithm with adaptive relaxation. 

Finally, in Figure 6, we presented the reconstructed 
algorithm after 100 iterations using the iterative 
algorithm. As we had given the justification, the 
algorithm converges and the reconstructed signal 
actually converges to the desired signal. 
 

 
Figure 6: An example that shows the convergence 
property of the iterative algorithm. (a) The original image 
and (b) the reconstructed image after 100 iterations using 
the iterative algorithm. 

5 CONCLUSIONS 

In this paper we considered the problem of 
iteratively reconstructing a one-dimensional or a 
two-dimensional signal from a pair of Fourier 
intensities: the intensity of the signal along with the 
intensity of another signal that is related by the 
addition of a known reference signal. After we 
present the uniqueness of the solution briefly, we 
presented a simple proof that the iterative algorithm 

converges the desired original signal, which is 
assumed to be unknown. The algorithm combined 
with the iterative algorithm and the adaptive 
relaxation algorithm converges fast in the beginning 
part and however goes saturated fastly also. Future 
work may be the evaluating the robustness of the 
algorithms to noise in the measured intensities and 
methods of improving the convergence properties of 
the constrained iterative algorithm. 
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