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Abstract: Ring signature schemes (Rivest et al., 2001) enable a signer to sign a message and remain hidden within an
arbitrary groupA of n people, called a ring. The signer may choose this ring arbitrarily without any setup
procedure or the consent of anyone inA. Among several variations of the notion,step out ring signatures
introduced in (Klonowski et al., 2008) address the issue of a ring member proving that she is not the original
signer of a message, in case of dispute. First we show that the scheme in (Klonowski et al., 2008) has
several flaws and design a correct scheme and prove formally the security of the same. Then we use the basic
constructs of our scheme to design a protocol for a new problem, which we refer to asthreshold discernible
ring signatures. In threshold discernible ring signatures, a groupB of t members can co-operate to identify the
original signer of a ring signature that involved a groupA of n alleged signers, whereB⊂ A andn> t. This is
the first time that this problem is considered in the literature and we formally prove the security of our novel
scheme in the random oracle model.

1 INTRODUCTION

Ring signatures, introduced in (Rivest et al., 2001),
allow a signer to sign a message on behalf of an arbi-
trary groupA of n people, called the ring. The signer
may hide behind the arbitrarily chosen ringA, without
any setup procedure or the consent of the other mem-
bers ofA. Such signatures have been expanded to var-
ious applications: deniable ring authentication (Naor,
2002; Susilo and Mu, 2004), linkable ring signature
schemes that allow one to link signatures signed by
the same person, short versions of linkable ring signa-
ture (Tsang and Wei, 2005; Au et al., 2006). Further-
more, identity based ring signature schemes, which
allow ring construction across different identity-based
master domains (Cheng et al., 2004; Awasthi and Lal,
2005; Savola, 2006) and confessible threshold ring
signature (Chen et al., 2006), where the actual signer
can prove that she has created the signature, have also

been proposed in literature.
Even though the original intent was to keep the

real signer anonymous, in the event of a dispute, a
member of the ringA may want to prove that she was
not the actual signer of a particular message. A new
variant calledstep outring signature was introduced
in (Klonowski et al., 2008); here the real signer can
prove that she created the signature, while any one
else in the ring can prove that she is not the origi-
nal signer. Their proposal was an intermediate solu-
tion between the classical ring and group signatures,
and can be used for instance in e-auction schemes,
and this is the only scheme present in the literature.
However, our attack presented here shows that their
scheme allows a third party, who is not a member of
the ring, to forge a signature on behalf of the ring.
In another scenario, we break the anonymity of the
signer of a ring signature. Hence, till date, there is no
correct and provably secure scheme available for step
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out ring signatures.
Exposing the identity of the original signer of a

ring signature may arise in several other contexts as
well. Suppose a petitioner wishes to send a complaint
regarding certain government officials on behalf of
several people, say the residents of her locality. The
signer wishes to remain anonymous in order to pre-
vent harassment from the concerned officials. How-
ever, any resident who disagrees with the complaint
must have the right to prove that she is not the peti-
tioner. At the same time, a sufficiently large threshold
of the residents should be able to discover the identity
of the petitioner, in case the complaint was malicious.

Consider a joint bank account scenario, wheren
people share a single account. Any account holder
among thesen people is authorized to sign and trans-
act with the bank. The bank will only know that some-
one among thesen people has signed, but will not
know the exact identity of the signer. Hence the sit-
uation cannot afford a centralized manager. Now, in
case of fraud by any one of then members, any thresh-
old of t people among then members can cooperate
and identify the fraudulent person.

Our Contributions. We perform cryptanalysis on
the step out ring signature scheme (Klonowski et al.,
2008) and identify defects in unforgeability and
anonymity. We additionally provide appropriate mod-
ifications in order to present a provably secure step
out ring signature scheme under the random oracle
model.

We introduce the concept of threshold discernible
ring signatures, where a threshold oft signers are to-
gether capable of finding the identity of the original
signer. This may be applied, for example, to situa-
tions where a message has been maliciously signed
on behalf of a ring of signers and a majority (or a
thresholdt) of the ring members decide to unmask
the original signer of the message. We shall use the
basic constructs of our modified step out ring signa-
ture scheme to produce a threshold discernible ring
signature scheme.

2 PRELIMINARIES

We shall consider rings withn members, denoted by
U 1, · · · ,U n. Let p,q be large primes (p,q >> n),
q|p−1, andG=< g> be an orderq cyclic subgroup
of Z∗p. For the sake of simplicity we shall skip “mod
p” if it follows from the context. We assume that user
U i holds a private keyxi ; the corresponding public
key isyi = gxi . The keyyi is publicly available.H de-
notes a secure hash function{0,1}∗→{0,1}k, where

k is a fixed constant. We assume that the following
assumptions are fulfilled inG:

Definition 1 - Decisional Diffie-Hellman Assump-
tion. LetGbe a cyclic group generated bygof order
q. Let A DDH be an algorithm that has to distinguish
c0 = (g,ga,gb,gab) from c1 = (g,ga,gb,gc) for ran-
domly chosena,b,c∈ Zq. LetAdvddh

A
= |Pr[A (c1) =

1]−Pr[A (c0) = 1]| be called the advantage ofA in
breaking the DDH problem.

The DDH assumption holds forG, if advan-
tage Advddh

A
is negligible for each probabilistic

polynomial-time algorithmA , i.e. Advddh
A

< εddh
whereεddh is negligible.

Definition 2 - Discrete Logarithm (DL) Assump-
tion. LetGbe a cyclic group generated bygof order
q. LetA be an algorithm such that on inputga, where
a∈ Zq, A should outputa. Let Succdl

A
= Pr[A (ga) =

a] be called the success ofA in breaking the DL prob-
lem.

The DL assumption holds inG, if for each proba-
bilistic polynomial-time algorithmA , successSuccdl

A

is negligible, i.e.Succdl
A
< εdl whereεdl is negligible.

2.1 SKDL Proof of Knowledge

The SKDL proof of knowledge is a signature of
knowledge of discrete logarithms defined in (Ca-
menisch, 1997). It is based on the Schnorr signature
scheme (Schnorr, 1991). This signature proves the
knowledge ofx : y = gx in the context of a message
m. We explain the construction and verification be-
low.

SKDL Construction. The construction
SKDL(g,y,m) is described below. It is executed
by the prover who possessesx : y= gx. Note thatg is
a generator of the groupG.

1. Pickr ←R Z
∗
q.

2. Calculatec= H (g||y||gr ||m).

3. Calculate
s= r− cx (1)

The procedure returns the values(c,s).

SKDL Verification. The verification procedure
VSKDL(g,y,m) is executed by the verifier and checks
if:

c
?
= H (g||y||gsyc||m)

This proves that the prover is aware of discrete loga-
rithm x= logg(y) without actually revealingx.
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2.2 SEQDL Proof of Knowledge

The step-out ring signature scheme in (Klonowski
et al., 2008) is based on asignature of knowl-
edge of equality of discrete logarithms(SEQDL). Let
g, ĝ, ŷw∈G and tuples(y1, · · · ,yn),(w1, · · · ,wn)∈Gn.
SEQDL allows a prover to prove in zero-knowledge
thatlogĝŷw = logg(y jwj) for some indexj, with j not
revealed to the verifier.

Preliminaries. Recall thatG is an orderq cyclic
subgroup ofZ∗p with g as its generator. LetU j be
a prover who has the following information:

– Y = (y1, · · · ,yn) ∈Gn

– For a specific indexj, U j knows x j : y j = gxj .
Note thatU j is not aware of the discrete loga-
rithms ofyi ∈Y : i 6= j.

– W = (w1, · · · ,wn) ∈ Gn and (r1, · · · , rn) ∈ Z
n
q,

wherewi = gr i for all i = 1, · · · ,n. Note that unless
U j is the signer, she is not aware of the discrete
logarithms ofwi ∈W : i 6= j.

– ĝ ∈ G, which is randomly chosen by the signer
andŷ= ĝxj+r j .

Using these values,U j wishes to convince the verifier
that the discrete logarithmslogĝŷw andlogg(y jwj) are
equal, with the indexj not revealed to the verifier.U j
achieves this by executing the SEQDL construction
algorithm and passing the outputs to the SEQDL ver-
ification algorithm. The details are given below:

SEQDL Construction. The SEQDL construc-
tion algorithm, run by theU j , is SEQDL(ĝ,g
,x j , r j , ŷw,Y,W,m). Typically, the vectorW is cho-
sen by the signer. However,W may be created and
used in different ways provide three different mecha-
nisms for stepping out, as discussed in section 4. The
construction of SEQDL is as follows:

1. Pick random elementsr ∈ Zq andci ,si ∈ Zq, for
i ∈ {1, · · · ,n}\{ j}.

2. For alli ∈ {1, · · · ,n}\{ j}, userU j computes:

ti ← ĝsi ŷci
w,ui ← gsi (yiwi)

ci , t j ← ĝr ,u j ← gr (2)

3. We denoteY = y1|| · · · ||yn , W = w1|| · · · ||wn

4. Compute:

c j ← H (ĝ||g||ŷw||Y||W||t1||u1|| · · · ||tn||un||m)
−∑i<n,i6= j ci

(3)
sj ← r− (x j + r j)c j modq (4)

The algorithm finally returns(C,S) where C =
(c1, · · · ,cn) , S= (s1, · · · ,sn).

SEQDL Verification. Given a signature
SEQDL(ĝ,g ,x j , r j , ŷw,Y,W,m) = (C,S), with
parameters ˆg, g, ŷw, Y, W, and a messagem, the
verification algorithmVSEQDL(ĝ,g, ŷw,Y,W,C,S,m),
run by the verifier, checks if:

∑n
i=1ci

?
= H (ĝ||g||ŷw||Y||W||ĝs1ŷc1

w ||gs1(y1w1)
c1|| · · ·

||ĝsnŷcn
w ||g

sn(ynwn)
cn||m)

(5)
The verifier returns 1 if the above condition succeeds,
0 otherwise. When verification returns 1, the veri-
fier is convinced of the equality of discrete logarithms
logĝŷw and logg(y jwj) with the index j ∈ {1, · · · ,n}
unknown to the verifier.

3 STEP OUT RING SIGNATURES
(SRS)

3.1 Scheme Outline

Let us assume thatU j is the real signer and
U 1, · · · ,U n are all ring members. Let the private and
public key of userU i bexi andyi = gxi respectively.
For Step-out Ring Signatures (SRS) we have the
following procedures:

Signing Procedure. SSRS(g, ĝ,x j ,Y,m) is a ran-
domized algorithm that takes generator g and a
random element ˆg ∈< g >, ĝ 6= 1, the secret key
x j , the set of public keysy1, · · · ,yn ⊂< g > and a
message m. It returns a signatureσ.

Verification Procedure. VSRS(σ,m) is a deter-
ministic algorithm that takes a messagem, and a
signatureσ for m. It returns a bit: 1 or 0 to indicate
whetherσ is valid, i.e. someone having a public key
in a setY indicated byσ has signedm.

Confession Procedure. Let σ be a step-out
ring signature onm produced by memberU j of the
ring. In the confession procedure,U j proves that
she is indeed the original signer ofm and produced
σ. Towards this,U j produces a confession record
σ′, which is yet another signature byU j on m.
The verifier runsCSRS(σ,σ′,y j ,m), a deterministic
algorithm which takes as inputσ, σ′, m and the
public key y j of userU j , and returns either a bit
1 to confirm thatU j has createdσ or a bit 0 otherwise.

Step-out Procedure. Let σ be a step-out ring
signature onm produced by memberU j of the ring.
During step-out, a ring memberU i , i 6= j proves that
she not the original signer ofm. Here,U i produces
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step-out recordsσ′′,σ′′′, which are SRS signatures
for the message ˜m =“I have not signed m”. The
verifier runsDSRS(σ,m,σ′′,σ′′′,yi ,m̃), a deterministic
algorithm which takes as inputσ, σ′′, σ′′′, m and the
public keyyi of userU i , and returns either a bit 1 to
confirm thatUi has not createdσ or a bit 0 otherwise.

3.2 Step Out Ring Signatures

We recall the signing and verification procedures of
the step out ring signature scheme in (Klonowski
et al., 2008).

3.2.1 Signing Algorithm

The signing algorithm is run by userU j with private
key x j to produce a ring signature corresponding to
n users with public keysY = (y1, · · · ,yn). Note that
parameter ˆg∈G is randomly chosen by the signer.

Algorithm SSRS(g, ĝ,x j ,Y,m)
repeat

r1, · · · , rn←R Z
∗
q

wi ← gr i for eachi = 1, · · · ,n
until (yiwi 6= y jwj for eachi 6= j)
ŵ← ĝr j , ŷ← ĝxj , ŷw← ŷŵ
(C,S)← SEQDL(ĝ,g,x j , r j , ŷw,Y,W,m)
Y← y1, · · · ,yn
W←w1, · · · ,wn
σ← (g, ĝ, ŷ, ŵ,Y,W,C,S)
return(m,σ)

3.2.2 Verification Algorithm

This algorithm is run by a verifier using only public
information. AlgorithmVSEQDL verifies the SEQDL
proof of knowledge output by the signer.

AlgorithmVSRS(σ,m)
ŷw← ŷŵ
d← VSEQDL(ĝ,g, ŷw,Y,W,C,S,m)
if d = 1

then return 1
else return 0

3.2.3 Scenarios forr i

Three different ways of using parameterr i , target-
ing three different applications, are suggested in
(Klonowskiet al.,2008):

1. The numbersr i are created by the signer at ran-
dom. They are kept secret unless the signer en-
ables a member of a ring to step out.

2. The numbersr i are given together with the signa-
ture. In this case the ring participants can imme-
diately step out.

3. U i generatesr i herself and publisheswi . More-
over, eachwi can be a kind of time stamp - a signa-
ture generated withwi has to be created no earlier
than at the time of creatingwi .

4 CRYPTANALYSIS OF SCHEME

We have found weaknesses in the paper in the case of
scenario (1) and scenario (2) above. We explain these
below:

4.1 Forgery in Scenario 1

Under scenario 1, we show that it is easy for anyone,
even without the knowledge of any of the ring mem-
bers’ secret keys, to produce ˆyw,wj for some j such
that logĝŷw = logg(y jwj). We explain an algorithm
FSRSwhich forges a signature of (Klonowski et al.,
2008) in this manner below:

4.1.1 Forger Algorithm

Algorithm FSRS(g, ĝ,Y,m)
repeat

r i ←R Z
∗
q for eachi ∈ {1, · · · ,n}\{ j}

wi ← gr i for eachi ∈ {1, · · · ,n}\{ j}
α←R Z

∗
q

wj ← gα/y j
until (yiwi 6= ykwk for eachi 6= k)
β←R Z

∗
q

ŵ← ĝβ, ŷ← ĝα−β, ŷw← ŷŵ
(C,S)← SEQDL(ĝ,g,α−β,β, ŷw,Y,W,m)
Y← y1, · · · ,yn
W←w1, · · · ,wn
σ← (g, ĝ, ŷ, ŵ,Y,W,C,S)
return(m,σ)

4.1.2 Validity

We will show that the signature produced byFSRS
verifies successfully. Note that the verification algo-
rithm VSRS(σ,m) will in turn call VSEQDL (ĝ,g, ŷw =
ĝα,Y,W,C,S,m). By construction in equation (2)
and (3), verification equation (5) holds provided:
gsj (y jwj )

cj = gsj+cj α = gr andĝsj ŷ
cj
w = ĝsj+cj α = ĝr .

However, these hold, since by construction in (4),
r = sj + c jα. Hence the forged signature is consid-
ered valid.
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4.1.3 Salient Features

The above algorithm clearly does not use private in-
formationx j to forge a ring signature. If this were per-
formed by thekth ring member, she can step out using
the valuerk. An adversary can also allow every ring
member other than thej th one to step out by releasing
the valuesr i for eachi ∈ {1, · · · ,n}\{ j}. In fact, it
can be shown that the forged sign is indistinguishable
from a signature by thejth ring member in polynomial
time. In the next section we will demonstrate how to
fix this break. We will provide a corrected scheme
and unforgeability proof in the following sections.

4.2 Break of Anonymity in Scenario 2

The anonymity of the signer can be broken in the sec-
ond scenario using the parameter ˆw. Since the param-
etersr i are released together with the signature, a dis-

tinguisher simply tests if ˆgr i
?
= ŵ for eachi = 1, · · · ,n.

According to the protocol, this will only hold for the
signer j, thus revealing the identity of the signer.

5 MODIFIED STEP OUT RING
SIGNATURES

We will explain in this section how we can modify the
step out ring signature scheme to restore unforgeabil-
ity and anonymity.

5.0.1 Providing Unforgeability

The signer generates a random valuer j , but uses only
the valuex j + r j in equation (4) of the SEQDL pro-
tocol for generating the components,(c,s). However,
there is no proof of knowledge ofr j (or the otherr i ’s)
insisted by the verification algorithm. Hence a forger
can generate the value ‘x j + r j ’ in an arbitrary manner
without even knowing or proving that she knowsx j
andr j individually. This is exactly what we did in our
forgery algorithm byreverse engineeringthe(x j + r j)
values. In fact, in our forging algorithm the valuesα
andβ are chosen in such a way that whenα−β and
β are used as parameters for SEQDL, the algorithm
produces the same value that SEQDL would have pro-
duced withx j andr j . Hence, to fix the above problem,
we add SKDL’s forwi ’s and verify them during veri-
fication.

5.0.2 Providing Anonymity

The anonymity can be broken if the parameter ˆw is
known and the signatureσ output by the signer con-

tainsŵ explicitly as a part of it. Notice thatσ contains
bothŵ andŷ but the verification algorithm needs only
the product ˆwŷ. Hence, it is sufficient to provide only
the product value ˆwŷ as a component ofσ instead of
providing ŵ and ŷ as separate components. As one
can not compute ˆw from the product ˆwŷ, this modifi-
cation prevents one from breaking the anonymity. In
fact, we formally prove the same.

5.1 Modified SRS Scheme

The modified SRS scheme overcomes the flaws of the
step out ring signature scheme in (Klonowski et al.,
2008). This uses the SKDL which is a zero knowl-
edge proof of discrete logarithm.

5.1.1 Modified Signing Algorithm

The algorithm is run by userU j with private keyx j
to produce a ring signature corresponding ton users
with public keysY=(y1, · · · ,yn). Note that parameter
ĝ∈G is randomly chosen by the signer.

Algorithm SMSRS(g, ĝ,x j ,y1, · · · ,yn,m)
repeat

r1, · · · , rn←R Z
∗
q

wi ← gr i for eachi = 1, · · · ,n
until (yiwi 6= y jwj for eachi 6= j)
ŷw← ĝxj+r j

(c1, · · · ,cn,s1, · · · ,sn)← SEQDL(ĝ,g,x j , r j , ŷw
,y1, · · · ,yn,w1, · · · ,wn,m)

Y← y1, · · · ,yn
W←w1, · · · ,wn
σ = (g, ĝ, ŷw,Y,W,c1, · · · ,cn,s1, · · · ,sn,
{SKDL(g,wi ,m), i = 1, · · · ,n})

return(m,σ)

5.1.2 Modified Verification Algorithm

This algorithm is run by a verifier using only public
information. AlgorithmVSKDL is used to verify the
SKDL proofs of knowledge output by the signer.

AlgorithmVMSRS(σ,m)
if(VSKDL(g,wi ,m) = 0,

for anyi = 1, · · · ,n)
then return 0

d← VSEQDL(ĝ,g, ŷw,y1, · · · ,yn,w1, · · · ,wn,
c1, · · · ,cn,s1, · · · ,sn,m)

if d = 1
then return 1
else return 0
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5.1.3 Modified Confession Algorithm

We denoteY′ = (y
′

1, · · · ,y
′
n) , Y′′ = (y1

′′, · · · ,yn
′′) ,

Y′′′ = (y1
′′′, · · · ,yn

′′′). The confession recordσ′ =
(g,ĝ, ŷ, ŵ,Y′,W, SEQDL(ĝ,g,xi , r i , ŷ.ŵ,Y′,W,m)) is a
new signature with the same parametersg, ĝ,W as in
σ and some new set of potential signersY′ : Y∩Y′ =
{y j}, wherey j stands at the same position in both se-
quences.

The confession algorithm verifies whether a mem-
ber of the ringU j has generated the ring signatureσ
by obtainingσ′ from her as shown below. Note that
the verifier verifiesσ′ usingVSRSbecause the SKDL’s
corresponding toW have already been verified in the
verification ofσ.
Algorithm CMSRS(σ,σ′,y j ,m)

if(the sameg, ĝ, ŷ, ŵ,W were used inσ andσ′) then
d1← VMSRS(σ,m),d2← VSRS(σ′,m)
if(d1 = d2 = 1 and{y j}=Y∩Y′ andy j stands

on positionj in Y′) then
return 1 else return 0

else return 0

5.1.4 Modified Step-out Algorithm

We define the step-out recordsσ′′, σ′′′ below:
– σ′′ = (g,ĝ, ŷ′′, ŵ′′,Y′′,W, SEQDL(ĝ,g,xi , r i , ŷ′′.ŵ′′,

Y′′,W,m̃)) - a SRS signature with the same pa-
rametersg, ĝ,W as in σ and ŷ′′ = ĝxi , ŵ′′ = ĝr i ,
some new set of potential signersY′′, for the con-
trol message ˜m = “I have not signed m”.

– σ′′′ = (g,ĝ, ŷ′′, ŵ′′,Y′′′,W, SEQDL(ĝ,g,xi , r i ,
ŷ′′.ŵ′′, Y′′′,W,m̃)) - a SRS signature for the same
control message ˜m with the sameg, ĝ, ŵ′′,W
andY′′′ such thatY′′ ∩Y′′′ = {yi} and yi stands
on the same position inY′′ andY′′′. Moreover,
yi1
′′wi1 6= yi2

′′′wi2 for i1 6= i2
The step-out algorithm verifies whether a member of
the ringU i has not generated the ring signatureσ by
obtaining(σ′′,σ′′′) from her as shown below. Note
that the verifier verifiesσ′′ and σ′′′ using VSRSbe-
cause the SKDL’s corresponding toW have already
been verified in the verification ofσ.
AlgorithmDMSRS(σ,m,σ′′,σ′′′,yi ,m̃)

if(the sameg, ĝ,W were used inσ,σ′′,σ′′′
and the same ˆy′′, ŵ′′ were used inσ′′,σ′′′) then

d1← VMSRS(σ,m),d2← VSRS(σ′′,m̃),
d3← VSRS(σ′′′,m̃)
if(d1 = d2 = d3 = 1 and{yi}=Y′′∩Y′′′,

andyi stands at the same position inY′′ andY′′′,
andŷŵ 6= ŷ′′ŵ′′) then

return 1 else return 0
else return 0

6 ANALYSIS

6.1 Unforgeability

Informally, forking lemma(Pointcheval, 2005) for
adaptive chosen message attacks states that if an al-
gorithmA can with non-negligible probabilityε, pro-
duce a valid signature(m,σ1,h,σ2) without know-
ing the secret key, then, a replay of the attackerA
may output two valid signatures(m,σ1,h,σ2) and
(m,σ1,h′,σ′2) such thath 6= h′, within a bounded time
and non-negligible probability. Forking lemma is ap-
plicable for modified step-out ring signatures. This
can be proved similar to (Klonowski et al., 2008), the
difference being the computation of SKDL’s by the
simulators. We state the lemma below.

Lemma 1. Modified SRS signatures can be simu-
lated by a simulator, with oracle access toH , under
DDH assumption without knowing the corresponding
secret signing key and with distribution probability in-
distinguishable from SRS signatures produced by a
legitimate signer.

Now, we shall construct an adversary that can
solve the DL problem by findingxi = loggyi for some
i. Note that theyi ’s are supplied to the forger as input.
Hence a DL solver attempting to findloggX can do so
by settingyt = X for somet. With success probability
1/n, this is the index of the signer whose signature the
forger generates.

6.1.1 Construction of DL Solver

We now apply forking lemma in the chosen
message attack scenario (section 2.1). The
signature σ is written as (σ1,h,σ2) where:

σ1 = (ĝ, ŷw,W,u1, · · · ,un, t1, · · · , tn),
whereui , ti are constructed like in (2)

h= (H(ĝ||g||ŷw||Y||W||u1||t1||...||un||tn||m),

{H(g||wi ||gs̃i wc̃i
i ||m), i = 1, · · · ,n}

σ2 = (C,S, c̃1, s̃1, · · · , c̃n, s̃n)
After acquiring two valid signatures(σ1,h,σ2) and
(σ1,h′,σ′2), such thath 6= h′ and σ2 6= σ′2, the DL
solver can compute thexi = logg(yi) corresponding
to the signer whose signature the forger generated.

The solver first computesαi = xi + r i =
(s′i − si)/(ci − c′i) for all i = 1, · · · ,n whereci 6= c′i ,
which holds due to equation 4 in SEQDL con-
struction. It then computesr ′i = (s̃′i − s̃i)/(c̃i − c̃′i)
for all i = 1, · · · ,n where c̃i 6= c̃′i , which is evident
from equation (1) in SKDL construction. Finally, it
computesx′i = αi − r ′i for all obtained values ofαi
andr ′i . Clearly, if the forger produced a signature by
the user with public keyy j , then solver has obtained
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x′j : gx′j = y j .
Hence the solver has the solution to the DL

problemx′ = loggX provided j = t. The probability
that this happens is 1/n. Since we assume that the
DL assumption holds, the above algorithm must have
negligible probability of success, therefore the forger
has negligible success probability too.

6.2 Anonymity

The anonymity argument in (Klonowski et al., 2008)
can be readily extended to the proof of anonymity of
the modified scheme. As ther i ’s are chosen randomly,
the SKDLs reveal no additional information about the
signer. Also, the proof of anonymity in (Klonowski
et al., 2008) assumes that the only distinguishing
property of two signature tuples of the formσ =
(m,g, ĝ, ŵ,y1,y2,w1,w2,c1,c2,s1,s2) by two different
signers 1 and 2, is that in the former,logg(y1w1) =
logĝ(ŷŵ) and in the latter,logg(y2w2) = logĝ(ŷŵ).
However, the fact that the adversary, in scenario 2,
may user i = logĝ(ŵ), whenr i is released along with
the signature was not considered. This can be recti-
fied when the product ˆyw = ŷŵ is released with the
signature instead of the individual values ˆy, ŵ.

6.3 Security of Confession and Step Out

We will prove the following lemmas in order to show
the security of confession and step-out protocols in
our modified step-out ring signature scheme.

Lemma 2. A confession has a positive outcome
only if performed by the original signer of a modified
step-out ring signature according to protocol.

Proof. Since VSEQDL(ĝ,g, ŷw,Y,W,C,S,m) = 1,
there exists α such that gα ∈ {y1w1, · · · ,ynwn}
and ĝα = ŷŵ. Moreover, if σ′ is constructed
appropriately andVMSRS(σ′,m) = 1, then gα ∈
{y′1w1, · · · ,y′nwn} as well. Sogα ∈ {y1w1, · · · ,ynwn}
∩ {y′1w1, · · · ,ynw′n}. Since{y1, ...,yn} ∩ {y′1, ...,y

′
n}

= {y j}, andyi1wi1 6= y′i2wi2 for i1 6= i2 , we know that
gα = y jwj , so in this case userU j was a creator ofσ
andCMSRS(σ,σ′,y j ,m) = 1.

Lemma 3. A step-out has a positive outcome
only if performed by a ring-member of a modified
step-out ring signature, other than the original signer,
according to protocol.

Proof. It is easy to see that the see thatσ′′′ is
a confession that a message ˜m has been signed asσ′′
by the userU i : yi = Y′′ ∩Y′′′. Clearly, this user is a

member of the ring. We will show that the outcome of
the step-out procedure performed by this user is posi-
tive. Let us assume thatDMSRS(σ,m,σ,σ,yi ,m̃) = 0.
This happens if ˆyŵ = ŷ′′ŵ′′. As in the proof of
Lemma 1, we can see that the signaturesσ′′ andσ′′′

guarantee that there existsα′ such thatgα′ = yiwi

andĝα′ = ŷ′′ŵ′′. Soα = logg(yiwi) = logĝ(ŷ′′ŵ′′) =
logĝ(ŷŵ) = logg(y jwj), whereU j is the signer ofσ.
We have got thatyiwi = y jwj , but this contradicts the
assumption about generating secretsr i and computing
wi during the signing procedure, providedi 6= j.
Let us consider the case when an actual signer
attempts to step-out. When performing the step-out
procedure and generating signaturesσ′ and σ′′, the
userU j has to generatey′′w′′ = gxj+r j . However, this
product is the same as inσ, so this would lead to a
failure of the test of the step-out procedure.

7 THRESHOLD DISCERNIBLE
RING SIGNATURES

Threshold discernible ring signatures are ring signa-
tures where a threshold oft signers are together capa-
ble of finding the identity of the original signer. This
may be applied for example to situations where a mes-
sage has been maliciously signed on behalf of a ring
of signers and a majority (or a thresholdt) of the sign-
ers decide to unmask the original signer of the mes-
sage.

We extend the modified step out ring signature
scheme from section 6.3 to allow threshold discerni-
bility. The signing algorithm additionally outputs a
set of verifiably encrypted shares of the secretl =
logg(ĝ). This can be done using verifiable sharing
of discrete logarithms (Stadler, 1996) and verifiable
encryption of discrete logarithms (Stadler, 1996; Ca-
menisch and Shoup, 2003). Oncel is gathered by
any set oft ring members, the original signer is eas-
ily found by inspecting for which indexi of the ring
members, the equation(yiwi)

l = ŷw holds. This is the
index of the original signer.

7.1 Preliminaries

We assume the same settings and complexity assump-
tions as the SRS signature scheme as in section 2.
The algorithm uses a verifiable encryption scheme
(Stadler, 1996; Camenisch and Shoup, 2003; Ca-
menisch and Damgard, 2000). The notations used
for this scheme are explained below. We also explain
Shamir’s secret sharing scheme (Rivest et al., 2001)
which is used in the verifiable secret sharing of dis-
crete logarithms (Stadler, 1996).

FORCING OUT A CONFESSION - Threshold Discernible Ring Signatures

385



7.1.1 Verifiable Encryption

We denote verifiable encryption of a discrete loga-
rithm α = logg(β) under public keyPK asVEPK(α :
β = gα). This denotes the cipher-text created by the
Encryptalgorithm. The encryption scheme has three
algorithms namely:

1. Encrypt(α : β = gα): Takes a messageα, a public
keyPK and outputs cipher textVEPK(α : β = gα)
whereg,β = gα are publicly known.

2. Decrypt(VEPK(α : β = gα)): Takes a cipher-text
VEPK(α : β = gα) and obtains the original mes-
sageα. This requires the secret keySK.

3. Verify(VEPK(α : β = gα)): Takes the cipher-text
VEPK(α : β= gα) and verifies the zero knowledge
proof that the cipher text indeed encryptsα such
thatβ = gα.

7.1.2 Shamir’s Secret Sharing Scheme

A (t, n) secret sharing scheme is a scheme where a
secretd is shared amongn users where only a coali-
tion of size at leastt can recover the secret. Such a
scheme was proposed by Shamir (Rivest et al., 2001)
and is explained below. A userU i has a well known
public parameterαui ∈ Zq.

Preliminaries. Let q be a large prime (q>> n), and
d∈Zq be the secret to be shared. There aren≥ t users
in total.

Share. (d) The dealer chooses a random polyno-
mial f (x) = d+∑t−1

i=1 aixi , of degreet−1 fromZq[x]
where the constant term is set tod. The dealer then
distributes the secret sharessi = f (αU i ), to the ith

user, for eachi = 1· · ·n.

Reconstruct. ((αv1,s1), · · · ,(αv|S| ,s|S|)) This pro-
cess is a simple polynomial interpolation to com-
pute f (0) = d. Suppose a coalitionS, |S| ≥ t,S=
{v1, · · · ,v|S|} wants to reconstruct the secret. They
can compute the secret polynomial f(x) and the secret
by Lagranges polynomial interpolation:

f (0) = ∑
i∈S

yiλi0 ,where λS
i j = ∏

j ′∈S\{i}

j− j ′

i− j ′

The additional requirement to Shamir’s secret shar-
ing our scheme requires is that the shared secrets are
encrypted and these encrypted portions must still be
verifiable.

7.2 Scheme Description

Outline. Let us assume thatU j is the real signer and
U 1, · · · ,U n are all ring members. Let the private and
public key of userU i bexi and(yi = gxi ,αi) respec-
tively, whereαi ∈Zq. For Threshold Discernible Ring
Signatures (TDS) we have the following procedures:

Signing Procedure. STDS (g,x j , y1, · · · ,yn,
α1, · · · ,αn, t,m) is an algorithm that takes gen-
erator g, the secret keyx j , the set of public keys
{y1, · · · ,yn} ⊂< g>, thresholdt and a messagem. It
returns a threshold discernible signatureσ.

Verification Procedure. VTDS(m,σ) is an algo-
rithm that takes a messagem, and a signatureσ for
m. It returns a bit: 1 or 0 to indicate whetherσ is
valid, i.e., someone having a public key in a setY in-
dicated byσ has signedm, and whether it is indeed
threshold discernible byt of the members of the ring.

Threshold Distinguisher Procedure. TTDS(m,σ)
is an algorithm that takes a messagem, and a signa-
ture σ for m, and returnsi, the index of the original
signer among the public key sequenceY in the sig-
natureσ. The algorithm requires inputs by at leastt
signers among then members of the ring indicated by
σ.

7.3 Signing Algorithm

The signing algorithm verifiably encryptsn shares
of the secretl = logg(ĝ), along with the MSRS sig-
nature. It performs the sharing by encrypting the
values oft − 1 degree polynomial functionf (x) =
l +∑t−1

j=1 f jx j , atn points viz. atx= α1, · · · ,αn.

Algorithm STDS(g,x j ,y1, · · · ,yn,α1, · · · ,αn, t,m)
f1, f2, · · · , ft−1←R Z

∗
q

Fi ← gfi , i = 1, · · · , t−1
l ←R Z

∗
q\{1}

ĝ← gl

si ← l +∑t−1
j=1 f j α j

i , i = 1, · · · ,n

Vi ←VEyi (si : gsi = ĝ∏t−1
j=1F

α j
i

j ), i = 1, · · · ,n
σ1← SMSRS(g, ĝ,x j ,y1, · · · ,yn,m)
σ← (σ1,{Vi : i = 1, · · · ,n},{Fi : i = 1, · · · , t−1})
return(m,σ)

7.4 Verification Algorithm

The verification algorithm verifies the MSRS sig-
nature as well as the verifiably encrypted shares of
the secretl . The verification algorithm must check
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whethert is an acceptable value based on the required
policy. For instance, one may require thatt = ⌈n

2⌉.

AlgorithmVTDS(m,σ)

if (Verify(VEyi (si : gsi = ĝ∏t−1
j=1F

α j
i

j )) = 0
for anyi = 1, · · · ,n)
return 0

returnVMSRS(m,σ)

7.5 Threshold Distinguisher Algorithm

The threshold distinguisher algorithm requires that at
leastt of the signers in the ring share their respec-
tive si ’s. It is required that each of thesesi ’s are such

thatSi = ĝ∏t−1
j=1F

yj
i

j = gsi . Now, using Lagrange’s in-
terpolation formula, the functionf , hence the value
f (0) = l , can be computed. Oncel is computed,
the verifier checks for which value ofi, the equation,
(yiwi)

l = ŷw holds. Thisi is the index of the original
signer.

Algorithm TTDS(m,σ)
if (VTDS(m,σ) = 0)

then return⊥

Obtainsi = Decrypt(VEyi (si : gsi = ĝ∏t−1
j=1F

α j
i

j ))

from t signers w.l.o.g.i = 1, · · · , t.
l ←Reconstruct((α0,s0), · · · ,(αt ,st))
for i = 1 to n

if ((yiwi)
l = ŷw)

then returni
return⊥

7.6 Security

In this section we define the security models for
threshold discernible ring signatures. Due to lack of
space, we provide sketches of the security proofs. De-
tailed proofs will be provided in the full version of this
paper.

A threshold discernible ring signature (TDS)
scheme must follow the following conditions:

Unforgeability. Unforgeability in threshold dis-
cernible ring signatures requires that no entity other
than a member of the ring must be able to produce
a ring signature with non-negligible advantage in
polynomial time.

For security proof of unforgeability we formalize
the attacks of a forgerFTDS in the chosen-message
scenario. We consider the following experiment of
running a forgerFTDS:

Experiment ExpFTDS
for k = 1 toqmax

query for (mk , σk ), such thatVTDS(σk,mk) = 1
let (m,σ)← FSRS(g, ĝ,y1, ...,yn,m,(m1,σ1), ...

,(mk,σk))
if VSRS(σ,m) = 1 return 1
else return 0

Then we define the advantage AdvFTDS of the forger.
FTDS as the probabilityPr[ExpFTDS

= 1].

Theorem 1. Threshold discernible ring signatures
are secure against forgery, i.e., AdvFTDS is negligibly
small.

Proof Sketch: We assume the following secu-
rity results on the verifiable secret sharing of
discrete logarithms. This means that no poly-
nomial time adversary can with non-negligible
probability produce verifiably encrypted shares
σ2 = {Vi, i = 1, · · · ,n},{Fi, i = 1, · · · , t−1} of secret
l , without knowledge of the secretl . Additionally in
verifiable secret sharing of discrete logarithms, no set
of t−1 or fewer users can obtain the secretl from σ2
in polynomial time with non-negligible probability.
These results can be obtained from (Stadler, 1996).

This guarantees that the quantityσ2 cannot be
produced without the prior knowledge ofl such that
ĝ = gl by any adversary. Note thatl is the only
common value used in generation ofσ1 andσ2. As
σ1 is an MSRS signature, the unforgeability ofσ1
follows from the unforgeability ofσ2. Hence the
tuple(σ1,σ2) is unforgeable.

Threshold Anonymity. Threshold anonymity in
threshold discernible ring signatures requires that no
entity other than a group of at leastt ring members
must be able to identify the original signer of a ring
signature with non-negligible advantage in polyno-
mial time.

Theorem 2. Let AATDS be a probabilistic polyno-
mial time algorithm that can distinguish between
σx,σy produced by two different signers for an
arbitrary messagem by any group oft − 1 signers
amongn signers. Let advantage ofAATDS be defined
asAdvAATDS = Pr[A(σb) = b], whereb ∈ {x,y}. We
say that the scheme provides threshold anonymity,
if for any efficient algorithmAATDS the value of
AdvAATDS is at most negligibly greater than 1/n. The
threshold discernible ring signature scheme discussed
above has the threshold anonymity property.

Proof Sketch: From the anonymity of MSRS
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no polynomial time algorithm can discover the
original signer ofσ using the componentσ1 alone.
This ensures that no group of size belowt can find
the original signer of a signatureσ1. Additionally, in
verifiable secret sharing of discrete logarithms, no set
of t−1 or fewer users can obtain the secretl from σ2
in polynomial time with non-negligible probability.
Hencel cannot be obtained to find the original signer
of σ1, unless a group of at leastt users cooperate.
Hence, threshold anonymity holds for the signature
(σ1,σ2) and theorem 2 holds.

8 CONCLUSIONS AND OPEN
PROBLEMS

Step out ring signatures, introduced in (Klonowski
et al., 2008), had security flaws. We identified those
flaws present in the scheme and fixed them in order
to make it secure. We have introduced the new con-
cept of the Threshold discernible ring signature using
the corrected version of the step out ring signature.
Our scheme is proved secure under DDH assumption.
The problem of finding a scheme which is secure in
the standard model and formulating step out ring sig-
natures using bilinear groups remain open.
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