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Contemporary organizations are operating in increasingly volatile environments. Hence, organizations must

be agile in order to be able to quickly adapt to changes in its environment. Given the increasing complexity of
organizations, it has been argued that organizations should be purposefully designed. Enterprise architecture
frameworks provide guidance for the design of organizational structures. Unfortunately, current enterprise
architecture frameworks have a descriptive, rather than a prescriptive nature and do not seem to have a strong
theoretical foundation. In this paper, we explore the feasibility of extending the prescriptive design principles
of the Normalized Systems theory to the field of enterprise architecture. Our results show that such approach
is feasible and illustrate how the systems theoretic concept of stability can be used on the organizational level.

1 INTRODUCTION

Contemporary organizations are operating in increas-
ingly volatile environments. Hence, organizations
must be agile in order to be able to quickly adapt to
changes in their environment. This may be a com-
plex process, since a change to one organizational unit
may affect other units. Given the increasing complex-
ity of organizations, it has therefore been argued that
organizations should be purposefully designed in or-
der to exhibit true agility (Hoogervorst, 2009). En-
terprise architecture frameworks support the design
of the organizational structure, its business processes
and information systems through a coherent set of
principles, methods and models (Bernus et al., 2003).
Unfortunately, current enterprise architecture frame-
works have a descriptive, rather than a prescriptive
nature. In order to purposefully design organizations,
prescriptive principles are needed.

In software engineering literature, the Normalized
Systems approach has recently been proposed to pro-
vide such deterministic design principles for the mod-
ular structure of software. The Normalized Systems
approach is based on the systems theoretic concept of
stability to ensure the evolvability of information sys-
tems. It argues that the main obstacle to evolvability
is the existence of combinatorial effects. Combinato-
rial effects occur when the effort to apply a specific
change increases as the system grows. This is a result
of Lehman’s law, which states: “As an evolving pro-
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gram is continually changed, its complexity, reflect-
ing deteriorating structure, increases unless work is
done to maintain or reduce it.” (Lehman, 1980). The
Normalized Systems approach eliminates these com-
binatorial effects by defining clear and deterministic
design principles. Adhering to these principles there-
fore results in software systems that exhibit stability.
In this paper, we extend the Normalized Systems
approach to the domain of enterprise architecture.
The issue of combinatorial effects has not previously
been explored in enterprise architecture frameworks,
but seems relevant. Also, applying systems theory to
the construction of organizations would advance the
emerging field of enterprise engineering (Liles et al.,
1995). We therefore explore the feasibility of de-
signing a method for the construction of enterprise
architectures that exhibit systems theoretic stability
by eliminating combinatorial effects. Such a method
would provide a more deterministic way of designing
agile organizations. This method is currently being
developed by using the design science methodology.

2 ENTERPRISE ARCHITECTURE

When market threats, opportunities or changes arise,
the organization as a whole has to adapt. In order to
be able to comprehend and manage the complexity of
modern organizations, enterprise architecture frame-
works have been introduced. Despite the common
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goal of enterprise architectures, many different frame-
works are available. Various authors (e.g., (Leist and
Zellner, 2006)) have compared these frameworks and
identified differences and similarities. According to
Leist and Zellner, who evaluated enterprise architec-
ture frameworks with regard to the requirements of
method engineering, no framework exists which pro-
vides all necessary elements to constitute a complete
method (Leist and Zellner, 2006). Should an enter-
prise architect require the use of all elements, sev-
eral (complementary) frameworks can be used con-
currently, or a particular framework can be extended
with missing elements. However, by combining or
extending existing frameworks, the issue of integra-
tion between the models in the framework becomes
even more complex. While most frameworks reduce
the inherent complexity of an organization by offer-
ing separate views, it is not always clear how these
views relate to or affect each other. The integration
between the conceptual models should facilitate the
translation of a single change in the outside world to
all the different aspects of the organization.

However, if a change in a certain model affects
other models it is combined with, a combinatorial ef-
fect occurs. While originally used in the Normalized
Systems approach to describe evolvability in soft-
ware, combinatorial effects also seem to affect evolv-
ability on the enterprise architecture level. Anal-
ogously with combinatorial effects on the software
level, this implies that organizations would become
less evolvable as they grow. While the issue of inte-
gration has been acknowledged by other authors (e.g.,
(Lankhorst, 2005)), it has, to our knowledge, not yet
been studied based on system theoretic concepts such
as stability. By applying the design principles from
Normalized Systems to enterprise architecture, we at-
tempt to introduce these concepts in this field. In this
paper, we elaborate on the construction of the core di-
agram. The core diagram is a model which provides
an overview of the organizational scope which will be
designed (Ross et al., 2006). Moreover, the core dia-
gram aids understandability and communication of an
enterprise architecture framework.

3 THEORETICAL FOUNDATION

3.1 Enterprise Ontology

Enterprise Ontology views the organization as a so-
cial system (Dietz, 2006). Therefore, it is well suited
to describe the interaction between an organization
and its environment. Enterprise Ontology assumes
that communication between human actors is a neces-
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sary and sufficient basis for a theory of organizations
(Dietz, 2006). This is based on the language action
perspective and Habermas theory of communicative
action. The strong theoretical foundation ensures a
consistent modelling methodology. Clear guidelines
are provided to create abstract models. Since only
the ontological acts are represented in the models, the
same model will be created for organizations who per-
form the same function, but operate differently. For
example, consider the BPR case at Ford (Hammer,
1990). The ontological model of the processes of the
situation before and after reengineering are identical.
Because of the focus on the essential business pro-
cesses, Enterprise Ontology models can be very con-
cise. Therefore, they provide a good overview of a
broad enterprise scope, and are well suited as an en-
terprise architecture core model.

The transaction pattern describes the coordination
necessary to produce a certain result. This result is
represented by a production fact. There are always
two actors involved in a transaction: the initiator ac-
tor who wants to achieve the fact, and the executor
actor who performs the necessary actions to create
the fact. Delivering a product, performing a service
or subscribing to an insurance are examples of pro-
duction facts which could be created by completing
a transaction. The high-level structure of the trans-
action pattern consists of three phases. In the order
phase, the actors negotiate the subject of the transac-
tion. In the execute phase, the subject of the transac-
tion is brought about. In the result phase, the result of
the transaction is presented and accepted. In different
versions of the transaction pattern, different ontolog-
ical process steps are identified in the three phases.
These steps are called coordination acts. The suc-
cessful completion of an act results in a coordination
fact.

The basic transaction pattern consists of the five
standard acts which occur in a successful scenario
(i.e., request, promise, execute, state and accept) (Di-
etz, 2006, p. 90). Consider a transaction in the case of
a simple product delivery process. In the order phase,
the customer requests the product. Once this request
is adequately specified, the request coordination fact
is created. The supplier then promises to deliver the
product according to the agreed terms. This creates
the promise coordination fact. In the execute phase,
the executor actually performs the the execute act, re-
sulting in the production fact. In our example, this
is the actual delivery (i.e., “Product X has been de-
livered”). In the result phase, the supplier states that
the delivery has been completed. If the customer is
satisfied with the delivery, he will accept the delivery
in the accept process step. Once the accept coordina-
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tion fact is created, the transaction is considered to be
completed.

The standard transaction pattern is the basic trans-
action pattern, augmented with the scenario in which
the actors dissent (Dietz, 2006, p. 93). In the order-
phase, the executor actor can decline the incoming re-
quest of the initiator actor. The initiator then has to
decide whether he resubmits his request, or quits the
transaction. In our example, the supplier could de-
cline the delivery of a product which does not belong
to his catalogue. The customer would need to select
another product, or quit the transaction and search an-
other supplier. The execute-phase is identical to the
execute-phase in the basic transaction pattern. In the
result-phase, the initiator actor can reject the stated
production fact instead of accepting it. The executor
then has to decide whether he wants to repeat the ex-
ecution act and make the statement again, or stop the
transaction.

3.2 Normalized Systems

The basic assumption of the Normalized Systems ap-
proach is that information systems should be able
to evolve over time, and should be designed to ac-
commodate change. To genuinely design information
systems accommodating change, they should exhibit
stability towards requirements changes. In systems
theory, stability refers to the fact that bounded in-
put to a function results in bounded output values,
even as t — o. When applied to information sys-
tems, this implies that no change propagation effects
should be present within the system; meaning that a
specific change to an information system should re-
quire the same effort, irrespective of the information
system’s size or the point in time when being applied.
Combinatorial effects occur when changes require in-
creasing effort as the system grows. They need to
be avoided in stable systems. Normalized Systems
are therefore defined as information systems exhibit-
ing stability with respect to a defined set of changes
(Mannaert and Verelst, 2009), and are as such defy-
ing Lehman’s law of increasing complexity (Lehman,
1980) and avoiding the occurrence of combinatorial
effects.

The Normalized Systems approach proposes a set
of four design principles that act as design rules to
identify and circumvent most combinatorial effects
(Mannaert and Verelst, 2009). The first principle, sep-
aration of concerns, implies that every change driver
or concern should be separated from other concerns.
This theorem allows for the isolation of the impact of
each change driver. The second principle, data ver-
sion transparency, implies that data should be com-

municated in version transparent ways between com-
ponents. This requires that this data can be changed
(e.g., additional data can be sent between compo-
nents), without having an impact on the components
and their interfaces. The third principle, action ver-
sion transparency, implies that a component can be
upgraded without impacting the calling components.
This principle can be accomplished by appropriate
and systematic use of, for example, polymorphism
or a facade pattern. The fourth principle, separation
of states, implies that actions or steps in a workflow
should be separated from each other in time by keep-
ing state after every action or step. This suggests an
asynchronous and stateful way of calling other com-
ponents.

The design principles show that software con-
structs, such as functions and classes, by themselves
offer no mechanisms to accommodate anticipated
changes in a stable manner. The Normalized Systems
approach therefore proposes to encapsulate software
constructs in a set of five higher-level software ele-
ments. These elements are modular structures that
adhere to these design principles, in order to provide
the required stability with respect to the anticipated
changes (Mannaert and Verelst, 2009). From the sec-
ond and third principle it can straightforwardly be
deduced that the basic software constructs, i.e., data
and actions, have to be encapsulated in their desig-
nated construct. As such, a data element represents
an encapsulated data construct with its get- and set-
methods to provide access to their information in a
data version transparent way. So-called cross-cutting
concerns, for instance access control and persistency,
should be added to the element in separate constructs.
The second element, action element, contains a core
action representing one and only one functional task.
Four different implementations of an action element
can be distinguished: standard actions, manual ac-
tions, bridge actions and external actions. In a stan-
dard action, the actual task is programmed in the ac-
tion element and performed by the same information
system. In a manual action, a human act is required
to fulfil the task. The user then has to set the state of
the life cycle data element through a user interface,
after the completion of the task. A process step can
also require more complex behaviour. A single task
in a workflow can be required to take care of other
aspects, which are not the concern of that particu-
lar flow. Therefore, a separate workflow will be cre-
ated to handle these concerns. Bridge actions create
these other data elements going through their desig-
nated flow. When an existing, external application is
already in use to perform the required task, the action
element would be implemented as an external action.
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These actions call other information systems and set
their end state depending on the external systems’ re-
ported answer. Based upon the first and fourth prin-
ciple, workflow has to be separated from other action
elements. These action elements must be isolated by
intermediate states, and information systems have to
react to states. To enable these prerequisites, three
additional elements are identified. A third element
is thus a workflow element containing the sequence
in which a number of action elements should be exe-
cuted in order to fulfill a flow. A consequence of the
stateful workflow elements is that state is required for
every instance of use of an action element, and that
the state therefore needs to be linked to or be part of
the instance of the data element serving as argument.
A trigger element is a fourth one controlling the states
(both regular and error states) and checking whether
an action element has to be triggered. Finally, the con-
nector element ensures that external systems can in-
teract with data elements without allowing an action
element to be called in a stateless way.

4 ARTEFACT CONSTRUCTION

In this section, we outline the construction of a
core diagram which is based on Enterprise On-
tology models and expressed in Normalized Sys-
tems constructs. Since Enterprise Ontology mod-
els are implementation-independent, we can base our
method on these models to implement the needed or-
ganizational aspects in the transactions. The result-
ing artefact is called a Normalized Systems Business
Transaction (NSBT). In order to illustrate the differ-
ent steps, we use a mail order example. In this exam-
ple, different implementations of ontological process
steps are available. For example, consider the request
of the order. Instead of using a standard mail form,
the company can offer the customer the possibility
to place the order on a website. We introduce these
variations to illustrate the evolvability of the NSBT
with regard to changes in implementation technology.
While this changes the implementation, no changes
are made to the essential Enterprise Ontology mod-
els.

In the mail order example, an Enterprise Ontology
transaction would result in a production fact “an or-
der has been delivered”. In Normalized Systems, this
transaction pattern is represented by a flow element.
A flow element is driven by precisely one data ele-
ment, the life cycle data element. In order to define
a Normalized Systems flow, we thus need a TO1 data
element. The completion of the different acts in the
transaction process is represented by the creation of
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ontological facts. In Normalized Systems, these facts
are represented by the states which occur in the flow
element, being the life cycle states of the correspond-
ing data element. To reach these states, a state transi-
tion is required. A state transition is realized by an
action element. The successful completion of that
action element results in the defined life cycle state.
In order to define the control flow of the process, we
therefore need to specify the trigger states, state tran-
sitions and transaction actions. Regarding the request
coordination fact, this implies that the TO1 flow ele-
ment, and thus also the corresponding TO1 data ele-
ment, should reach the state Requested. This means
that upon initiation of a TO1 transaction, a new TO1
data element is instantiated, resulting in the life cycle
state Initial. The genuine act of requesting is encapsu-
lated in the action element Request. In the mail order
example, the Request action element would contain
the task which ensures that the order request is fully
defined by the customer. In our automated version of
the example, this functionality is offered by the web-
site. However, if the traditional mail order request
form needs to be supported as well, a second Request
action element could be created. This action element
would be implemented as a manual action. When a
retail company employee receives the order request
form, the Requested state will be set manually. The
remainder of the transaction will be handled identi-
cally, regardless of the implementation method of the
request. The concerns of creating the data element
and handling the request are thus separated as they
can clearly evolve independently from each other.

While all state transitions are defined as action el-
ements, their different nature can mean that they need
to be implemented differently. Consider the notifi-
cation of the initiator actor in the promise process
step. If this notification requires a human action, the
Promise action element would be implemented as a
manual action. For example, it could be that the or-
der request needs to be approved by an employee of
the retail company. However, the promise process
step can also require more complex behaviour. When
for example the requested product first needs to be
reserved in the warehouse, the Promise action ele-
ment would be implemented as a bridge action trig-
gering a flow element on another data element, e.g.,
a Reservation element. When the retail company
already has an existing application in use to perform
these reservations, the Promise action element would
be implemented as an external action.

However, the transaction process does not always
follow the successful scenario. In the scenario in
which the actors can dissent, additional coordination
acts need to be added. When translating these acts to
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Figure 1: Graphical representation of the standard transaction pattern flow.

Normalized Systems primitives, some additional ac-
tions and states have to be included due to the Nor-
malized Systems theorems. The resulting Normalized
Systems flow element is graphically represented in
Figure 1. Based on separation of concerns, the deci-
sion of the executor actor to promise or decline the re-
quest needs to be separated from the actual coordina-
tion act (i.e., the communication of the decision). The
decision logic to promise or decline can change inde-
pendently from the communication method, as shown
by the various implementations of the Promise action
element described above. Since the communication
method can also change independently of the decision
logic, these two actions should not be combined in
one action element. Doing so would introduce a com-
binatorial effect. Therefore, we introduce an addi-
tional action element ValidateRequest. In the case
where the executor decides to handle the request, the
state RequestValidated is set. Otherwise, the state Re-
questInvalidated is set. The actual Promise action el-
ement then contains the actual communication of the
decision. In our example, the ValidateRequest ac-
tion element can contain the logic to check whether
the retail company can deliver the order, e.g., whether
the product is in stock. If the request is declined, the
initiator actor needs to decide whether or not to resub-
mit the request. This decision logic is again separated
from the other actions by encapsulating the decision
logic in an action element ValidateDecline. If the
initiator decides to resubmit, the state is set to De-
clineValidated. The Resubmit action element then
allows the initiator actor to possibly change the re-
quest and to resubmit it which will again result in the
state Requested. If the product from the original or-
der request is not available, the customer thus has the

option to adapt his order and resubmit it. If the ini-
tiator decides to abort the transaction, the state is set
to Declinelnvalidated, which triggers the Quit action
element to reach the end state Quitted. Analogously,
the initiator actor has to decide whether he accepts the
stated production fact in the result phase of the trans-
action. We therefore introduce the ValidateState
action element, which results in the StateValidated
state in case of a successful acceptance, or in the
Statelnvalidated state in case of an unsuccessful one.
The StateValidated state triggers the Accept action
element, which contains the actual accept coordina-
tion act. In case the initiator does not accept the state
coordination fact, the workflow is brought to the Re-
Jjected state through the Reject action element. The
separation of concerns theorem forces us again to sep-
arate the action element containing the decision logic
(i.e., the ValidateState action element) from the ac-
tion element containing the communication method
(i.e., the Accept and Reject action elements). In
our example, it is possible that the customer is not
satisfied with the delivered products. This decision
can be implemented as a manual action element. The
user would manually check the delivery, and indicate
whether he accepts it. However, in the context of a
B2B transaction, it could be that an automated qual-
ity control system is in place. In that case, an external
action element would be used. These different action
elements could bring the state of the transaction work-
low in the Statelnvalidated state. The Reject action
element, which communicates the decision, can again
be implemented using the different types of action el-
ements. The decision whether to handle the reject is
taken in the ValidateReject action element. The
reject handling itself is implemented as a dedicated
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HandleReject action element. If the retail company
agrees with the complaint, it can modify the delivery
and state the delivery again. If the executor does not
handle the reject, the transaction reaches the end state
Stopped through the Stop action element.

5 DISCUSSION AND
CONCLUSIONS

In this paper, it has been shown that an NSBT, which
consists only of Normalized Systems elements, can
be constructed as a core diagram for an enterprise
architecture framework. By using the combination
of implementation-independent Enterprise Ontology
models and evolvable Normalized Systems elements,
we have demonstrated the flexibility in an e-business
example, by adding a multi-channel request process.
Should the request of the delivery transaction not have
been separated from the execution (i.e., the actual de-
livery), such an addition would have resulted in a
combinatorial effect. Consider the following situa-
tion, in which this separation has been neglected: sep-
arate delivery systems are used for physical requests
(i.e., which are requested through mail) and electron-
ical requests (i.e., orders from the website). A simple
change in the delivery execution, such as recording
the delivery of a certain product, would require two
distinct implementations. The impact of the change
would thus depend on the size of the system: when
more retail channels would be added, the same change
would cause an even larger impact. Such combinato-
rial effects should be avoided. In subsequent itera-
tions, we will integrate other aspects present in en-
terprise architecture frameworks. This will be done
analogously to the integration of cross-cutting con-
cerns on the software level into Normalized Systems
elements.

This paper has two important contributions. A
first contribution is that we introduced the concept of
combinatorial effects on the level of enterprise archi-
tectures. We further illustrated how the systems theo-
retic concept of stability can be applied to the design
of enterprise architectures. This requires the elim-
ination of combinatorial effects, which will lead to
more evolvable organizations. As a result, we offer
a view on enterprise agility that has a strong theo-
retical foundation. A second contribution is that we
demonstrated the feasibility of constructing an enter-
prise architecture core diagram based on existing sci-
entific approaches. By expressing the core diagram in
Normalized Systems elements, we extended the Nor-
malized Systems approach to the organizational level.
Using Enterprise Ontology models as the basis for
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the core diagram further demonstrates the feasibility
of constructing an enterprise architecture framework
based on scientific theories. This illustrates how the-
ories from relevant fields can be applied in a new set-
ting by using a design science approach.
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