
PREVENTING MALICIOUS PORTLETS FROM COMMUNICATING
AND INTERCEPTING IN COLLABORATION PORTALS

Oliver Gmelch and Günther Pernul
Department of Information Systems, University of Regensburg, Regensburg, Germany

Keywords: Inter-portlet communication, Portal servers, Security policies.

Abstract: In a “networked enterprise”, distributed teams of partner organizations, humans, computer applications, au-
tonomous robots, and devices are interlinked to collaborate with each other in order to achieve higher pro-
ductivity and to perform joint projects or produce joint products that would have been impossible to develop
without the contributions of multiple collaborators. Within a collaboration, security aspects are of critical
importance. This is in particular true for loosely coupled collaborations in which individual members of one
alliance are working with each other within a certain project only, but may be competitors in other market
fields at the same time. Going beyond the current state of the art in portal-based collaboration platforms, this
paper presents an approach to prevent unintended information disclosure by malicious portlet instances. The
solution is built on open standards (JSR 286 and XACML) and may be incorporated in collaboration-wide
enterprise portals in order to regulate information flow during inter-portlet communication.

1 INTRODUCTION

Organizations today are confronted with big chal-
lenges such as globalization, shorter innovation cy-
cles or increased competition. One possible remedy
against this situation is forming virtual partnerships
in order to create flexible and agile business networks
between a number of partner organizations having
complementary competencies. As diagnosed by re-
cent surveys performed for instance by AT&T (AT&T
Corp., 2008), a significant increase in the number of
business alliances can be expected in the near future.

One of the key challenges in virtual enterprises
is the backing by dedicated information and com-
munication technology (ICT). Identified as a crucial
characeristic of virtual partnerships, ICT systems are
expected to provide support for different success fac-
tors such as integration on process level across com-
pany boundaries or information integration, implying
provisioning the right information to the responsible
user at the proper point in time (Katzy, 1998).

One way of achieving this information integra-
tion is via the introduction of specifically-tailored En-
terprise Portals, allowing for integration of different
applications (even from different alliance partners)
in one common user interface comprising a number
of specifically-crafted portlets (Shilakes and Tylman,
1998). Using communication facilities between these

portlets, the enterprise portal is empowered to apply
context changes in one application to other applica-
tions involved in a specific setting. While the appli-
cations run independently in the different sites, inter-
portlet communication is necessary at the portal level.
However, security aspects imposed by the communi-
cation of independent applications at varying security
level must not be neglected. For instance, unrestricted
communication may result in unintended information
disclosure, thus posing great risks on confidential in-
formation processed in such settings and resulting in
great loss of acceptance of involved applications or
even a loss of trust in an alliance member or alliances
as a whole.

The research project “SPIKE” (Secure Process-
oriented Integrative Service Infrastructure for Net-
worked Enterprises)1, funded within the 7th frame-
work programme of the European Union, is working
on a portal solution providing tool support for collab-
orations. On the portal level, the SPIKE project also
deals with the need for dynamic evaluation of secu-
rity policies of individual applications based on the
current context of the user. Another major concern is
the potential disclosure of information through mali-
cious portlets.

The goal of this paper is to provide a novel mech-

1http://www.spike-project.eu

177
Gmelch O. and Pernul G. (2010).
PREVENTING MALICIOUS PORTLETS FROM COMMUNICATING AND INTERCEPTING IN COLLABORATION PORTALS.
In Proceedings of the International Conference on Security and Cryptography, pages 177-182
DOI: 10.5220/0002990301770182
Copyright c© SciTePress



anism for secure communication among individual
portlets in order to prevent unintended information
disclosure by malicious portlets. A malicious port-
let can be characterized as hosting an application
which is only trusted to a limited extent, but whose
applications’ functionality cannot be abstained from.
In this context, an approach is presented which tar-
gets at a standards-compliant integration of elements
of the XACML architecture in accordance with the
Java portlet specifications. Based on this integration,
XACML policies are used to evaluate the distribu-
tion of specific events in a portal user session to other
portlets deployed on the same page. Using these poli-
cies, it will be possible to exclude malicious portlets
from receiving any but the bare minimum of required
information about other surrounding portlets used in
the same portal session simultaneously, whilst pre-
serving functionality of all other portlet applications.
At the same time, the solution will allow for flexi-
ble changes in portlet communication policies with-
out the need to redeploy the portlets in use.

This paper is structured as follows: Following this
introduction on inter-portlet communication and cor-
responding security requirements, section 2 presents
relevant work related to the topic of both portal sys-
tems and inter-portlet communication. Section 3 then
provides further information about security policies,
which are then further elaborated upon and practically
implemented into the setting of SPIKE in section 4.
Section 5 presents future work of the authors and con-
cludes this paper.

2 RELATED WORK AND
BUILDING BLOCKS

Collaborative software as introduced in section 1 in
most cases is built around a portal system. A rather
technical definition of the term portal is given in the
Java Portlet Specification JSR 168. According to this
specification, “a portal is a web-based application that
– commonly – provides personalization, single-sign-
on, content aggregation from different sources and
hosts on the presentation layer of information sys-
tems. Aggregation is the action of integrating con-
tent from different sources within a webpage.” In
the context of Java-based portal servers as employed
by SPIKE, it was identified a major drawback of
the Java portlet specification JSR 168 that individ-
ual portlets running in one portal could not commu-
nicate with each other (Yang and Allan, 2006), whilst
security considerations only were ascribed a subordi-
nated role. Thus, work has been carried out to enable
inter-portlet communication in an extension to JSR

168, focusing on communication between individual
portlets, what is known as inter-portlet communica-
tion. Noteworthy in this context are the works of Bee-
son and Wright (Beeson and Wright, 2005), focus-
ing on the reusability aspects of portlets in Grid-based
environments, including a portable inter-portlet com-
munication mechanism. Moreno et al. also follow
the paradigm of modelling inter-portlet communica-
tion in a provider-independent manner (Moreno et al.,
2005). Likewise, Priebe et al. introduce the concept
of a communication bus, enabling portlets to publish
their current user context, which can be picked up by
other portlets and used to show related information
(Priebe and Pernul, 2003). Song et al. focus on the
usage of HTML fragments in order to achieve portlet
interoperability (Song et al., 2007).

With the advent of JSR 286 extending JSR 168,
a standardized solution has been made available “to
send and retrieve events and perform state changes
or send further events as a result of processing an
event” (Hepper, 2008). After the occurence of a port-
let event, the event is communicated to the portlet
event broker provided by the portal server, looking up
all registered event types and associated portlets. It is
the portlet event broker that finally distributes portlet
events to any associated portlet capable of processing
it. Security requirements, however, in the form that
inter-portlet communication is subject to security con-
siderations, play only a subordinated role. Another
closely related drawback to the inter-portlet commu-
nication solution provided by JSR 286 is its lack of
flexibility. During deployment of a portlet, its com-
munication policy is defined and taken into account
by the portal server afterwards. This way, a mali-
cious portlet, acting as a trojan horse, can subscribe
to all events occuring in the portal session, leading to
the possibility of unintended information disclosure
of potentially confidential information, for instance
about customer or accounting information active in
another portlet instance running within the same por-
tal context. Likewise, the approach imposed by JSR
286 does not consider any potentially available con-
text information – i.e., about the active collaboration
or the current workflow. This all leads to the necessity
of security policies defining the allowed communica-
tion behaviour of a portlet in a specific context.

The area of security policies is widely dominated
by the XACML standard, whose current version 2.0
has been published in 2005 by OASIS (Moses et al.,
2005) with efforts towards release 3.0 ongoing since.
Based on an abstract model as defined by IETF in
(Yavatkar et al., 2000) and (Westerinen et al., 2001)
and ISO/IEC in (ISO/IEC, 1996), XACML provides a
standardized method regarding access control for re-

SECRYPT 2010 - International Conference on Security and Cryptography

178



sources and describes how rules or request/response
messages are to be defined in order to enable dynamic
authorization based on either a set of provided at-
tributes or available context information. Following
a common description of entities and their attributes,
XACML allows for fine-granular access control go-
ing beyond a staticpermit or denyresult, taking into
account runtime aspects of distributed systems.

One great advantage regarding an implementa-
tion of secure inter-portlet communication backed by
XACML is its distributed approach, which enables
separation between policy enforcement and policy
definition. This is of special importance when used in
distributed environments like collaboration platforms
spanning various sources of software from individual
collaboration members. Hence, it is possible to have
the definition of a baseline policy per portlet appli-
cation provided by the application itself, which can
then be accepted by the portlet administrator or fur-
ther limited regarding the application’s intended com-
munication behaviour and trust level. Likewise, the
evaluation of aforementioned portlet communication
policies can be performed during runtime, introduc-
ing a greater level of flexibility in comparison to the
approach currently followed by JSR 286-compliant
implementations as outlined in section 2.

Recent activities in the area of policies in combi-
nation with portal systems have mainly focused on the
aspects of achieving a uniform login into portal sys-
tems. A significant number of portal solution vendors
is already offering support for XACML-based login
into their systems, for instance in the Liferay portal
server2. Yin et al. have extended the idea of portal
authorization to the employment of web services (Yin
et al., 2007). The idea of federated authentication and
authorization for portal systems in Grid environments
based on the PERMIS framework was first presented
by Chadwick et al. (Chadwick et al., 2005) and fur-
ther elaborated by Vullings et al. (Vullings et al.,
2007).

The OpenPortal project strives to provide an open-
source portal server, originally derived from the Sun
Java System Portal Server. As a feature enhancement
to the standard implementation in JSR 286, the port-
let container of OpenPortal server in version 2.0 in-
troduced a portlet policy, governing access to events,
container events and public render parameters (Sun
Microsystems, Inc., 2008). However, the feature re-
mains vaguely documented and so far has not created
further impact onto other projects whilst providing
only limited extensions to the original specification
in JSR 286.

In this paper, we will employ the XACML stan-

2http://www.liferay.com

Figure 1: XACML architecture for secure inter-portlet com-
munication.

dard in order to provide a mechanism for definition
and evaluation of security policies in collaboration
settings, imposing restrictions on inter-portlet com-
munication. Based on the portlet standards JSR 168
and JSR 286, a possible solution will be shown.

3 INTER-PORTLET
COMMUNICATION IN PORTAL
SYSTEMS

Since the advent of standardized communication
mechanisms provided by JSR 286-compliant portal
servers, sending and retrieving events between indi-
vidual portlets has been made possible. In this model,
the portlets follow a loosely coupled paradigm with
the portal server acting as a message broker in be-
tween different portlets, distributing the events ac-
cording to the specifications during deployment of the
individual portlets.

In the portlet configuration fileportlet.xml, com-
munication channels via distinct message types as
provided by individual portlets are defined. Listing 1
shows an excerpt of the configuration of a maps port-
let which is intended to publish information about the
current location in the map via two portlet events,Set-
MarkerEventandMapBoundsEvent, represented via
two result types containing information about map
search results.

As illustrated in listing 1, severe security limita-
tions occur because the assignment does not take into
account dynamic changes in the context of the portlets
nor does it respect changes due to different users em-
ploying the same applications with differing access
rights. Instead, upon appearance of an event as origi-
nating from one source portlet, the brokering mecha-
nism of the portal server determines the recipients the
event is to be delivered to, based on the static assign-
ments during deployment time.

PREVENTING MALICIOUS PORTLETS FROM COMMUNICATING AND INTERCEPTING IN COLLABORATION
PORTALS

179



<supported-publishing -event>
<qname xmlns:x="http://www.spike -

project.eu">
x:demo.SetMarkerEvent </qname>

</supported -publishing -event>
<supported-processing -event>

<qname xmlns:x="http://www.spike -
project.eu">

x:demo..</qname>
</supported -processing -event>(...)
<event -definition >

<qname xmlns:x="http://www.spike -
project.eu">

x:demo.MapBoundsEvent </qname>
<value -type>SPIKEipcDemo .MapBounds </

value -type >
</event -definition >
<event -definition >

<qname xmlns:x="http://www.spike -
project.eu">

x:demo.SetMarkerEvent </qname>
<value -type>SPIKEipcDemo .

ResultsWrapper </value -type>
</event -definition >

Listing 1: Portlet configuration.

Also, listing 1 shows the definition of two
event types, x:demo.MapBoundsEvent and
x:demo.SetMarkerEvent. The tag supported-
publishing-event defines which events can be
published by the corresponding portlet, in this
case x.demo.SetMarkerEvent. Contrary, the tag
supported-processing-eventdefines which events a
specific portlet subscribes to. In this case, the portlet
configuration uses a wildcard mechanism, implying
the subscription of all events labeledx:demo.*.
Going one step further, this way, all possible events
could be subscribed to by a malicious actor, leading
to a potential loss of confidentiality.

Given a possible subscription of all available inter-
portlet events using the wildcard mechanism as laid
out above, a malicious portlet could try to steal
sensitive information transferred via the inter-portlet
communication mechanism by sniffing it and further
transferring it to an attacker’s IT systems. Thus, the
attacker in turn could gain internal information about
a collaboration, associated companies, and processed
data. This knowledge could afterwards be used to
launch an attack, for instance via social engineering.
Likewise, an attacker could remain entirely passive,
collecting as much information as possible.

4 XACML POLICIES FOR
SECURE INTER-PORTLET
COMMUNICATION

To overcome the shortcomings outlined in the previ-
ous section, the XACML architecture is introduced
to the portal event mechanisms as imposed by the
Java specification JSR 286, focusing on extensibility
and flexibility when implementing security policies
for portlet communication. Starting from the inter-
portlet communication as imposed by the JSR 286
standard, the authors have introduced elements of the
XACML architecture into the inter-portlet communi-
cation mechanisms of the OpenPortal project3, which
is also used by the Liferay portal server.

As can be seen from figure 1 which gives a sim-
plified overview over the integration of the portal
server’s event distribution with an excerpt of the ba-
sic elements of the XACML architecture, the au-
thors have introduced the concept of a policy enforce-
ment point (PEP) into the distribution of inter-portlet
events. After the occurence of a portlet event (step 1),
all portlets in question of receiving the current event
as defined in the global portlet deployment policy are
examined (step 2). For every portlet identified, the
portlet event broker in turn requests a decision to al-
low or disallow communication of one event between
current source and identified destination portlet. Ex-
tending the existing portlet event broker of the portal
server, it is the duty of the PEP to enforce the pol-
icy of a specific source portlet as defined by the portal
administrator (step 3). The PEP in turn requests a de-
cision from the Policy Decision Point (PDP), consid-
ering source and destination portlet, including further
information about the user request, i.e. the user’s por-
tal context, date and time information, and the type
of event to be issued (step 4). For the final decision,
the PDP queries for further attributes from the Pol-
icy Information Point (PIP, step 5). After successful
attribute retrieval by the PIP, the policy decision is is-
sued by PDP and returned back to PEP afterwards,
finally taken into account by the portlet event broker
(steps 6 and 7). Ultimately, the portlet event is deliv-
ered to the portlet treated by the current iteration of
the global list of portlets as initially identified in step
2 (steps 8.a and 8.b).

With the introduction of policy evaluation during
runtime allowing for context-dependent decisions, it
is yet to be defined what constitutes the context in
a portal session. First and foremost, context infor-
mation should contain information about the user it-
self, i.e. about tasks and roles assigned to that user

3https://portal.dev.java.net

SECRYPT 2010 - International Conference on Security and Cryptography

180



<Policy PolicyId="SPIKEipcDemoPolicy " (...)
RuleCombiningAlgId ="identifier:rule -combining -algorithm:

permit -deny -overrides">
<Target >(...)

<Resources><ResourceMatch
MatchId="urn:oasis:names:tc:xacml:1 .0:function:string -equal">

<ResourceAttributeDesignator
AttributeId="urn:spike:names:spike:1 .0:portal:portlet:portletId "
DataType="http: //www.w3.org/2001/ XMLSchema#string "/>

<AttributeValue DataType="http: //www.w3.org/2001/ XMLSchema#string ">
SPIKEipcDemo </AttributeValue >

</ResourceMatch ></Resources> (...)
</Target >
<Rule/> (...)

</Policy >

Listing 2: Excerpt of sample portlet communication policy.

in accordance to the alliance the user is currently
working in. Additionally, the user context should
contain company- and alliance-related information as
well. This way, it is possible to define individual
application-specific portlet communication rights per
user and per alliance. Individual alliances may have
different security policies, thus treating one portlet ap-
plication in different ways. Likewise, this opens the
opportunity to limit the execution of specific applica-
tions to a predefined workflow. Furthermore, an ap-
plication’s communication behaviour may be limited
according to date and time information. For instance,
communication of a portlet may only be granted in
special time frames, i.e. an application is allowed to
send and/or retrieve events only during the regular op-
erating hours of a company, hence limiting the attack
vector. Apart from these two examples laid out, more
scenarios of potential usage can be thought of by the
use of corresponding policies.

In the implementation, a number of important at-
tributes for usage within portlet communication pol-
icy evaluation has been identified and collected in
a common SPIKE vocabulary, defining available at-
tributes for policy decisions. Extending the exam-
ple of the SPIKEipcDemoportlet, listing 2 shows
excerpts of a policy definition in charge of regulat-
ing the portlet’s communication behaviour, beginning
with the specification of a rule combining algorithm
as introduced in the following sections. Furthermore,
the definition of a resource target is shown in list-
ing 2, consisting of the definition of aResourceMatch
function, performing a string comparison. TheRe-
sourceAttributeDesignatorinduces comparison of the
attributeportletId as provided by the SPIKE vocabu-
lary with each evaluated portlet’s id parameter, which
is stated in the individual policies generated. Fol-
lowing the definition ofTarget, individual rules can

be specified, matching different criteria as mentioned
above, for instance date and time information, using
the Rule tag, left empty in this example. As poten-
tially conflicting interests of service user, platform
provider, and the provider of a service have to be bal-
anced, the matter of combining these individual poli-
cies becomes crucial. With the XACML standard pro-
viding different combination algorithms with regard
to evaluation results of multiple policies, theordered-
deny-overridesalgorithm has proven to be the most
valuable. As security concerns of users of collabora-
tion platforms are to be rated higher than the interests
of providers of both platform and its associated ser-
vices, the user should be able to deny all communica-
tion between individual applications inside a portal.
Using theordered-deny-overridesalgorithm, policies
extracted from the user’s preferences can be put first
into thePolicySetgenerated automatically, meaning
that the user’s policy can block individual event types,
whilst allowing desired communication behaviour as
suggested and described via a service provider’s ser-
vice policy.

5 CONCLUSIONS AND FUTURE
WORK

This paper has shown the necessity for a secure
inter-portlet communication mechanism. Based on a
standard JSR 286-compliant implementation, it was
shown that securing communication between individ-
ual portlets can be achieved easily whilst increasing
flexibility at the same time. Compatibility with exist-
ing solutions being a major goal of the implementa-
tion, the approach presented in this paper focuses on
a minimal-invasive solution with regard to the inter-

PREVENTING MALICIOUS PORTLETS FROM COMMUNICATING AND INTERCEPTING IN COLLABORATION
PORTALS

181



portlet communication mechanism as defined in the
Java specification request (JSR) 286.

Future work of the authors is going to be per-
formed in a variety of fields, based on the work pre-
sented in this paper. First and foremost, the authors
are going to continue the work of thorough inves-
tigation of portal security aspects, predominantly in
the context of virtual enterprises and alliance-wide
application integration. A main cornerstone of fur-
ther research is the combination of different poli-
cies stemming from individual stakeholders, i.e. ser-
vice providers and consumers. Besides, the ques-
tion of runtime performance aspects of the encom-
passed solution is to be investigated in more detail.
Even though inter-portlet communication can only
seldomly be characterised as a time-critical function-
ality to the overall system, it is interesting to perform
deeper analysis on the scalability aspects of portlet
communication policies.

ACKNOWLEDGEMENTS

The research leading to these results is receiving fund-
ing from the European Community’s Seventh Frame-
work Programme under grant agreement no. 217098
and from the European Regional Development Funds
(ERDF). The content of this publication is the sole re-
sponsibility of the authors and in no way represents
the view of the European Commission or its services.

REFERENCES

AT&T Corp. (2008). Collaboration across borders.
http://www.corp.att.com/emea/docs/s5collaboration
eng.pdf, retrieved 2010-02-26.

Beeson, B. and Wright, A. (2005). Developing reusable
portals for scripted scientific codes. InProceedings of
the First International Conference on e-Science and
Grid Computing, pages 502–507. IEEE Computer So-
ciety.

Chadwick, D., Otenko, S., and Welch, V. (2005). Us-
ing SAML to link the GLOBUS toolkit to the PER-
MIS authorisation infrastructure. InProceedings of
8th Annual IFIP TC-6 TC-11 Conference on Commu-
nications and Multimedia Security, pages 251–261.
Springer.

Hepper, S. (2008).JSR 286: Java Portlet Specification Ver-
sion 2.0. Java Community Process.

ISO/IEC (1996). ISO/IEC 10181-3:1996 Information tech-
nology – Open Systems Interconnection – Security
frameworks for open systems: Access control frame-
work. Technical report, ISO/IEC, New York, NY,
USA.

Katzy, B. R. (1998). Design and implementation of vir-
tual organizations. InProceedings of the Thirty-First
Hawaii International Conference on System Sciences
(HICSS), volume 4, pages 142–151, Los Alamitos,
CA, USA. IEEE Computer Society.

Moreno, N., Romero, J. R., and Vallecillo, A. (2005). Incor-
porating cooperative portlets in web application de-
velopment. InProceedings of the 1st Workshop on
Model-Driven Web Engineering (MDWE 2005), pages
70–79.

Moses, T. et al. (2005). eXtensible Access Control Markup
Language (XACML) Version 2.0. OASIS Standard.

Priebe, T. and Pernul, G. (2003). Towards integrative en-
terprise knowledge portals. InCIKM ’03: Proceed-
ings of the twelfth international conference on Infor-
mation and Knowledge management, pages 216–223,
New York, NY, USA. ACM Press.

Shilakes, C. C. and Tylman, J. (1998). Enterprise informa-
tion portals.Merril Lynch.

Song, J., Wei, J., and Wan, S. (2007). An HTML frag-
ments based approach for portlet interoperability. In
Distributed Applications and Interoperable Systems,
volume 4531/2007, pages 195–209. Springer Berlin /
Heidelberg.

Sun Microsystems, Inc. (2008).Sun Java System Portal
Server 7.2 Developer’s Guide. Sun Microsystems,
Inc., http://dlc.sun.com/pdf/820-2057/820-2057.pdf,
retrieved 2010-02-22.

Vullings, E., Dalziel, J., and Buchhorn, M. (2007). Secure
Federated Authentication and Authorisation to GRID
Portal Applications using SAML and XACML. In
Journal of Research and Practice in Information Tech-
nology, volume 39, pages 101–114. Australian Com-
puter Society Inc.

Westerinen, A., Schnizlein, J., Strassner, J., Scherling,M.,
Quinn, B., Herzog, S., Huynh, A., Carlson, M., Perry,
J., and Waldbusser, S. (2001). RFC3198: Terminol-
ogy for Policy-Based Management. Technical report,
IETF.

Yang, X. and Allan, R. (2006). Web-based Virtual Research
Environments (VRE): support collaboration in e-
Science. InProceedings of the 2006 IEEE/WIC/ACM
international conference on Web Intelligence and In-
telligent Agent Technology, pages 184–187. IEEE
Computer Society Washington, DC, USA.

Yavatkar, R., Pendarakis, D., and Guerin, R. (2000).
RFC2753: A Framework for Policy-based Admission
Control. Technical report, IETF.

Yin, H., Zhou, J., Wu, H., and Yu, L. (2007). A SAM-
L/XACML Based Access Control between Portal and
Web Services. InProceedings of the The First In-
ternational Symposium on Data, Privacy, and E-
Commerce, pages 356–360. IEEE Computer Society
Washington, DC, USA.

SECRYPT 2010 - International Conference on Security and Cryptography

182


