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Abstract: Analysis of variance (ANOVA) is applied to RF DNA fingerprinting techniques to ascertain the most 
significant signal characteristics that can be used to form robust statistical fingerprint features. The goal is to 
find features that enable reliable identification of like-model communication devices having different serial 
numbers.  Once achieved, these unique physical layer identities can be used to augment existing bit-level 
protection mechanisms and overall network security is improved. ANOVA experimentation is generated 
using a subset of collected signal characteristics (amplitude, phase, frequency, signal-to-noise ratio, etc.) 
and post-collection processing parameters (bandwidth, fingerprint regions, statistical features, etc.). The 
ANOVA input is percent correct device classification as obtained from MDA/ML discrimination using three 
like-model devices from a given manufacturer. Full factorial design experiments and ANOVA are used to 
determine the significance of individual parameters, and interactions thereof, in achieving higher 
percentages of correct classification. ANOVA is shown to be well-suited for the task and reveals parametric 
interactions that are otherwise unobservable using conventional graphical and tabular data representations. 

1 INTRODUCTION 

The proliferation of 4G wireless Radio Frequency 
(RF) devices will provide unlimited world-wide 
access for millions of global communication and 
internet users.  However, greater access does come at 
a cost as users will experience greater exposure and 
increased security risk, i.e., there is greater 
opportunity for unauthorized users to monitor their 
RF emissions (intended and unintended) and 
intercept, identify, geolocate, and/or track them using 
bit-level processes. To counter bit-level attacks, 
research emphasis has begun to shift toward 
techniques using RF signatures (fingerprints) that are 
unique to specific hardware devices. 

Previous proof-of-concept demonstrations using 
802.11 (Klein et al., 2009a, 2009b) and GSM signals 
(Reising et al., 2010a, 2010b) with RF “Distinct 
Native Attribute” (RF DNA) fingerprinting has 
provided some promise for improving access 
authentication and enhancing overall network 
security.  The goal of these earlier works and the 
work presented here is to use RF physical layer 
attributes to augment bit-level security mechanisms 
that have been routinely “hacked” and which remain 
under attack (Blau, 2009; Kassner, 2009).  It is 

believed that this augmentation will help mitigate bit-
level impersonation attacks such as spoofing given 
that replication of device dependent, unique RF 
fingerprint characteristics is very difficult. 

Earlier works used statistical Time Domain (TD) 
features (Reising et al., 2010a, 2010b) and Wavelet 
Domain (WD) features (Klein et al., 2009a, 2009b) 
that were generated from specific regions of collected 
RF signals. These works demonstrated reliable 
device discrimination (80% or better) at reasonable 
signal-to-noise ratios (SNR).  Unsurprisingly, the 
device classification performance was directly 
impacted by typical signal collection and post-
collection processing parameters such as Signal-to-
Noise Ratio (SNR), sample frequency (fs), filter 
bandwidth (BW), etc. The basic goal of these earlier 
works (proof-of-concept demonstration) mitigated 
the need for optimization and parameter selection 
was based on empirical practices.  

When considering SNR, fs, BW, and other 
parameters in the RF fingerprinting process, e.g., the 
number of fingerprints used for training and 
classification, the number of signal fingerprint 
regions, the number of statistical features per 
fingerprint region, etc., the number of parametric 
combinations grows quickly.  In this case, assessing 
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the impact of given parameters or parameter 
combinations on device classification performance 
presents a problem that is well-suited for an Analysis 
of Variance (ANOVA) experiments.  

The results presented here are based on applying 
ANOVA methods to device classification results 
obtained from RF fingerprinting.  As a first step, the 
overall process is developed and verified using a 
previously developed TD fingerprinting process 
(Klein et al., 2009b). Output TD classification results 
are used with a 3-way ANOVA that is initially 
implemented using three factors: Device, SNR and 
BW.  Initial ANOVA results are consistent with 
behavior previously observed in single parameter 
variation plots (e.g., percent correct device 
classification versus SNR and BW). More 
importantly, the ANOVA analysis reveals the effects 
of parametric interaction that were not previously 
observable.  Given these early favorable results, work 
continues to extend the ANOVA analysis to include 
1) more than three factors simultaneously, and 2) the 
use of Spectral Domain (SD) fingerprinting.  These 
extensions are important to the overall success and 
subsequent implementation of RF fingerprinting to 
augment bit-level security mechanisms. 

2 SYSTEM AND EXPERIMENT 

The focus here is on applying ANOVA to device RF 
fingerprinting classification results as shown in 
Figure 1.  As input to the ANOVA process, intra-
manufacturer classification results were generated for 
three like-model Cisco Aironet 802.11a/b/g wireless 
adapters operating in 802.11a mode.  The devices 
were identical except for serial number (last four 
digits of N4U9, N4UD, N4UW). These specific 
serial numbered devices were chosen for initial 
ANOVA experimentation because previous research 
showed that this particular combination of devices 
presented the most challenging classification problem 
(Klein et al., 2009a). 

Signals were collected using an RF Signal 
Intercept and Collection System (RFSICS).  The 
RFSICS is an Agilent E3238S-based system and 
collects signals spanning 20 MHz to 6 GHz (Agilent, 
2004).  The overall collection and processing method 
is shown in Figure 2, where the dashed boundaries 
delineate between hardware and software processes. 
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Figure 1: ANOVA experimentation process with signal 
collection and MDA/ML RF fingerprint classification 
results provided per the process in Figure 2. 

The 802.11a adapter to be tested was placed in a 
laptop and signals from the device were collected by 
the RFSICS (Klein et al., 2009a, 2009b).  The 
RFSICS has a WRF = 36 MHz RF bandwidth that is 
down-converted to a fIF = 70.0 MHz IF, digitized 
using a 12-bit ADC at fs = 95 Msps, digitally 
filtered, sub-sampled (Nyquist maintained), and 
resultant samples stored as complex In-Phase and 
Quadrature (I-Q) components. The 802.11 wireless 
adapters and RFSICS were collocated in an anechoic 
chamber for all signal collections. 

As shown in Figure 2, the collected signals were 
post-processed using MATLAB.  Following burst 
detection using a td = – 3 dB amplitude threshold, the 
collected signal was digitally filtered using a base-
band filter (bandwidth WBB) and combined with like-
filtered noise that is scaled to achieve the desired 
analysis SNR.  For initial concept validation, WBB 
and SNR were the ANOVA factors that were 
incrementally varied and statistical fingerprints were 
used to generate classification results. 

Bandwidth variation was simulated using a 3rd-
order Butterworth digital filter having a – 3 dB 
bandwidth of BW = 5.5, 6.5, 7.5 and 8.5 MHz.  
Given the selected filter, SNR variation was 
simulated using randomly generated AWGN that was 
like-filtered (same filter used for the signal) and 
scaled to achieve the desired analysis SNR (Klein et 
al., 2009a, 2009b).  The range of SNRs considered 
was based on previous works and included 1) lower 
values where SNR was suspected to dominate correct 
classification performance, and 2) higher values 
where SNR changes produced minimal impact.  This 
range enabled both validation of the ANOVA process 
as applied to RF Fingerprinting and investigation of 
lesser dominant parameters in higher SNR regions. 

Device classification is accomplished using a 
Fisher-based MDA/ML process with statistical 
fingerprint features extracted from physical wave-
form characteristics of instantaneous amplitude, 
phase, and/or frequency.  The features are generated 
using common statistics of standard deviation, 
variance, skewness, and/or kurtosis (Klein et al., 
2009a, 2009b).  As parameters (factors) are altered 
during simulation and processing, classification 
errors occur when the analysis signal in Figure 2 is 
classified as the wrong device signal. 
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Figure 2: Signal collection and MDA/ML fingerprint 
classification (Klein et al., 2009a). 

The results of MDA/ML device classification 
generally indicate some predictable performance 
trends for parametric (factor) variation.  These trends 
were used to verify and validate results from the 
ANOVA process.  As obtained from the MDA/ML 
classification process, these performance trends are 
illustrated in Figure 3 which shows that average 
percent correct classification (average across all three 
devices) is dependent upon both SNR and BW. 

2.1 3-Way ANOVA 

The statistical model uses a 3-Way ANOVA with 
input data generated using a full factorial 
experimental design approach with three factors, 
including: specific device, BW, and SNR. The 
ANOVA Fixed Effects Model was used to complete 
the analysis and is given by (Montgomery 2009): 

yijk = u +  αi  +  βj  +  τk  + (αβ)ij  + (ατ)ik 
+ (βτ)jk + (αβτ)ijk + εijk 

(1) 

where μ is the overall mean, α is the specific device 
effect, β is the Bandwidth (BW) effect, τ is the SNR 
effect, αβ is the Device-BW interaction effect, ατ is 
the Device-SNR interaction effect, βτ is the BW-
SNR interaction effect, αβτ is the Device-BW-SNR 
interaction effect, and ε is the random error. 

The Fixed Effects Model compares each 
parameter and parameter combination to the mean 
correct classification value.  If varying a given 
parameter or parameter combination does not result 
in a divergence from the mean, that parameter or 
parameter combination does not have a significant 
effect on correct classification. 
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Figure 3: Average Percent Correct Classification (Across 
All Devices) for various SNR and BW values. 

Otherwise, if varying a given parameter or 
parameter combination results in a deviation from 
the mean, that parameter or parameter combination 
does have a statistically significant effect on correct 
classification results.  This can be expressed using 
hypothesis notation:  

1 2: ... 0o iH α α α= = = =  (2) 
: : 0A iH some i α∃ ≠  (3) 

1 2: ... 0o jH β β β= = = =  (4) 
: : 0A jH some j β∃ ≠  (5) 

1 2: ... 0o kH τ τ τ= = = =  (6) 
: : 0A kH some k τ∃ ≠  (7) 

1,1 1,2: ( ) ( ) ... ( ) 0o ijH αβ αβ αβ= = = =  (8) 
: , : ( ) 0A ijH some i j αβ∃ ≠  (9) 

1,1 1,2: ( ) ( ) ... ( ) 0o jkH βτ βτ βτ= = = =  (10) 
: , : ( ) 0A jkH some j k βτ∃ ≠  (11) 

1,1 1,2: ( ) ( ) ... ( ) 0o ikH ατ ατ ατ= = = =  (12) 
: , : ( ) 0A ikH some i k ατ∃ ≠  (13) 

1,1,1 1,1,2: ( ) ( ) ... ( ) 0o ijkH αβτ αβτ αβτ= = = = (14) 
: , , : ( ) 0A ijkH some i j k αβτ∃ ≠  (15) 

The hypothesis tests in (2)–(15) are designed to 
show whether or not a given parameter or parameter 
combination has an effect on percent correct 
classification.  For example, the null hypothesis HO 
in (2) states that for any given device among the 
three being considered, the effect on the mean 
correct classification will be zero.  The alternative 
hypothesis HA in (3) states that for at least one of the 
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devices being used, there is a statistically significant 
effect on percent correct classification. 

For final experimental results presented in this 
paper, the 3-factor interaction term αβτ in (1) was 
not considered.  Preliminary results indicated that 
the 2-factor interactions were more significant for 
correct classification than three factor interaction.  
Thus, all combinations of 2-factor interaction effects 
(αβ, ατ, βτ) for the three parameters (Device, SNR, 
BW) were the focus of this work.  

3 RESULTS 

The device classification process in Figure 2 allows 
variation of any given number of parameters.  To 
enable validation of the ANOVA RF fingerprinting 
experimentation process, the parameters that were 
varied included Device, BW, and SNR.  In addition, 
performance analysis was limited to using only the 
802.11a preamble signal region, with classification 
accomplished using three statistical fingerprint 
regions as shown in Figure 4 (Klein et al., 2009a). 

Signals were collected, RF statistical fingerprints 
extracted, MDA/ML classification performed and 
resultant classification data analyzed for three 
devices using selected BW and SNR values.  The 
specific device, BW and SNR parametric 
combinations are shown in Table 1 along with 
corresponding classification results that were used 
for generating ANOVA results in Section 3.1. 

3.1 ANOVA Results 

To determine the statistical significance of a given 
parameter or parameter combination, an F-Test was 
applied and a P-Value calculated.  The P-Value is the 
probability that the test statistic will have a value that 
is at least as extreme as the observed value when the 
null hypothesis is true (Montgomery 2009).  Thus, if 
a P-Value (Prob > F) is at or near zero, the null 
hypothesis is rejected in favour of the alternative.  
Alternately stated, if the P-Value for a given 
parameter or parameter combination is at or near 
zero, that parameter or parameter combination has a 
statistically significant effect on correct 
classification. Results of the ANOVA analysis using 
data in Table 1 is presented in Table 2. 

10 Short OFDM Symbols
( ≈ 8 μsec)

2 Long OFDM Symbols
(≈ 8 μsec)

Entire 802.11a Preamble
(≈ 16 μsec)

3rd Fingerprint Region

Three Statistical Fingerprint Regions

1st Fingerprint Region 2nd Fingerprint Region

 
Figure 4:  Preamble structure showing modulated signal 
response and fingerprint regions for the 802.11a signals 
(Klein et al., 2009a). 

Table 1: MDA/ML percent correct classification for each 
device and specific combination of BW and SNR factors. 

BW Dev# SNR (dB) 

MHz  20 30 40 50 60 

4.5 1 67.00 99.92 99.86 99.92 99.96 

 2 82.30 99.96 100 100 100 

 3 44.36 99.78 99.76 99.78 99.80 

5.5 1 72.78 97.24 98.38 98.00 98.24 

 2 88.48 99.66 99.84 100 100 

 3 42.24 99.64 99.28 99.64 99.56 

6.5 1 22.84 17.60 19.04 25.42 28.36 

 2 63.00 74.94 80.78 82.76 83.86 

 3 31.72 43.22 42.74 42.68 41.76 

7.5 1 37.42 70.78 86.06 81.50 81.56 

 2 44.94 71.62 67.82 80.28 79.84 

 3 42.92 12.56 45.78 62.68 58.96 

8.5 1 73.96 88.52 96.94 99.74 99.78 

 2 89.42 100 100 100 100 

 3 17.76 92.86 99.64 97.66 99.60 

Table 2: Analysis of Variance Results. 

Source Sum2 D.F. Mean2 F P-Value
Dev 0.47044 2 0.23522 18.45 0.0000 
SNR 0.95996 4 0.24149 18.94 0.0000 
BW 2.75173 4 0.68793 53.95 0.0000 

Dev-SNR 0.12833 8 0.01604 1.26 0.2994 
Dev-BW 0.62613 8 0.07827 6.14 0.0001 
SNR-BW 0.19087 16 0.01193 0.94 0.5411 

Error 0.40806 32 0.01275   
Total 5.54152 74    
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3.2 Application of ANOVA 

According to the ANOVA results in Table 2, the 
Device, BW, and SNR factors all have a statistically 
significant effect on overall correct classification for 
parameter values considered.  This is indicated by 
the P-Values approaching zero for each parameter.  
This conclusion is consistent with previous 
empirical assessment based on varying a single 
parameter (Klein et al., 2009a, 2009b) and serves as 
proof-of-concept validation for the ANOVA 
experimentation process. 

3.2.1 2-Factor Interactions 

Also of significance and not directly represented in 
previous research are the Device-BW interaction 
effects.  As shown in Table 2, the P-Value for this 
interaction is very near zero which indicates that 
Device-BW interaction is statistically significant to 
correct classification.  This result was investigated 
further and qualitatively assessed using results in 
Figure 5. It is clear that classification performance 
varies considerably as a function of BW (30-80% 
degradation across devices) with Device 2 being 
least sensitive and Device 1 being most sensitive for 
the BWs considered. 

The classification performance “dip” in Figure 5 
was observed between BW = 6.5 and 7.5 MHz for 
all SNR values considered, i.e., SNR = [20dB to 
60dB].  The cause of this was analyzed by 
considering MDA/ML classification confusion 
matrix data.  A representative confusion matrix for 
BW = 7.5 MHz and SNR = 40 dB is shown in 
Table 3.  The diagonal entries represent percent of 
correct classification for each device.  The off-
diagonal entries represent percent of 
misclassification (confusion) between devices.  As 
evident in the highlighted (red text) off-diagonal 
entries in Table 3, Device 1 and Device 3 are the 
most often confused.  With one exception, similar 
behaviour was reflected in confusion matrices for all 
SNRs as well as BW = 4.5, 5.5 and 8.5 MHz.  The 
one difference occurred for BW = 6.5 MHz which 
produced the confusion matrix results shown in 
Table 4.  In this case, Device 1 and Device 2 are the 
most often confused and both Device 1 and Device 3 
are misclassified as Device 2 most often. 
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Figure 5: Percent correct classification vs. BW for each 
device and the average across devices for SNR = 40 dB. 

Table 3: MDA/ML classification confusion matrix for 
BW = 7.5 MHz and SNR = 40 dB. 

 Estimated Device 

Actual Device 1 2 3 

1 86.06% 1.26% 12.68% 

2 22.84% 67.82% 9.34% 

3 53.70% 0.48% 45.78% 

Table 4: MDA/ML classification confusion matrix for 
factor combination of BW = 6.5 MHz and SNR = 40 dB. 

 Estimated Device 

Actual Device 1 2 3 

1 19.04% 65.06% 15.90% 

2 15.04% 80.78% 4.18% 

3 19.40% 37.86% 42.74% 

4 CONCLUSIONS 

As 4G wireless communication technology 
continues to proliferate and users become 
increasingly exposed to bit-level attacks, RF DNA 
fingerprinting may emerge as the preferred physical 
layer method for improving network security.  As 
introduced in previous work and adopted here, RF 
fingerprinting performance is driven by a myriad of 
signal collection, post-collection processing, and 
device classification parameters.  Thus, the end-to-
end process is well-suited for ANOVA 
experimentation and parametric analysis aimed at 
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identifying key factors, or combinations thereof, for 
predicting and implementing efficient and robust 
fingerprinting. 

Initial results validate applicability of ANOVA 
for enhancing RF fingerprinting development.  This 
was done using three factors (Device, SNR and BW) 
and corresponding 2-factor interaction effects which 
provide additional insight into fingerprint process 
design.  The range of ANOVA factors included three 
like-model 802.11a/b/g Cisco wireless devices 
operated in the 802.11a configuration, SNR = [20 
60] dB in 10 dB steps, and BW = 4.5, 5.5, 6.5, 7.5 
and 8.5 MHz.  The Device-BW interaction provided 
the greatest insight into discriminating information 
and showed that greatest device confusion (poorest 
overall classification accuracy) occurs within the 
BW = 6.5 to 7.5 MHz region.  While the exact cause 
of this remains under investigation, this result is 
consistent with previous comparisons made using 
time domain (TD) and wavelet domain (WD) 
techniques (Klein et al., 2009a).   

The ANOVA also revealed that specific serial-
numbered devices were more susceptible to BW 
variation, i.e., classification performance varied 
considerably as a function of BW and 30-80% 
degradation was observed across devices. The 
ANOVA process also revealed some semi-
significant effects based on Dev-SNR interaction.  
Although not as strong as the Device-BW 
interaction, specific like-model devices were shown 
to be more susceptible to SNR variation.      

Given preliminary favorable results, research 
activity continues and work has begun to extend the 
ANOVA analysis process by 1) considering more 
than three ANOVA factors simultaneously, 
2) extending applicability to Spectral Domain (SD) 
fingerprinting, and 3) identifying significant 
parameters from among those not considered in this 
initial proof-of-concept demonstration.  These 
extensions are important to the overall success and 
subsequent implementation of RF fingerprinting to 
augment bit-level security mechanisms. 
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