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Abstract: Ring signature schemes (Rivest et al., 2001) enable a signer to sign a message and remain hidden within an
arbitrary groupA of n people, called a ring. The signer may choose this ring arbitrarily without any setup
procedure or the consent of anyoneAn Among several variations of the notiostep out ring signatures
introduced in (Klonowski et al., 2008) address the issue of a ring member proving that she is not the original
signer of a message, in case of dispute. First we show that the scheme in (Klonowski et al., 2008) has

several flaws and design a correct scheme and prove formally the security of the same. Then we use the basic

constructs of our scheme to design a protocol for a new problem, which we refethie@sisold discernible

ring signatures In threshold discernible ring signatures, a gr@&ugf t members can co-operate to identify the
original signer of a ring signature that involved a graupf n alleged signers, whei®C Aandn >t. This is

the first time that this problem is considered in the literature and we formally prove the security of our novel
scheme in the random oracle model.

1 INTRODUCTION been proposed in literature.

Even though the original intent was to keep the
Ring signatures, introduced in (Rivest et al., 2001), real signer anonymous, in the event of a dispute, a
allow a signer to sign a message on behalf of an arbi- member of the rind may want to prove that she was
trary groupA of n people, called the ring. The signer not the actual signer of a particular message. A new
may hide behind the arbitrarily chosen rigwithout variant calledstep outring signature was introduced
any setup procedure or the consent of the other mem-in (Klonowski et al., 2008); here the real signer can
bers ofA. Such signatures have been expanded to var-prove that she created the signature, while any one
ious applications: deniable ring authentication (Naor, else in the ring can prove that she is not the origi-
2002; Susilo and Mu, 2004), linkable ring signature nal signer. Their proposal was an intermediate solu-
schemes that allow one to link signatures signed by tion between the classical ring and group signatures,
the same person, short versions of linkable ring signa- and can be used for instance in e-auction schemes,
ture (Tsang and Wei, 2005; Au et al., 2006). Further- and this is the only scheme present in the literature.
more, identity based ring signature schemes, which However, our attack presented here shows that their
allow ring construction across different identity-based scheme allows a third party, who is not a member of
master domains (Cheng et al., 2004; Awasthi and Lal, the ring, to forge a signature on behalf of the ring.
2005; Savola, 2006) and confessible threshold ring In another scenario, we break the anonymity of the
signature (Chen et al., 2006), where the actual signersigner of a ring signature. Hence, till date, there is no
can prove that she has created the signature, have alsoorrect and provably secure scheme available for step
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out ring signatures. k is a fixed constant. We assume that the following
Exposing the identity of the original signer of a assumptions are fulfilled iG:
ring signature may arise in several other contexts as

well. Suppose a petitioner wishes to send a complaint pefinition 1 - Decisional Diffie-Hellman Assump-
regarding certain government officials on behalf of 5, |etG be a cyclic group generated gyf order
several people, say the residents of her locality. The 4 | et 4PPH pe an algorithm that has to distinguish
signer wishes to remain anonymous in order to pre- o _ (9,0, P, g?) from c; = (g,¢?,gP,g%) for ran-
vent harassment from the concerned officials. How- domly chosera, b, c € Z;. LetAdvi9M = |Pr[a (c;)
ever, any resident who disagrees with the complaint 1] — Prl4(co) _ 1’” be valled theﬂadvantage e
must have the right to prove that she is not the peti- breaking the DDH problem.
tioner. At the same time, a sufficiently large threshold The DDH assumption holds fo6, if advan-
of the residents should be able to discover the identity tage Advi9" is negligible for each ,probabilistic
of the petitioner, in case the complaint was malicious. vn miﬂl-time algorithma. i.e. Advddh < ¢

Consider a joint bank account scenario, where ~PoYnomi& alg r e a < Eddh

. whereggqgn is negligible.

people share a single account. Any account holder
among thesa people is authorized to sign and trans-
act with the bank. The bank will only know that some- Definition 2 - Discrete Logarithm (DL) Assump-
one among these people has signed, but will not tion. LetGbe acyclic group generated gyf order
know the exact identity of the signer. Hence the sit- d- Leta be an algorithm such that on inpg#t, where
uation cannot afford a centralized manager. Now, in @€ Zq, 4 should outpus. Let Suc' = Pr[a (¢?) =
case of fraud by any one of tmemembers, any thresh- a] be called the success afin breaking the DL prOb'

old of t people among the members can cooperate lem. . -
and |dent|fy the fraudulent person. The DL aSSUmptlon holds 6, if for each prOba-

bilistic polynomial-time algorithma,, succesSucd!
is negligible, i.e.Succ%' < €41 Wheregg) is negligible.

Our Contributions. We perform cryptanalysis on

the step out ring signature scheme (Klonowski et al.,

2008) and identify defects in unforgeability and 2.1 SKDL Proof of Knowledge

anonymity. We additionally provide appropriate mod- ) )

ifications in order to present a provably secure step The SKDL proof of knowledge is a signature of

out ring signature scheme under the random oracleknowledge of discrete logarithms defined in (Ca-

model. menisch, 1997). It is based on the Schnorr signature
We introduce the concept of threshold discernible Scheme (Schnorr, 1991). This signature proves the

ring signatures, where a thresholdtafigners are to- ~ knowledge ofx: y = g* in the context of a message

gether capable of finding the identity of the original M We explain the construction and verification be-

signer. This may be applied, for example, to situa- 1OW.

tions where a message has been maliciously signed

on behalf of a ring of signers and a majority (or a SKDL Construction. The construction

thresholdt) of the ring members decide to unmask SKDL(g,y,m) is described below. It is executed

the original signer of the message. We shall use the by the prover who possessesy = g*. Note thatg is

basic constructs of our modified step out ring signa- a generator of the group.

ture scheme to produce a threshold discernible ring 1. Pickr «RZ;

signature scheme.
2. Calculatec = # (g|ly||g'||m).

3. Calculate

2 PRELIMINARIES S=r—cx 1)

/ ] . The procedure returns the valugess).
We shall consider rings with members, denoted by

U1,---,Un. Let p,q be large primesd,q >> n),
glp— 1, andG =< g > be an ordeq cyclic subgroup
of Zy. For the sake of simplicity we shall skip “mod
p” if it follows from the context. We assume that user 2
u; holds a private key;; the corresponding public ¢ = 7 (glIyllgy*|[m)

key isy; = g¥. The keyy; is publicly available # de- This proves that the prover is aware of discrete loga-
notes a secure hash functip® 1}* — {0, 1}, where rithm x = logg(y) without actually revealing.

SKDL Verification. The verification procedure
VskpL(9,Y,m) is executed by the verifier and checks
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2.2 SEQDL Proof of Knowledge SEQDL  \erification. Given a  signature

SEQDL(G,9 ,Xj,rj,%w,Y,W,m) = (C,S), with
The step-out ring signature scheme in (Klonowski parametersy,”g, Yw, Y, W, and a messagm, the
et al., 2008) is based on signature of knowl-  verification algorithm¥’seqpL(§, 9, Yw,Y,W,C,S m),
edge of equality of discrete logarithr(SEQDL). Let run by the verifier, checks if:

g7g7yW€Gandtupleiyl7"' 7Yn)7(Wla"' ;WH)EGn- ? N A e e A A
SEQDL allows a prover to prove in zero-knowledge =16 = # (6l|9]Iul |Y||W||951¥3\}||951(V1W1)21|| =
thatloggfw = logg(y;w;) for some index, with j not 1G9 |19™ (YnWn) n||rr51)

revealed to the verifier. N _ N
The verifier returns 1 if the above condition succeeds,

0 otherwise. When verification returns 1, the veri-
fier is convinced of the equality of discrete logarithms
logg¥w andlogg(yjw;j) with the indexj € {1,---,n}
unknown to the verifier.

Preliminaries. Recall thatG is an orderq cyclic
subgroup ofZy with g as its generator. Let:j be
a prover who has the following information:

-Y= (ylv'" 7yn) GGn
— For a specific indey, «; knowsx; :y; = g%i.
Note thatw; is not aware of the discrete loga- 3 STEP OUT RING SIGNATURES
rithms ofy; € Y @i # j. (SRS)
- W = (wg, -, wWy) € G" and (ry,---,rn) € Zg,
wherew; =g foralli=1,---,n. Note that unless 3.1 Scheme Outline
a1 is the signer, she is not aware of the discrete ~

logarithms ofag € Wi 7 J. Let us assume thati; is the real signer and
— @ € G, which is randomly chosen by the signer ¢, ... «, are all ring members. Let the private and
andy'= ¢ *"i. public key of useru; bex; andy; = g* respectively.
Using these values;j wishes to convince the verifier ~For Step-out Ring Signatures (SRS) we have the
that the discrete logarithnbegg$iy andlogg(yjw;) are  following procedures:
equal, with the index not revealed to the verifiew o .
achieves this by executing the SEQDL construction Signing Procedure. ssrdg.§,xj,Y,m) is a ran-
algorithm and passing the outputs to the SEQDL ver- domized algorithm that takes generator g and a

ification algorithm. The details are given below: random elemeng €< g >, §# 1, the secret key
Xj, the set of public keyys,---,yn C< g > and a

SEQDL Construction. The SEQDL construc- jnessage m. [t returns a signataxe

tion algorithm, run by thew;, is SEQDLG,g

Xi.Tj, 9w, Y, W,m). Typically, the vectoW is cho- Verification Procedure. %sgrdo,m) is a deter-

X ministic algorithm that takes a message and a
sen by the signer. hwevegfinay Qgitrealgd and signatureoc for m. It returns a bit: 1 or O to indicate

used in different ways provide three different mecha- whethero is valid. i.e. someone having a public ke
nisms for stepping out, as discussed in section 4. The, e gap y

construction of SEQDL is as follows: In a sety indicated bys has signedn

1. Pick random elementse Zq andci,s € Zg, for ~ Confession Procedure. Let ¢ be a step-out
ie{l,---,n}\{j}. ring signature orm produced by membet; of the
2. Foralli€ {1,---.n}\{j}, userJ; computes: ring. In the confession procedure;; proves that
S s . o ] she is indeed the original signer ofand produced
i GV, Ui - g7 (W)t = G Ui <= g (2) . Towards this,zz; produces a confession record
= — a’, which is yet another signature by; on m.
3. We denotel =yi||---[[yn, W =wal---|wh The verifier runscsrqo,0’,yj,m), a detérministic
4. Compute: algorithm which takes as input, o’, m and the

r PR — ublic keyy; of user «j, and returns either a bit
Cj = 2 (Gl S Y IIWI[ta] [t - -[[tol unl ) gto confirymylchan has created or a bit O otherwise.

_Zi<n,i;£jc(i

3 .

_ o Step-out Procedure. Let o be a step-out ring
§j =1 — (xj +rj)c; modq ) signature orm produced by membet; of the ring.

The algorithm finally returns(C,S) where C = During step-out, a ring member;,i # j proves that

(c1,--+,Cn), S=(S1,"** ,S)- she not the original signer ah. Here, u; produces
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step-out record®”,0”’, which are SRS signatures
for the messagen ="l have not signed m”. The
verifier runsosprdo,m,a”, 0" y;, M), a deterministic
algorithm which takes as inpat, ¢”, ¢”’, mand the
public keyy; of user;, and returns either a bit 1 to
confirm thatJ; has not created or a bit 0 otherwise.

3.2 Step Out Ring Signatures

We recall the signing and verification procedures of
the step out ring signature scheme in (Klonowski
et al., 2008).

3.2.1 Signing Algorithm

The signing algorithm is run by user; with private
key x; to produce a ring signature corresponding to
n users with public key¥ = (y1,---,yn). Note that
parameteg € G is randomly chosen by the signer.

Algorithm ssr49,§, Xj, Y, m)
repeat
ry,-+ .M <R Zg
w; < ¢ foreachi=1,---,n
until (yiw; # y;w; for eachi # j)
W 61,9 G g ¢ W
(C,S) +— SEQDL(§,9,%j,rj,%w,Y,W, m)
Y Y1, ¥n
W W1, -+, Wh
o+« (9,6,9,W,Y,W,C,S)
return(m, o)

3.2.2 \Verification Algorithm

This algorithm is run by a verifier using only public
information. Algorithm¥seqp. verifies the SEQDL
proof of knowledge output by the signer.
Algorithm vsr4o, m)
Y < YW
d«+ 'VSEQDL(Qv gayWaYv\NvCa 87 m)
ifd=1
thenreturn 1
else return 0

3.2.3 Scenarios for;

Three different ways of using parametgr target-
ing three different applications, are suggested in
(Klonowskiet al, 2008):

1. The numbers; are created by the signer at ran-
dom. They are kept secret unless the signer en-
ables a member of a ring to step out.
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2. The numbers; are given together with the signa-
ture. In this case the ring participants can imme-
diately step out.

3. u; generates; herself and publishes;. More-
over, eachw; can be a kind of time stamp - a sigha-
ture generated withy; has to be created no earlier
than at the time of creating;.

4 CRYPTANALYSIS OF SCHEME

We have found weaknesses in the paper in the case of
scenario (1) and scenario (2) above. We explain these
below:

4.1 Forgeryin Scenario 1

Under scenario 1, we show that it is easy for anyone,
even without the knowledge of any of the ring mem-
bers’ secret keys, to produgg,W; for somej such
thatlogg¥w = logy(yjw;j). We explain an algorithm
FsrsWhich forges a signature of (Klonowski et al.,
2008) in this manner below:

4.1.1 Forger Algorithm

Algorithm 7sr40,6,Y,m)

repeat
r <R Zgq foreachi € {1,--- ,n}\{j}
w; < g for eachi € {1,--- ,n}\{j}
a <R Za
wj < g%/

until (yiw; # yiwy for eachi # k)

B+r Zg

WH QB,S}% QG_BaS)W — M

(Ca S) — SEQDL(Qa g,a— Ba Ba§/W7YaWa m)

Y <Y1, n

W —wq, - Wy

GH (g) g?)??W)Y?W?C’S)

return(m, o)

4.1.2 Validity

We will show that the signature produced bggrs
verifies successfully. Note that the verification algo-
rithm vYsrdo, m) will in turn call ¥sgopt (6,9, Yw =

6%, Y,W,C,Sm). By construction in equation (2)
and (3), verification equation QS_) holds provided:
gSj (yJWJ)CJ — gSj+CjG — gr andg’Sjyv\; — QSJ+CjG — @r_
However, these hold, since by construction in (4),
r = sj +cja. Hence the forged signature is consid-
ered valid.
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4.1.3 Salient Features tainsw explicitly as a part of it. Notice that contains
bothw andy'but the verification algorithm needs only

The above algorithm clearly does not use private in- the producivy. Hence, it is sufficient to provide only

formationx; to forge aring signature. If this were per-  the product valuevy as a component af instead of

formed by the&k! ring member, she can step out using providingw andy as separate components. As one

the valuery. An adversary can also allow every ring can not computev from the productvy, this modifi-

member other than th#" one to step out by releasing ~ cation prevents one from breaking the anonymity. In

the valueg; for eachi € {1,---,n}\{j}. Infact, it  fact, we formally prove the same.

can be shown that the forged sign is indistinguishable

from a signature by thg" ring memberin polynomial 5.1 Modified SRS Scheme

time. In the next section we will demonstrate how to

fix this break. We will provide a corrected scheme The modified SRS scheme overcomes the flaws of the

and unforgeability proof in the following sections. step out ring signature scheme in (Klonowski et al.,
2008). This uses the SKDL which is a zero knowl-
4.2 Break of Anonymity in Scenario 2 edge proof of discrete logarithm.

The anonymity of the signer can be broken in the sec- °-1-1 Modified Signing Algorithm

ond scenario using the parameterSince the param- ) _ i /

etersr; are released together with the signature, a dis- ;I'he a'(;ElO”thm_'S run bytuseuj with p”\é?te lt<ey>(1'
L . i ? . o produce a ring signature correspondingutosers
tinguisher simply tests i 2 \Wfor eachi = 1---,n b 99 P aq

\ A with public keysY = (y1,--- ,yn). Note that parameter
A_ccord_lng to the prptocol, t_hls WI|| only ho_Id for the g € Gis randomly chosen by the signer.
signerj, thus revealing the identity of the signer. ) .
Algorlthm SMSRiJ\gv gvxj Y1, 5 Yn, m)

repeat
r1, -+ ,In<RZy
5 MODIFIED STEP OUT RING W o for e =1 .-
SIGNATURES until (yiw; # y;w; for eachi # j)

Yw < G471
We will explain in this section how we can modify the (Ct,--+ ,Cn,St1,-++ ,Sn) < SEQDL(G,0,X;, 1}, Yw
step out ring signature scheme to restore unforgeabil- Y1 Y, W, e, Wi, M)
ity and anonymity. Y < V1, ,¥n

W<—Wl;"' ;Wn
0= (g7gvyW7Y,W,C]_,--- ,Cny Sty 5 Sn,

_ {SKDL(g,w;,m),i =1,---,n})
The signer generates a random valpéout uses only return(m, o)

the valuex; +r; in equation (4) of the SEQDL pro-

tocol for generating the components,s). However, 512 Modified Verification Algorithm

there is no proof of knowledge of (or the other;’s)

insisted by the verification aIgorithm._Hence aforger This algorithm is run by a verifier using only public
can generate the valug;'+ r;"in an arbitrary manner  jnformation. Algorithm¥skp, is used to verify the

without even knowing or proving that she knows  sKp| proofs of knowledge output by the signer.
andrj individually. This is exactly what we did in our .
Algorithm ¥ysrdo, m)

forgery algorithm byreverse engineerinte (x; +r;) _
values. In fact, in our forging algorithm the values if(VskoL(g,wi,m) =0,

andp are chosen in such a way that when- 8 and foranyi=1,---,n)

B are used as parameters for SEQDL, the algorithm thenreturn 0

produces the same value that SEQDL would have pro- d < Vseqpi(G: 9, Yw, Y1, -+, Yn, W, -+, Wh,

5.0.1 Providing Unforgeability

duced withx; andr;. Hence, to fix the above problem, " dcl, *+,Cn,S1, 0+, S, M)
we add SKDL's forw;’s and verify them during veri- ifd=1
fication. then return 1

else return O
5.0.2 Providing Anonymity

The anonymity can be broken if the parameieis ~
known and the signature output by the signer con-
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5.1.3 Modified Confession Algorithm

We denoteY’ = (yy,---,¥h) , Y/ = (y1",---,y")
Y" = (y1",---,ya""). The confession record’
(glgayv WaY/aWa SEQDMQ, gvxl ’ f ,9.V’V,Y/,W, m)) iS a
new signature with the same parametggiG W as in

o and some new set of potential sign¥fs YNY' =
{yj} wherey; stands at the same position in both se-
guences.

The confession algorithm verifies whether a mem-
ber of the ringuj has generated the ring signature
by obtaininga’ from her as shown below. Note that
the verifier verifieo’ using?srsbecause the SKDL's
corresponding t&V have already been verified in the
verification ofao.

Algorithm cmsr40,0’,yj, m)
if(the sameg, §,y, Ww,W were used iro anda’) then
d + ‘VMSRQ{O', m),dz — ‘VSRs(O'/,m)
if(d1 = d2 = 1 and{y;} = YNY’ andy; stands
on positionj in Y’) then
return 1 else return 0
else return 0

5.1.4 Modified Step-out Algorithm

We define the step-out record$, a”’ below:

"= (g,g,V,,W,,YII,W, SEQDugvgaXl )T aV,'le
Y’ W, M) - a SRS signature with the same pa-
rametersy,§,W as ino andy”’ = §§, W’ = §",
some new set of potential signef§, for the con-
trol messagen= “l have not signed m”.

o-/// (g’g7 V/’W/7Y///7W7 SEQDL(Q) g7 X|7r|7

y' WY W, M) - a SRS signature for the same
control messagen “with the sameg,§, W' ,\W
andY” such thaty” nY"” = {y;} andy; stands
on the same position i’ andY”’. Moreover,
yil”Wi1 7é yizl"Wi2 foriq 7é P

The step-out algorithm verifies whether a member of

the ring¢; has not generated the ring signatarby
obtaining (a”,0”") from her as shown below. Note
that the verifier verifiess” and ¢” using ¥sgsbe-
cause the SKDL's corresponding ¥é have already
been verified in the verification af.
Algorithm pysrdo, m o”, 0"y, M)
if(the sameg, §, W were used i, o”, 0"
and the samg’;W’ were used i”, 0" then
d ‘VMSRQ{O', m),dz — ‘VSRs(O'N, rﬁ),
d3 + ‘Vs,Rg(O'/"7 m)
if(dp=dy=d3=1 and{yi} =Y"nY",
andy; stands at the same position¥fi andY””,
andyW # ¥'W’) then
return 1 else return 0
else return 0
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6 ANALYSIS
6.1 Unforgeability

Informally, forking lemma(Pointcheval, 2005) for
adaptive chosen message attacks states that if an al-
gorithm.a can with non-negligible probability, pro-
duce a valid signaturém,o1,h,02) without know-
ing the secret key, then, a replay of the attacker
may output two valid signature@m,a;,h,o2) and
(m,01,h',0%) such that # h’, within a bounded time
and non-negligible probability. Forking lemma is ap-
plicable for modified step-out ring signatures. This
can be proved similar to (Klonowski et al., 2008), the
difference being the computation of SKDL's by the
simulators. We state the lemma below.

Lemma 1. Modified SRS signatures can be simu-
lated by a simulator, with oracle access#q under
DDH assumption without knowing the corresponding
secret signing key and with distribution probability in-
distinguishable from SRS signatures produced by a
legitimate signer.

Now, we shall construct an adversary that can
solve the DL problem by finding = loggy; for some
i. Note that they;'s are supplied to the forger as input.
Hence a DL solver attempting to firidggX can do so
by settingy; = X for somet. With success probability
1/n, this is the index of the signer whose signature the
forger generates.

6.1.1 Construction of DL Solver

We now apply forking lemma in the chosen

message attack scenario (section 2.1). The
signature o is written as (o1,h,02) where:
01= (QaYWaWa Ug,--- 7Un7tl7"' ;tn),

whereu;, tj are constructed like in (2)

h=" (H(Gll9//%w][¥[|WI[ua]ta]|--.||Un][ta]Im),
(H (gl [g* W [m).i = L.--- .n}
02 = (C,S,C]_,Sl,"' 7Cn73'1)

After acquiring two valid signature&os,h,o,) and
(o1,h’,0%), such thath # h' and o2 # o), the DL
solver can compute the = logy(yi) corresponding
to the signer whose signature the forger generated.
The solver first computeso; = X + 1 =
(§—s)/(ci—¢) foralli=1,---.,n wherec; # ¢,
which holds due to equation 4 in SEQDL con-
struction. It then computeg = (§ — §)/(¢ — &)
forall i = 1,---,n wherecj # €&, which is evident
from equation (1) in SKDL construction. Finally, it
computes = a; —r{ for all obtained values of;
andr]. Clearly, if the forger produced a signature by
the user with public key;, then solver has obtained
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X g’(i =Y;. member of the ring. We will show that the outcome of
] ) . ) . .
Hence the solver has the solution to the DL the step-out procedure performed by this user is posi-
problemx = loggX providedj = t. The probability  tive. Let us assume thatusrs(0,m,0,0,y;, M) = 0.
that this happens is/b. Since we assume that the This happens ifyw = §'W’. As in the proof of
DL assumption holds, the above algorithm must have Lemma 1, we can see that the signatuésand o
negligible probability of success, therefore the forger guarantee that there existé such thatg“' = Viw,

has negligible success probability too. andg® = y"W'. Soa = logg(yiw) = logg(§'W') =
_ logg(YW) = logg(y;w;), wherew | is the signer ob.
6.2 Anonymity We have got thag;wi = y;w;, but this contradicts the

assumption about generating secregsmd computing
The anonymity argument in (Klonowski et al., 2008) w; during the signing procedure, providieg j.
can be readily extended to the proof of anonymity of Let us consider the case when an actual signer
the modified scheme. As tigs are chosenrandomly,  attempts to step-out. When performing the step-out
the SKDLs reveal no additional information about the procedure and generating signatucésand ¢”, the
signer. Also, the proof of anonymity in (Klonowski user«; has to generatg’'w’ = gXi*'i. However, this
et al., 2008) assumes that the only distinguishing product is the same as im, so this would lead to a
property of two signature tuples of the form= failure of the test of the step-out procedure.
(ma gvngvylvyZ;le\NZvC17C27sﬂ.792> by two different
signers 1 and 2, is that in the forméogg(y.w1) =

logg($W) and in the latter]ogg(yawo) = logg(YW). 7 THRESHOLD DISCERNIBLE

However, the fact that the adversary, in scenario 2,
may userj = logg(W), whenr; is released along with RING SIGNATURES
the signature was not considered. This can be recti-

fied when the product,’= YW is released with the Threshold discernible ring signatures are ring signa-
signature instead of thgindividual valugsi tures where a threshold b&igners are together capa-

ble of finding the identity of the original signer. This
6.3 Security of Confession and Step Out  May be applied for example to situations where a mes-
sage has been maliciously signed on behalf of a ring
of signers and a majority (or a thresho)ef the sign-
ers decide to unmask the original signer of the mes-
sage.
We extend the modified step out ring signature
) N scheme from section 6.3 to allow threshold discerni-
Lemma 2. A confession has a positive outcome pjjity. The signing algorithm additionally outputs a
only if performed by the original signer of a modified  set of verifiably encrypted shares of the sedret
step-out ring signature according to protocol. logg(§). This can be done using verifiable sharing
. r of discrete logarithms (Stadler, 1996) and verifiable
Proof.  Since VseqoL(§,9,%w, Y, W,C,Sm) = 1, encryption of discrete logarithms (Stadler, 1996; Ca-
there existsa such thatg® € {yiwy,---,YnWn} menisch and Shoup, 2003). Onkés gathered by
and g" = yWw.  Moreover, if o' is constructed  4ny set oft ring members, the original signer is eas-
appropriately andvusrs(0’,m) = 1, then g% € ily found by inspecting for which indekof the ring
{yawa, -+, yoWn} as W?”- Sog® € {yaws, -, YnWn} members, the equatidgiwi)' = ¥, holds. This is the
N {yiwe, -, ynwh}. Since{yl,...,yn} N {y;,...,¥n} index of the original signer.
={y;}, andy;,wi, # y{zwi2 foriy # iz, we know that
g% =y;w;j, so in this case user; was a creator of 7.1 Preliminaries
andcmsr4o,0’,yj,m) = 1.

We will prove the following lemmas in order to show
the security of confession and step-out protocols in
our modified step-out ring signature scheme.

We assume the same settings and complexity assump-
Lemma 3. A step-out has a positive outcome tions as the SRS signature scheme as in section 2.
only if performed by a ring-member of a modified The algorithm uses a verifiable encryption scheme
step-out ring signature, other than the original signer, (Stadler, 1996; Camenisch and Shoup, 2003; Ca-
according to protocol. menisch and Damgard, 2000). The notations used

for this scheme are explained below. We also explain
Proof. It is easy to see that the see thdf is Shamir’s secret sharing scheme (Rivest et al., 2001)
a confession that a messageéhds been signed ag’ which is used in the verifiable secret sharing of dis-
by the useru; : yi = Y”"NY". Clearly, this useris a crete logarithms (Stadler, 1996).
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7.1.1 \Verifiable Encryption

We denote verifiable encryption of a discrete loga-
rithm o = logg(B) under public keyPK asV Epk(a :

B =g"). This denotes the cipher-text created by the
Encryptalgorithm. The encryption scheme has three

algorithms namely:

1. Encryp{a : B = g%): Takes a message a public
key PK and outputs cipher text Epg (a : B = g%)
whereg, 3 = g* are publicly known.

2. Decryp(VEpk(a : B =g")): Takes a cipher-text
VEpk(a : B =g%) and obtains the original mes-
saged. This requires the secret k&K

3. Verify(VEpk(a : B = g%)): Takes the cipher-text
VEpk(a: B=g%) and verifies the zero knowledge
proof that the cipher text indeed encryptsuch
that3 = g“.

7.1.2 Shamir's Secret Sharing Scheme

7.2 Scheme Description

Outline. Letus assume that | is the real signer and
U1,--+,Un are all ring members. Let the private and
public key of useru; bex and(y; = g%, a;) respec-
tively, wherea; € Zq. For Threshold Discernible Ring
Signatures (TDS) we have the following procedures:

Signing  Procedure. Stps  (9,Xj, Y1,---,Yn,
ai,---,0pn, t,m) is an algorithm that takes gen-
eratorg, the secret key;, the set of public keys
{y1, - ,¥n} C< g >, threshold and a message. It
returns a threshold discernible signatare

Verification Procedure. %tps(m,0) is an algo-
rithm that takes a message and a signature for
m. It returns a bit: 1 or O to indicate whetheris
valid, i.e., someone having a public key in a ¥dh-
dicated byo has signedn, and whether it is indeed
threshold discernible byof the members of the ring.

A (t, n) secret sharing scheme is a scheme where a

secretd is shared among users where only a coali-
tion of size at least can recover the secret. Such a

Threshold Distinguisher Procedure. 7rps(m,0)
is an algorithm that takes a messageand a signa-

scheme was proposed by Shamir (Rivest et al., 2001)ture o for m, and returns, the index of the original

and is explained below. A user; has a well known
public parameteny, € Zq.

Preliminaries. Letqbe alarge primey(>>n), and
d € Zq be the secret to be shared. Thereraret users
in total.

Share. (d) The dealer chooses a random polyno-
mial f(x) = d+ y'_1ax, of degred — 1 from Zg[x]
where the constant term is setdo The dealer then
distributes the secret shargs= f(ay;), to theit
user, foreach=1---n.

Reconstruct. ((av,,s1), ", (0vg,Sg)) This pro-
cess is a simple polynomial interpolation to com-
pute f(0) = d. Suppose a coalitios, |S > t,S=
{v1,---,vg} wants to reconstruct the secret. They

can compute the secret polynomial f(x) and the secret

by Lagranges polynomial interpolation:
HA

i—1]
pesiiy =V

f(0) =Y yihio ,where AS =

The additional requirement to Shamir's secret shar-

signer among the public key sequencén the sig-
natureo. The algorithm requires inputs by at least
signers among themembers of the ring indicated by
0.

7.3 Signing Algorithm

The signing algorithm verifiably encrypts shares
of the secret = logg(§), along with the MSRS sig-
nature. It performs the sharing by encrypting the
values oft — 1 degree polynomial functiori(x) =

|+ 341 fiI, atn points viz. atx=a,--- , 0n.

Algorlthm 5TDS(g7Xj Y1, Yn, O, e aamt) m)

f1, fo, - fio1 R Zy
Feglii=1---t-1
LHRIZZ\{l}

g<g

s<—|+ztj‘:1lfjaij, i=1---.n

I
M- VEy(s g =M iF"), i=1--.n
01%5MSR§97Q7XJJL“' ,Yn,m)
0 < (01,{\/i |:1, 7n}7{FI =
return(m, o)

17"'at71}>

ing our scheme requires is that the shared secrets are7 4 \ferification Algorithm

encrypted and these encrypted portions must still be

verifiable.
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The verification algorithm verifies the MSRS sig-
nature as well as the verifiably encrypted shares of
the secrel. The verification algorithm must check
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whethett is an acceptable value based on the required Experiment Exp.
policy. For instance, one may require that [3]. for k = 1 to gmax
query for fng, ok ), such thatVtps(ok, k) =1

Algorithm 71ps(m,c
J TDS( ’ ) let (mvc)(*TSRégagayla"'7yn7m7(m1701>a"'

] . L j

if (Verify(VEy (s : g% =gMi5F")) =0 (M, %))
foranyi=1,---,n) if Ysrdo,m)=1returnl
return O else return 0

retum®wsr4m, o) Then we define the advantage Agly, of the forger.

o . the probabilitPr[E =1).
7.5 Threshold Distinguisher Algorithm Frosas the probabiltyr(Expr o = 1]

The threshold distinguisher algorithm requires that at Theorem 1. Threshold dis_cernible rjng sig_ngtures
leastt of the signers in the ring share their respec- &€ Secure against forgery, i.e., Aglys is negligibly

tive s's. Itis required that each of thes¢s are such ~ small

st-1 Y - i .
that§ :_9|_|13=11Fj =g Now, using Lagrange’sin-  proof Sketch: We assume the following secu-
terpolation formula, the functior, he_nce the value ity results on the verifiable secret sharing of
f(0) =1, can be computed. Ondeis computed,  giscrete logarithms. This means that no poly-
the verifier checks for which value tD,fthe equa“on, nomial time adversary can with non-neg"gib'e
(¥iwh)' = Y holds. Thisi is the index of the original  probability produce verifiably encrypted shares

signer. o2={Vi,i=1---,n},{R,i=1---,t—1} of secret
Algorithm 71 ps(m, o) I, without knowledge of the secrkt Additionally in
if (1ps(M,0) =0) verifiable secret sharing of discrete logarithms, no set
then returnlL of t — 1 or fewer users can obtain the sedrébm o>
. s Amt1 gl in polynomial time with non-negligible probability.
Obtains = DecryptVEy (s : g% =M1 F; ")) These results can be obtained from (Stadler, 1996).
fromt signers w.l.o.gi=1,---,t. This guarantees that the quantity cannot be
| < Reconstruai(do, o), , (0t, %)) produced without the prior knowledge bsuch that
fori=1ton g = ¢ by any adversary. Note thatis the only
if ((yiw)' = Yw) common value used in generation®f ando,. As
then returni 01 is an MSRS signature, the unforgeability of
return_L follows from the unforgeability ofo,. Hence the

_ tuple (o1,02) is unforgeable.
7.6 Security

. . 4 _ Threshold Anonymity. Threshold anonymity in
IE th'hs Isec.uon W_el define the security mOdTIS kforf threshold discernible ring signatures requires that no
threshold discernible ring signatures. Due to lack o entity other than a group of at leasting members

space, we provide sketches of the security proofs. De- i<t pe able to identify the original signer of a ring
tailed proofs will be provided in the full version of this sighature with non-negligible advantage in polyno-

paper. mial time.
A threshold discernible ring signature (TDS)

scheme must follow the following conditions: -
Theorem 2. Let ga7ps be a probabilistic polyno-

mial time algorithm that can distinguish between

Unforgeability. Unforgeability in threshold dis- oy,0, produced by two different signers for an

cernible ring signatures requires that no entity other arbitrary messagen by any group oft — 1 signers

tha_n a m_ember of t_he ring mus_t k_)e able to produ_ce amongn signers. Let advantage afatps be defined
a ring signature with non-negligible advantage in asAdv,, .. = Pr[A(dp) = b], whereb € {x.y}. We

polynomial tlr_ne. . . say that the scheme provides threshold anonymity,
For security proof of unforgeability we formalize if for any efficient algorithmaarps the value of

the attacks of a forgefrps in the chosen-message f L

scenario. We cons?derTEhe following experimentgof AVayros IS at most ne_ghguz_)ly greater thanfd. The
o f ) threshold discernible ring signature scheme discussed

running a rorgetfTps: above has the threshold anonymity property.

Proof Sketch: From the anonymity of MSRS
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no polynomial time algorithm can discover the
original signer ofc using the componerd; alone.
This ensures that no group of size belowan find
the original signer of a signatugg. Additionally, in

verifiable secret sharing of discrete logarithms, no set

of t — 1 or fewer users can obtain the sedréom o,

in polynomial time with non-negligible probability.
Hencel cannot be obtained to find the original signer
of 01, unless a group of at leastusers cooperate.
Hence, threshold anonymity holds for the signature
(01,02) and theorem 2 holds.

8 CONCLUSIONS AND OPEN
PROBLEMS

Step out ring signatures, introduced in (Klonowski
et al., 2008), had security flaws. We identified those

Klonowski, M., Krzywiecki, L., Kutylowski, M., and
Lauks, A. (2008). Step-out ring signatures.MiFCS
'08: Proceedings of the 33rd international symposium
on Mathematical Foundations of Computer Science
pages 431-442. Springer-Verlag.

Klonowski, M., Krzywiecki, L., Kutyowski, M., and Lauks,
A. (2009). Step-out group signatures<Computing
85(1-2):137-151.

Naor, M. (2002). Deniable ring authentication. GRYPTO
'02: Proceedings of the 22nd Annual International
Cryptology Conference on Advances in Cryptology
pages 481-498. Springer-Verlag.

Pointcheval, D. (2005). Provable security for public key
schemes. IrContemporary Cryptologypages 133—
190. Birkhuser Basel.

Rivest, R. L., Shamir, A., and Tauman, Y. (2001). How
to leak a secret. IASIACRYPT '01: Proceedings of
the 7th International Conference on the Theory and
Application of Cryptology and Information Security
pages 552-565. Springer-Verlag.

flaws present in the scheme and fixed them in order sayola, R. (2006). A requirement centric framework for

to make it secure. We have introduced the new con-
cept of the Threshold discernible ring signature using

the corrected version of the step out ring signature. Schnorr, C.-P. (1991).
Our scheme is proved secure under DDH assumption.

information security evaluation. IWSEGC pages 48—
59. Springer.

Efficient signature generation by
smart cardsJ. Cryptology pages 161-174.

The problem of finding a scheme which is secure in Stadler, M. (1996). Publicly verifiable secret sharing. In

the standard model and formulating step out ring sig-
natures using bilinear groups remain open.
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