
INTRODUCING AGILE SOFTWARE DEVELOPMENT AT SAP AG
Change Procedures and Observations in a Global Software Company

Joachim Schnitter and Olaf Mackert
SAP AG, Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany

Keywords: Agile project management, Lean development, Scrum, Large-scale Scrum.

Abstract: This paper describes the change process that is taking place at SAP AG to move the software development
processes from a waterfall-like approach to agile methodologies. This change affects about 18,000 developers
working at 12 global locations. The paper outlines the procedure to introduce Scrum as an implementation of
lean development, and the model chosen to scale Scrum up to large product development projects. The most
important observations are described, and an outlook on future improvement is given.

1 INTRODUCTION

Agile methodologies have proven to offer many bene-
fits when developing user-centric software. Early
findings about how to optimize product development
led to iterative processes stressing prototyping and
early feedback (Takeuchi and Nonaka, 1986). Agile
project management methods, e. g. Scrum (Schwaber,
2004; Schwaber, 2007), take into account that prod-
uct development is essentially a learning process.
Long-term planning based on product requirements,
which appear rock-solid but are in reality merely edu-
cated guesses, is substituted by an iterative approach
which focuses on early delivery of partial functional-
ity. In combination with regular feedback from users
and stakeholders a software development project con-
verges into something useful without the exact goal
being known beforehand. Strict prioritizing of all
requirements ensures that risks remain low. Even a
project that was cancelled because of time and budget
constraints may nevertheless have delivered a useful
result if the essential requirements were implemented
by the time the project was cancelled.

Scrum is known to work well in teams of up to
around 10 people programming for a customer on
the basis of a project contract. How well can Scrum
perform in a global software company with thou-
sands of developers in various locations working on
a few dozen highly complex software products? This
paper describes some of the experiences gained dur-
ing the change process at SAP AG, the world’s
leading producer of enterprise software, transitioning
from a waterfall-like overall process model to an ag-

ile development model that incorporates the values of
lean development and production.

In the following section we will outline the situa-
tion at SAP before the introducton of agile develop-
ment. The third section describes the activities dur-
ing and results of the pilot phase. The fourth sec-
tion gives a brief overview of process tailoring before
introducing Scrum throughout the development orga-
nizations. In the fifth section we describe the steps
taken to introduce lean development. In the sixth sec-
tion the model chosen to scale Scrum up to very large
development projects is described. The final section
summarizes the results and observations.

2 SAP BEFORE LEAN
DEVELOPMENT AND SCRUM

SAP, founded in 1972, offers a portfolio of enterprise
applications around its flagship, the SAP Business
Suite. Many of these products are aimed at large com-
panies, although products for small and medium busi-
nesses have been available for some time or are in the
making. With the acquisition of Business Objects SA
in 2008 SAP gained access to user-centric analytics
products which have since been fully integrated into
SAP’s traditional product line but still are available
separately.

In its first two decades SAP developed software
for and together with its customers. This close co-
operation helped focus on business essentials, keep
pace with business and technology trends, and even-

132
Schnitter J. and Mackert O. (2010).
INTRODUCING AGILE SOFTWARE DEVELOPMENT AT SAP AG - Change Procedures and Observations in a Global Software Company.
In Proceedings of the Fifth International Conference on Evaluation of Novel Approaches to Software Engineering, pages 132-138
DOI: 10.5220/0003000601320138
Copyright c© SciTePress



tually led to the fully developed client-server Sys-
tem R/3 which supported all critical business func-
tions for every major industry. Developers had regular
contact with customers and users in different roles,
not only as programmers but also as consultants,
trainers, and support engineers. The success of R/3
reshaped the market for business applications. For
newer customers R/3 was no longer a system they had
helped to develop but a product they wanted to in-
stall, configure and run, despite the particularities of
their business processes. Demand shifted from more
business functionality to a higher degree of config-
urability, easier lifecycle management, and solutions
covering only parts of the R/3 application suite with
more detail and specificity.

Within a few years SAP’s development organi-
zation grew from about 2,000 to over 18,000 devel-
opers in various functions. In earlier days develop-
ers were expected to be generalists, but by the time
growth started slowing most developers had become
experts on a particular technology or application area.
Specialization increased in parallel with division of
labour. By now there were experts working on re-
quirements roll-in, other experts working on detailed
requirements specifications, yet others laying out the
basic functions and algorithms, programming, test-
ing, and so on. By 2001 it had become clear that
issues with communication among the specialized
teams, departments, organizations were becoming a
major cause of reduced product quality on many lev-
els. To overcome these problems SAP introduced a
development process framework to co-ordinate devel-
opment efforts throughout all involved organizations.
Involvement and responsibilities were assigned to de-
partments according to their primary activities and
skills overall leading to a waterfall-like process model
with handover procedures among the involved parties.
This process model was traversed once per year by
most development departments which resulted in new
products or major product versions each year.

When agile methodologies gained broader public
interest around 2004 some teams at SAP started to
experiment with Extreme Programming and Scrum.
This approach was not feasible for regular product de-
velopment teams because they had no longer easy ac-
cess to customers and users. Therefore agile project
management practices were first used in prototype de-
velopment with strong customer involvement.

3 PILOT PHASE

In 2006 SAP formed a small team to explore agile
practices in depth by educating and supporting devel-

opment teams interested in Scrum. Within two years
it was possible to run around 120 projects accord-
ing to the Scrum methodology. During this time the
expert team gained important insight into applicabil-
ity, limiting factors, and resistance within the organi-
zation.

Pilot teams were chosen by organizations accord-
ing to their own interest. Since some of the early
teams displayed scepticism due to personal attitude,
each project team had to approve its participation in
the pilot program unanimously.

3.1 Education

Scrum education for pilot teams consisted of the fol-
lowing elements:

• A two-hour introduction into motivation and prac-
tices of Scrum for development managers.

• A six-hour training for the development team,
Scrum master, and product owner. This included
an in-depth analysis of project setup, risks, and
interdependencies with other teams.

• A four-hour in-depth training for Scrum masters
and product owners.

Each person in the expert team supported a number of
pilot teams for some months as a Scrum mentor. This
support included participation in all sprint planning
and review meetings, retrospectives, help with tools,
and advocating Scrum before development manage-
ment. Additionally mentors tried to track and resolve
all issues the teams had either internally or with other
teams, organizations, and management.

After eight months of direct team support the
Scrum expert team started offering trainings for fu-
ture Scrum mentors. Mentor training took one week
and included in-depth Scrum knowledge, team dy-
namics, and selected areas of software engineering,
e. g. requirements management. A prerequisite for
the mentor training was experience with Scrum ei-
ther as a Scrum master or product owner. Training
included Scrum master certification by the Scrum Al-
liance. The teaching team consisted of the Scrum ex-
pert team, a psychologist, and a practitioner from the
Scrum Alliance.

After one year there were 25 mentors available.
By September 2008 these mentors had supported
about 120 projects in 10 global development loca-
tions.

3.2 Project Management Tools

When the Scrum expert team started its work, few
project management software systems were available

INTRODUCING AGILE SOFTWARE DEVELOPMENT AT SAP AG - Change Procedures and Observations in a Global
Software Company

133



which supported Scrum. They all lacked sub-project
support, hierarchical backlog management, and inter-
faces for inclusion into SAP’s toolchain, e. g. to the
requirements database, issue tracker, and test manage-
ment systems. Therefore SAP decided to extend its
own product for project management, SAP cProjects,
to support Scrum projects. This extension project was
also a showcase for Scrum with direct involvement of
users because the system was to be used internally. A
member of the Scrum expert team took on the role of
the product owner.

3.3 Lessons Learned

A wiki was used to manage basic information and ob-
servations. For each pilot team the following data
were collected by the Scrum mentors: scope of the
project, duration, product owner, scrum master, de-
pendencies with other teams, locality, critical deci-
sions and impediments, and other observations. These
data were used to select and communicate best prac-
tices, create a network of Scrum masters and product
owners, and set up a round table of experienced prac-
ticioners. In-depth interviews with Scrum masters,
product owners, and team members provided valuable
information and suggestions for improvement.

Scrum gives teams more power to make decisions
concerning development speed and quality. These as-
pects led to wide acceptance among teams. On the
other hand many individuals felt that they were being
monitored exessively as a result of the high degree
of interaction both within the team and with external
individuals and organizations. The predominant argu-
ments against Scrum were:

• Team member: “Scrum forces me to report to the
team every failure and impediment. This puts me
under pressure.”

• Team member: “I work more effectively when
working alone. Daily Scrum meetings force me
to interrupt my work.”

• Team member: “My manager might get a wrong
impression of my work in case someone reports
how slow my work progresses.”

• Development manager: “I have no insight into the
team’s work. Appearently nobody monitors what
is going on.”

• Other teams: “We cannot rely on teams which
do not deliver according to an agreed-upon sched-
ule.”

Most resistence of team members was removed by
pointing out that the transparency of activity within
the team was necessary because it enabled the team

to manage its work independently. In order to be re-
leased from management’s scrutinity the team has to
monitor itself. Sceptics from management were in-
vited to sprint planning and review meetings. They
were regularly impressed by the teams’ skills in plan-
ning all activities with great detail, focusing on risk
management and high product quality.

What could not be mitigated were issues with
teams dependent on “unreliable” Scrum teams, at
least if the Scrum teams were isolated in a non-Scrum
environment. Scrum teams working jointly on a par-
ticular software product rarely had complaints about
unreliable delivery because they were familiar with
the Scrum methodology and figured out how to get
their requirements added to other teams’ backlogs and
with the right priorities.

Globally distributed teams often successfully ap-
plied Scrum although we were able to identify a num-
ber of problem areas which increased the reluctance
to set up new distributed project teams:

• Project kick-off meetings with all team members
brought together in one location were considered
to be essential.

• Neither telephone nor video conferencing systems
could produce the feeling of proximity which was
necessary to maintain team spirit.

• Oral communication was burdensome because in
every location English was spoken with a local ac-
cent.

• Timezone differences of more than three hours
made it difficult to agree on a common time for
the daily Scrum meeting.

• Multicultural teams typically broke up within two
months mainly because the role of the Scrum mas-
ter is interpreted very differently among Euro-
pean, Asian, and American people. A Scrum mas-
ter from one culture found it hard to meet the ex-
pections of team members from another culture.

Many issues were not directly related to Scrum usage
but became visible in this context. Teams tended to
relate problems to Scrum usage, but deeper analysis
showed that these issues had existed in the same teams
before or could be observed in non-Scrum teams as
well. This showed the high potential of Scrum to ex-
pose problem areas which otherwise would have gone
unidentified or had been hidden intentionally.

3.4 Other Issues

Around the same time some problems surfaced which
were not connected to Scrum usage but needed to be
resolved before moving to Scrum on a large scale.

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

134



• Communication among product management,
software architects, development teams, and qual-
ity assurance was not strong enough to ensure
a common understanding of development goals.
Product management often was unable to com-
municate product requirements to software engi-
neers. Languages and notations differed signifi-
cantly.

• The role of software architecture (high-level de-
sign) was not yet well understood. This led
to increased dependencies among products and
components, e. g. because componentization was
weak and code reuse was highly valued. Another
result was the lack of conceptual preparation for
the development teams for whom there were too
many obstacles to harmonize on interfaces and ad-
here to delivery timelines.

To overcome both problems a team was formed to
provide education on software architecture for devel-
opers, software architects, and product management.
A simple modeling language was created by com-
bining selected Unified Modeling Language (UML)
elements with diagram types from the Fundamen-
tal Modeling Concepts (FMC) notation (Keller and
Wendt, 2003; Knöpfel et al., 2006). FMC block di-
agrams in particular have proven to be an immense
help to communicate technical concepts to customers,
product managers, and developers. In parallel SAP
revised its internal quality standards and added rules
for component separation and usage.

4 DEVELOPMENT PROCESS
REFORM, ROUND ONE

A major revision of the standard development pro-
cess took place while the Scrum expert team was still
running pilot projects. Early experiences with Scrum
came to the attention of management who ordered a
reform of the development process framework to in-
volve customers and users more directly. The “re-
form” team which included the members of the Scrum
expert team defined three process models for different
product development types.

Improvement. This process model is used to im-
prove existing products and for minor extensions.
In the context of business software this can mean
e. g. adaptions to changed legal requirements or
newer technical standards. An important criteria
for this process model is that the project require-
ments include few changes to implemented busi-
ness processes, only minor changes to the user in-
terface, and that no newer technologies need to be

added.

New Product. This model is chosen for new prod-
ucts or major product extensions. It includes
Scrum as the project management method. Cus-
tomer and user involvement is secured by appro-
priate contracts, and a minimum number of cus-
tomers has to be involved. A calculated business
case must exist as a basis for a development deci-
sion.

Research. This process model is used basically for
research and prototyping projects. These projects
are mostly free to chose whatever tools and meth-
ods they wish.

An important result of this approach was that it in-
creased awareness of the need to tailor the process
model according to certain factors, e. g. software type
(infrastructure, UI, business logic etc.), project size,
product development or customer-specific develop-
ment, architecture constraints (from-scratch product
development, product extensions, major refactoring,
and renovation).

5 INTRODUCING LEAN
DEVELOPMENT

From industry customers who had long-standing ex-
perience with lean production and the Toyota produc-
tion system (TPS) and from talks and publications
by Mary and Tom Poppendieck (Poppendieck and
Poppendieck, 2005; Poppendieck and Poppendieck,
2008) SAP management learnt about the lean devel-
opment approach. This knowledge provided the busi-
ness background for research into how lean develop-
ment could be applied at SAP. It turned out that Scrum
is particularily well suited to implementing lean soft-
ware development.

• Scrum’s iterative cycles, called sprints, implement
takt, i. e. the cyclic, repetitive work approach.

• Thepull principle of TPS (often discussed in con-
junction withKanban) can be found in Scrum in
two places: (i) When planning a sprint the team
“pulls” only so many requirements from the prod-
uct backlog as can be fulfilled during the next
sprint. Scrum does not allow for asking for more
than the team promises. (ii) Each team member
picks tasks from the sprint backlog when he or
she sees fit. No manager assigns tasks to a team
member.

• The Genchi Genbutsu(go and see for yourself)
principle is reflected by the product owner’s par-
ticipation in sprint reviews at regular intervals.

INTRODUCING AGILE SOFTWARE DEVELOPMENT AT SAP AG - Change Procedures and Observations in a Global
Software Company

135



• TheKaizenprinciple of continuous improvement
is put into practice by regular retrospectives and
the Scrum master’s role to collect and communi-
cate impediments and ideas for improvement to
stakeholders.

In every major SAP development area (2000 to 5000
developers per area) a lean implementation team was
set up to explore what had to be done to implement
lean development processes. One team took over the
pilot role by implementing their process model six
months earlier thereby gaining experiences to share
with the other teams. These teams applied Scrum to
their own change management projects.

It is worth to note that the pull principle had been
in use at SAP for software configuration management
for years. Change (delta) propagation from a devel-
opment codeline to a test or consolidation codeline
was usually done by a responsible person pulling the
changes into the target codeline. This process was
implemented for ABAP (SAP’s proprietary applica-
tion programming language) around 1990. For source
code in other programming languages implementa-
tion took place in 2007.

5.1 Academic Experiments

Before applying Scrum on a large scale some exper-
iments were carried out by the Hasso Plattner Insti-
tute, Potsdam (HPI). The HPI provides education for
master and bachelor degrees on software systems en-
gineering. As part of their practical education stu-
dents have to carry out a half-year software develop-
ment project with about 50 students. These devel-
opment projects were used to experiment with vari-
ous approaches to upscaling Scrum, e. g. Scrum of
Scrums, hierarchical backlog, hierarchy of product
owners. Many insights were gained in these projects
which proved beneficial to applying Scrum to multi-
team projects at SAP (Kowark et al., 2010).

5.2 Education

A one-day “lean awareness” training provided the
background of the lean development approach. This
training described the basic principles of lean produc-
tion and development. People who attended the train-
ing frequently commented that the knowledge about
lean production was helpful to understand customer
needs better, but the relationship between lean de-
velopment and software development needed clarifi-
cation. The authors regard the latter comments as a
strong indication of the difficulties of applying strict
business principles to the learning process that is an
inherent feature of software development.

To scale Scrum up fast to an entire organization
Scrum mentors were trained by the existing Scrum
mentors who had at least 1.5 years experience with
Scrum in various contexts. This training was similar
to the mentor trainings given earlier.

Scrum mentors held training courses for develop-
ment teams, product owners, and Scrum masters. In
order to provide training for all teams in a short time,
the time allocated for training was reduced.

5.3 Continuous Improvement

In each development area a team was formed to col-
lect and resolve problems the individual teams could
not resolve themselves. These teams have to deal
with both technical development problems and issues
resulting from the new lean development approach.
Therefore no limits are imposed on the types of prob-
lems communicated. These continuous improvement
teams are also responsible for idea management in
each area and serve as escalation contacts for Scrum
masters.

6 SCALING SCRUM TO THE
MAX

Scaling agile software development processes is still
subject to research (Eckstein and Josuttis, 2004; Leff-
ingwell, 2007; Ambler, 2009). Several approaches
are known to co-ordinate the work of severat Scrum
teams working on one product, e.. Scrum of Scrums
or MetaScrum (Sutherland, 2005). The size and com-
plexity of SAP’s products makes it necessary to con-
sider these techniques. To co-ordinate the work of
multiple Scrum teams and to communicate the re-
quirements via team product backlogs, various ap-
proaches were combined. Special product teams were
formed for this purpose. These teams can be regarded
as both a permanent Scrum of Scrums and a supervi-
sory product owner.

6.1 Product Teams

Product teams introduce a second organizational layer
above the Scrum teams. A product team is responsi-
ble for the work of up to 7 development teams. It
consists of the product owners of those teams and the
same number of team members who are specialists
in particular fields. Depending on the problem area
other experts may be included. This allows for full
engineering coverage of all problem areas expected,
well-organized communication among the teams, and
direct communication with the development teams to

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

136



detect and mitigate risks. Typically the following ex-
pert roles can be found in product teams:

• Chief product owner (responsible product man-
ager),

• Product team Scrum master (facilitator),

• One or two software architects,

• Knowledge management and product documenta-
tion,

• User interface designer,

• Stakeholder representative.

These roles may be taken by dedicated people or by
development team members. For a product team to
function properly, the following prerequisites have to
be met:

• Every member of the product team is also a mem-
ber of one of the related Scrum teams.

• The product team has full responsibility for re-
quirements scope, quality, and delivery of the
product. Each product team has a budget includ-
ing external and travel costs.

• No product team member is a line manager of an-
other team member.

• All product team members are collocated.

The tasks of the product team include:

• Product and budget management,

• Definition of the skill profiles, size, and numbers
of Scrum teams,

• Assigning product backlog items to Scrum teams,

• Collecting project status information,

• Synchronizing the work of the Scrum teams,

• Working closely with the continuous improve-
ment teams,

• Requesting supportive actions in case of impedi-
ments.

6.2 Area Product Teams

Product teams can rarely support more than seven
Scrum teams. If the products or components are be
too big or too complex to be developed in this orga-
nizational setup, an intermediate organizational layer
is inserted between the product team and the Scrum
teams. These teams are called “area product teams”.
Their responsibility is the same as the product teams’
responsibility with the exception of budget and final
product decisions. In this three-layer organization a
product team works similar to a project management

office. The complete budget and product responsi-
bility is with the product team, while the operational
day-to-day decisions are handled by the area product
teams.

7 CONCLUSIONS AND
OUTLOOK

The Scrum project management methodology has
gained wide acceptance at SAP. Most teams consider
Scrum their method of choice. Employees who know
SAP from its early days call it a dej vu although
direct customer involvement in current development
projects is very limited.

Scaling Scrum to a multi-team development orga-
nization is not as easy. Scrum of Scrums and backlog
preparation for many teams can be combined by prod-
uct teams as outlined above. Looking at all known pa-
rameters of agile project management at SAP we tend
to say that not much more than 130 development em-
ployees may be organized in that fashion. This num-
ber sums up developers in 7 teams (max. 70 people),
the product team (max. 16), development infrastruc-
ture responsibles (about 10), quality assurance and
testers (about 25), general management (about 10).

We believe that a three-level hierarchy of teams
to manage requirements for product backlog gener-
ation makes the flow of information slow enough
to lose the feeling of agility. Currently the high
complexity of SAP’s products which is reflected
in the organizational structure of SAP’s develop-
ment areas makes it impossible to drop one hier-
archy level of project management. This observa-
tion has triggered a discussion about a more rigorous
breakup of SAP’s product lines into separate com-
ponents to ensure that no product component needs
more resources than the 130 people as calculated
above.

A significant budget of time and money for ed-
ucation is mandatory when switching to Scrum. We
observed some effects of reduced training efforts after
a few months: Teams which worked overtime instead
of reducing their workload, Scrum masters who did
not feel empowered to communicate problems, prod-
uct owners who prepared unfeasible product backlogs
were some of the consequences found. As Scrum may
require a dramatic change in attitudes towards work,
management, leisure time, controlling, and reporting
the mentorship model applied at SAP is a powerful
means to overcome early resistance and issues, col-
lecting information about the teams’ Scrum adoption,
and correcting mistakes. As different development ar-
eas at SAP applied the mentorship model with differ-

INTRODUCING AGILE SOFTWARE DEVELOPMENT AT SAP AG - Change Procedures and Observations in a Global
Software Company

137



ent rigor we could see significant differences in Scrum
adoption and acceptance among the areas.

To learn about the effects of lean development as
implemented at SAP, the company chose to partici-
pate in the DIWA-IT study about health protection in
the IT industry sponsored by the German Bundesmin-
isterium fr Bildung und Forschung and the European
Union. An ongoing research project is scheduled to
examine long-term effects.

We expect that after each product release the
maintenance effort will increase for a couple of
years when a new product gets widely adopted by
customers. As discussed in a recent case study this
maintenance effort requires additional considerations
when creating the product backlog (Vlaanderen et al.,
2009). We consider the “competition” between new-
product development and old-product maintenance
a challenge to the long-term acceptance of Scrum
at SAP. To counterbalance this effect organizational
measures might be advisable.

Introducing lean development is a learning pro-
cess which brings many problem areas to light. Many
observations made at SAP would not have been made
in the old environment. It is still too early to assess the
benefits of the ongoing change in completeness, but
the transparency of the development processes and
the broad acceptance of agile methods gained make
the change a worthwile effort. In addition to Scrum
SAP is in the process of applying more and more of
the developer-centered methods of Extreme Program-
ming, e. g. test-driven development, pair program-
ming, project metaphor, early code integration.

Looking back at the waterfall model that SAP
used for about 10 years, the authors found that the
biggest disadvantage of that model is not that it makes
it impossible to correct errors at a later stage, but the
strong impact the model has on organization and com-
munication. The waterfall model suppresses commu-
nication along its path. Experts for one phase only
communicate with experts for other phases through
highly formalized documents and status data. Infor-
mal communication is regarded as undermining the
model’s simplicity. Unfortunately this attitude de-
stroys the only remaining risk mitigation strategy left:
communication.

ACKNOWLEDGEMENTS

The change described in this paper could not be car-
ried out without a solid fundament of determined col-
leagues willing to accept delay and hardship while
moving forward. In particular we wish to name
Martin Fassunge, Alexander Gerber, Bernhard Grne,

Christiane Kuntz-Mayr, Christian Schmidkonz, and
Jrgen Staader whose contributions were outstanding.
We also would like to thank Jrgen Mller of the Hasso
Plattner Institute for his support to run the Scrum scal-
ing experiments.

REFERENCES

Ambler, S. W. (2009). Scaling agile software development
through lean governance. InSDG ’09: Proceedings
of the 2009 ICSE Workshop on Software Development
Governance, pages 1–2, Washington, DC, USA. IEEE
Computer Society.

Eckstein, J. and Josuttis, N. (2004).Agile Softwareentwick-
lung im Großen: Ein Eintauchen in die Untiefen er-
folgreicher Projekte. dpunkt, Heidelberg, 1st edition.

Keller, F. and Wendt, S. (2003). FMC: An approach towards
architecture-centric system development. InECBS,
pages 173–182. IEEE Computer Society.

Knöpfel, A., Gröne, B., and Tabeling, P. (2006).Funda-
mental Modeling Concepts: Effective Communication
of IT Systems. John Wiley & Sons, Chichester, UK.

Kowark, T., Müller, J., Müller, S., and Zeier, A. (2010).
An educational testbed for large-scale agile software
development processes.to be published.

Leffingwell, D. (2007). Scaling Software Agility: Best
Practices for Large Enterprises (The Agile Software
Development Series). Addison-Wesley Professional,
Boston, MA.

Poppendieck, M. and Poppendieck, T. (2005). Introduc-
tion to lean software development. In Baumeister, H.,
Marchesi, M., and Holcombe, M., editors,XP, volume
3556 ofLecture Notes in Computer Science, page 280.
Springer.

Poppendieck, M. and Poppendieck, T. (2008).Lean soft-
ware development: An agile toolkit. The agile soft-
ware development series. Addison-Wesley, Boston,
MA.

Schwaber, K. (2004). Agile project management with
Scrum. Microsoft Press, Redmond, WA.

Schwaber, K. (2007).The enterprise and Scrum. Microsoft
Press, Redmond, WA.

Sutherland, J. (2005). Future of scrum: Parallel pipelining
of sprints in complex projects. InADC ’05: Proceed-
ings of the Agile Development Conference, pages 90–
102, Washington, DC, USA. IEEE Computer Society.

Takeuchi, H. and Nonaka, I. (1986). The new new prod-
uct development game.Harvard Business Review,
64:137–146.

Vlaanderen, K., Brinkkemper, S., Jansen, S., and Jaspers,
E. (2009). The agile requirements refinery: Applying
Scrum principles to software product management.
In 3rd International Workshop on Software Product
Management, Atlanta, Georgia, USA, September 1,
2009.

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

138


