
A DECONSTRUCTIVIST METHODOLOGY FOR
SOFTWARE ENGINEERING

Doris Allhutter
Institute of Technology Assessment, Austrian Academy of Sciences, Strohgasse 45/5, Vienna, Austria

Keywords: Co-construction, Collective work practices, Theories-in-use, Deconstruction, Situated learning, Trading
zones.

Abstract: Grounded within qualitative research on software engineering and science and technology studies, the paper
introduces a deconstructivist methodology for software engineering. Software engineering is a socio-
technological process of negotiation embedded in organizational and societal contexts. Thus, social
dimensions such as hidden assumptions of use contexts (e.g. based on diversity aspects such as age, gender,
class or cultural diversity) implicitly inform development practices. To foster reflective competences in this
area, the paper suggests using deconstruction as a tool to disclose collective processes of meaning
construction. For this purpose, the idea of introducing a deconstructive process to software engineering is
linked to approaches of practice-based, situated and context-sensitive learning.

1 INTRODUCTION

This paper is conceptual work in progress and deals
with the question of how in/formal hierarchies and
discursive hegemonies reproduced in everyday work
practices affect software design processes. It
presents a discourse-theoretical, deconstructivist
approach to software engineering that sustainably
implements practice-based learning processes in
development teams. Theoretically based in ap-
proaches to the co-construction of society and tech-
nology, it connects qualitative software engineering
research and process improvement with science and
technology studies (STS), critical technical practice
and organisational learning.

Research on the co-construction of society and
technology describes software engineering as a
socio-technological process: system specifications
and their implementation are co-determined by the
organisational setting in which they are developed
(such as organisational structures, engineering cul-
tures, or work practices) (e.g. Rip, et al., 1995);
design decisions—although mediated by methods
and tools of software engineering—represent the
outcome of processes of negotiation and meaning
construction; in this sense everyday knowledge and
social discourses become operative in the develop-
ment process as hidden assumptions and belief
systems. For example, Akrich (1995) suggests that

engineers anticipate the interests, skills, and
behaviour of future users. They objectify these user
representations in the developed artefacts and
thereby attribute specific competencies, actions and
responsibilities to users and artefacts.

Scholars in STS have highly contributed to
strengthen the understanding of how societal dis-
courses and everyday work practices guide design
projects and pre-structure use contexts. They have
argued with the inscription of societal discourses to
software artefacts, to key concepts of computer
science as well as to processes and methods of soft-
ware engineering (e.g. McKenzie & Wajcman, 1999;
Oudshoorn & Pinch, 2003; Suchman, 2007). How-
ever, the socio-political orientation of STS has only
recently raised a growing demand for actual inter-
vention into technological development processes.

Vice versa—in order to account for a conception
of software engineering as socio-technological
activity—scholars of applied informatics advocate
the need for analytical approaches integrating socio-
scientific, qualitative methods. Whereas empirical
research in computer supported cooperative work
(CSCW) has a tradition of using qualitative ap-
proaches, also scholars in software engineering (SE)
and information systems (IS) have begun to use
qualitative methods for analysing and reflecting de-
velopment practices (see Dittrich, et al., 2009;
Trauth, 2001). As Dittrich, et al. (2007, p.355) have

207
Allhutter D. (2010).
A DECONSTRUCTIVIST METHODOLOGY FOR SOFTWARE ENGINEERING.
In Proceedings of the Fifth International Conference on Evaluation of Novel Approaches to Software Engineering, pages 207-213
DOI: 10.5220/0003001502070213
Copyright c© SciTePress

summarized, SE researchers investigating the
influence of deploying specific methods on the
outcome of an engineering process use qualitative
methods merely for generating hypotheses, which
then serve to identify quantifiable relationships
between methods and outcome. As an exception, the
sub-field of requirements engineering is more
attentive to qualitative methods. The intervention-
oriented IS discourse seeks to initiate process
improvement and quantitatively and qualitatively to
evaluate the implemented measures. Only a few
approaches combine qualitative research with the
improvement of development methods and processes
(e.g. Dittrich, et al., 2008).

Critical technical practice suggests methodologi-
cal approaches developed to integrate social and
critical theory into technological design. Design
approaches, such as participatory design, value-
sensitive and reflective approaches combine analyti-
cal and interventionist objectives (e.g. Mathiassen,
1998; Sengers, et al., 2005). Especially the latter
approaches integrate a reflection of work practices
as an essential part of systems development. As
regards the reflection of societal questions, ‘value-
sensitive design’, introduced by Friedman, et al.
(2006), suggests putting values such as human
justice and welfare in the centre.

Whereas the mentioned value-related approaches
aim at modifying the vision of technical actors to
consider diverging interest and predefined societal
values, I argue that it is crucial to focus on reflecting
cooperative work practices that (re-)constitute social
meaning and thus hegemonic values and societal
structures. This means, that engineering teams need
to consider the hidden normativity of their develop-
ment practices and ad-hoc decisions and reflect on
how these co-shape engineering processes. Thereby,
the focus shifts from balancing diverging interests to
negotiating who (in/formal hierarchies) and what
(discursive hegemonies) is given normative power
on the basis of which values. In pursuing this
objective, I focus on diversity-related questions with
regard to user-centred design. Whereas these have
been an important issue in STS, applied research has
not yet to a large extend taken into account the
ongoing discursive construction of social categories
of diversity (such as class, age, cultural diversity,
gender). A discourse-theoretical approach considers
software engineering as a situated, social process of
negotiation requiring the mediation of different
viewpoints and approaches. In this spirit, design
decisions are always based on commonly held
beliefs and assumptions on societal contexts; these

become manifest in theories-in-use, i.e. discourses
implicitly guiding work practices.

The presented methodology integrates ap-
proaches to practice-based, situated and context-
sensitive learning. Contrary to well-known knowl-
edge management concepts which aim at the
provision and use of explicit and implicit expert
knowledge (e.g. Nonaka & Takeuchi, 1995) these
approaches focus on theories-in-use and their un-
derlying belief systems. The paper is organized as
follows: Section 2 provides the theoretical and
methodological basis; section 3 introduces the key
concepts of the deconstructivist approach, which is
outlined in section 4; the paper closes with an out-
look to future work.

2 CO-CONSTRUCTION AND
DECONSTRUCTIVISM IN SE

The notion of software engineering as a social,
multidimensional process of negotiation emphasises
the role of implicit everyday theories and societal
discourses in engineering processes. Although the
mentioned research fields, in one way or another
frequently refer to the notion of co-construction or
'social dimensions' of software engineering, it still
remains unclear how to grasp societal aspects in
engineering practice and which to consider. Soft-
ware development requires communication across
professional boundaries and often also cooperation
across decentred working environments. This indi-
cates that diversity relations—within the engineering
team and in its discourses—are crucial success
factors. Whereas, as a consequence, diversity
management has gained in importance in multi-
national enterprises, the label 'diversity' often
remains obscured with regard to users or activates
ideas about, for example, culture specific or gender
specific requirements, attributing special (and often
stereotypical) needs and preferences to particular
user groups. Diversity-related discourses are a
central issue in researching how socio-technological
practices emerge from cultural processes of negotia-
tion and meaning construction. However, design
practice, and interestingly even user-centred design,
does hardly make use of diversity approaches. I
suggest that building reflective competences and
organising learning within development projects in
this respect has a twofold impact: Firstly, taking
account of the diversity of practitioners in terms of
their different educational backgrounds and pro-
fessional self-conceptions enables them to tap the
full potential available within the team, whereas

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

208

commonly hegemonic perspectives are privileged
over alternative ways of knowing. Secondly, learn-
ing how user representations and linked societal
discourses silently guide specification and imple-
mentation practices allows to overcome the pitfalls
of stereotyping and thereby to gain capacities for
action that are commonly narrowed down by hege-
monic views.

The research objective of investigating how hid-
den theories-in-use and organisational discourses
translate into collective meaning constructions
within design processes clearly poses a methodo-
logical problem. Qualitative SE researchers have
suggested a variety of approaches such as eth-
nomethodology (Rönkkö, 2007), ethnographically
informed case studies (Robinson, et al., 2007), and
grounded theory (Coleman & O’Connor, 2007).
They predominantly resort to methods like inter-
views, focus group discussions, participatory obser-
vation, and analysis of communication and design
documents. In their study on the lack of learning in
software engineering teams McAvoy and Butler
(2007) discuss the problem of how to research
hidden phenomena that even those involved are
reluctant to approve of or even unaware of due to
cognitive discrepancies. The authors suggest that
participatory observation is an appropriate method
for disclosing hidden or ignored differences between
‘espoused theories’ and theories-in-use. Whereas
participatory observation is adequate for researching
established 'ways of doing', it does not reveal the
underlying processes of attributing meaning to
them—and thus does not enable a team to reflect on
their adequateness. Therefore, I suggest that for re-
searching the social constructedness of, for example,
design decisions and their underlying belief systems
and sense-making, a deconstructivist approach is
most abundant. Based in discourse theory, decon-
structivist methodologies focus on the reproduction
of power by tracing the performativity of discourses.
As Foucault (1971) and Butler (1990) have illus-
trated, powerful societal discourses, non-discursive
practices and the objectification of these discourses
and practices knit together and thereby (re-)produce
societal hegemonies and power relations. Decon-
struction questions the normativity of discourses and
practices by revealing the constructedness of seem-
ingly ‘natural’ sense-making; it aims at denaturaliz-
ing self-evident causalities which implicitly inform
meaning constructions.

As Dittrich, et al. (2008, p.236) explain, estab-
lished 'ways of doing' are produced and re-produced
through collective and mutually intelligible prac-
tices. They are understandable as meaningful be-

haviour with respect to a common frame of refer-
ence and provide a base for ad hoc reactions to situ-
ational contingencies. Reflecting work practices and
their base of implicit knowledge implies disclosing
the pre-structuring mechanism of in/formal organ-
isational hierarchies and hegemonic discourses (see
Allhutter & Hofmann 2010). Such kind of investi-
gative reflexivity demands maintaining a critical
distance to one’s own practices of constructing
meaning. For this purpose, Allhutter and Hanappi-
Egger (2005) suggest the method of 'mind scripting':
As elaborated in Allhutter (in review), this analytical
method is applied to trace the interconnectedness of
the engineers' professional know-how with practical
ways of problem-solving that are co-shaped by
societal implications and discourses. It enquires how
developers appropriate social structures, everyday
experiences and educational and professional back-
grounds and how these collective subjectivation
processes translate into inherent professional self-
conceptions and work practices that eventually
materialise in software artefacts. At the same time,
'mind scripting' is a practicable tool for a team to
deconstruct and reflect on its established practices.
Thereby, hidden belief systems that reproduce
dominant viewpoints are disclosed and underlying
values are challenged.

3 SITUATED (UN) LEARNING

Argyris (2002) has described different levels of
learning: Single-loop learning asks whether we are
doing things right; double-loop learning includes
questioning the underlying assumed causality and
addresses the question of whether we are doing the
right things. Triple-loop learning, a concept intro-
duced by Flood and Romm (1996) adds a third loop
that asks ‘Is rightness buttressed by mightiness and
vice versa?’ and thus questions underlying value
systems. The repeated questioning of learning
routines is an important prerequisite for sustainable
learning. Integrating all three levels of learning
should initiate power-critical and change-oriented
reflection processes in organisations. The notion of
‘mightiness’ may refer to formal and informal
organisational hierarchies and, as Allhutter and
Hofmann (2010) add, to hegemonic discourses or
practices. In systems development providing func-
tionality and the adequateness of the specification
(double-loop learning) are well-established activi-
ties; the third loop, i.e. questioning implicit assump-
tions and value systems, is not yet included but is

A DECONSTRUCTIVIST METHODOLOGY FOR SOFTWARE ENGINEERING

209

important to prevent the implementation of very
specific perspectives (Hanappi-Egger, 2006).

Making use of the concept of triple-loop learning
in the context of a deconstructivist approach to soft-
ware engineering also puts forward the need to re-
flect learning processes in terms of structures and
discursive patterns of engineering teams. What we
are learning from experiences and latently guiding
discourses is deeply inscribed in embodied everyday
practices and our cultural beliefs and value systems.
At the same time, this means that learning as a social
practice strongly relies on processes of unlearning of
implicit sense-making and of consciously re-
negotiating meaning (see Hedberg, 1981). As
mentioned, theories-in-use may unconsciously rely
on societal hegemonies and power relations to
exclude alternative ways of knowing or to incite
stereotypical assumptions. As regards diversity, the
triple-loop learning perspective leads to the
following questions: Which social assumptions from
specific societal discourses do developers access in
the design process? Are these assumptions perceived
as right because they are legitimated by in/formal
hierarchies and by hegemonic value-systems?

An extremely valuable approach in this respect
has been provided by Lave and Wenger (1991)
whose concept of ‘situated learning’ uses triple-loop
learning to try and guide cooperation across
professional boundaries. The authors conceptualise
learning as a social process of participation in com-
munities of practice. Communities of practice are
groups of people who share a domain of interest.
The members of such communities create relation-
ships in order to share information, resources and
experiences. Communities of practice are learning
networks or thematic groups that are not limited by
formal structures or organizational boundaries. They
are important for knowledge creation in and between
organizations and for the emergence of learning
opportunities that are linked to performance. By
focussing on such communities, the authors con-
ceptualise learning as a process informed by societal
structures and identity constructions that help to
identify power structures as an essential factor for
learning. Also from this perspective, diversity
relations—within the organization itself and in its
discourses—can be highlighted as crucial elements
for learning processes and structures, which can—
once identified—be negotiated. Lave and Wenger do
not only focus on the structures and processes of
learning in organizations but on its 'situatedness' and
therefore on power structures which inform learning
on the personal as well as the discursive level.
Referring to their work, Bresnen, et al. (2005, p.39)

found that networks of practice create their own
logic of action. They can support or resist changes of
routines, norms and values, and therefore, power
structures. Consequently, the condition of commu-
nities of practice and their repertoire of actions must
be considered, when it comes to the negotiation of
power structures related to—for example diversity
relations.

In order to highlight the connection between
situated learning and power structures, Allhutter and
Hofmann (2010) link the concept of communities of
practice to the concept of ‘trading zones’ developed
by Kellogg, et al. (2006). ‘Trading zones’ can be
seen as real or virtual spaces of negotiation and
learning or agreed procedures of exchange, which
are more or less intentionally created by organiza-
tions and communities of practices. Such ‘trading
zones’ are determined by power structures and must
be identified when learning should be fostered in the
cross-disciplinary teams commonly used in software
engineering. The concept of ‘trading zones’ high-
lights how teams and communities of practice use
certain spaces to coordinate actions and, also, to
exchange and negotiate ideas, terms, norms,
meanings, values and performance criteria (Kellogg
et al., 2006, p.39). Another useful concept is the
concept of ‘boundary objects’ introduced by Star
and Griesemer (1989). It explains how e.g. commu-
nities of practice use objects, symbols or language
for their cooperative activities. According to Star
and Griesemer (1989, p.46), ‘boundary objects’ are
objects that are both plastic enough to adapt to local
needs and constraints of the several parties employ-
ing them, yet robust enough to maintain a common
identity across sites. They are weakly structured in
common use, and become strongly structured in
individual-site use. Such objects may be quality
standards, classification systems, databases, shared
vocabulary, etc. Communities of practice or teams
share various ‘boundary objects’ but their members
may have different definitions of these objects.

In conducting collective work, people coming
from different social worlds frequently have the ex-
perience of addressing an object that has a different
meaning for each of them. Each social world has
partial jurisdiction over the resources represented by
that object, and mismatches caused by the overlap
become problems of negotiation (Star & Griesemer,
1989, p.412). Both—‘trading zones’ and ‘boundary
objects’—are embedded in and informed by societal
power structures and hegemonies.

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

210

4 ‘DECONSTRUCTIVE DESIGN’

This section outlines how the mentioned concepts
can be integrated in a software engineering process.
A design process is situated within specific contexts
and (temporarily) affiliated team members bring
different viewpoints to their common goal. Such
communities of practice develop agency within a
particular societal, economic and organisational
framework. Furthermore, their socio-technological
work practices are context-specific in that teams
apply their established ‘ways of doing’ in particular
projects. Their partly shared and partly diverging
perspectives frame their boundary objects, i.e. con-
cepts guiding the engineering process such as soft-
ware quality standards.

Thus, as a first step the team identifies a bound-
ary object crucial to its actual design process or
latently present in its work practices. The second
step is to investigate the different representations of
the boundary object that team members have con-
structed for themselves and as a collective (e.g.
different conceptions of quality). The different
perspectives reflect structural positions of team
members and socio-technologically constructed
meanings (e.g. of intangible quality criteria), which
implicitly inform work practices. Boundary objects
implicitly serve as communication mechanisms that
mostly are unreflected vehicles for commonly held
beliefs. In heterogeneous communities of practice,
they are essential for mutual knowledge creation and
knowledge transfer, thus it is useful to investigate
the different representations of the identified
boundary object that team members have construct-
ed for themselves. While diverging viewpoints may
hinder common understanding and reaching goals,
collectively shared constructions may also silence
alternative ways of knowing. Thus, reflecting on
individually and collectively shaped constructions of
meaning will open negotiations and widen scopes of
action. In order to disclose established practices and
theories-in-use, 'mind scripting' is used to decon-
struct collective processes of constructing meaning
around the boundary object (e.g. anticipated quality
requirements of particular user groups). Since
common practices need to be revealed in a process
of negotiating meaning within the group of de-
signers, ‘mind scripting’ is organised as a collective
procedure. It enables a team to research its
cooperative work practices which are informed by
their unconscious constructions of the boundary
object. Deconstruction aims at temporarily disclos-
ing an outsider's perspective to the team members
and at enquiring the sense-making that permanently

re-establishes what has implicitly been taken for
granted. Deconstructing a boundary object crucial to
situated specification and implementation practices,
and investigating how societal discourses implicitly
inform seemingly technology-centred concepts and
decisions, enables the explicit negotiation of facets
that are otherwise silenced. Furthermore, this proc-
ess helps reveal and question structures, beliefs and
value systems that reproduce dominant viewpoints.
Basically, ‘mind scripting’ works with written texts
representing memories that become operative in the
actual design process. These texts are understood as
narratives that developers use to give meaning to
their experiences and practices. The collective
deconstruction of the texts and the comparison of
their sense-making processes disclose collectively
shared meaning constructions.

In a third step, the meaning of the boundary
object and its underlying theories-in-use are re-
negotiated. After the ‘mind scripting’ engineers have
revealed the consequences of unconsciously nar-
rowing down the boundary object fundamental to
their work practices. The opening of ‘trading
zones’—that means the establishment and explicit
negotiation of ‘boundary objects’—offers a way to
integrate heterogeneous viewpoints and implicitly
shared perspectives. This procedure creates space for
negotiation and renders negotiable formerly uncon-
scious issues. Initially blurred ‘boundary objects’ to
which team members have imputed their views are
made explicit; their meaning is re-negotiated and
more clearly specified with regard to their value im-
plications. While team members or subgroups of the
team still approach the ‘boundary object’ from their
specific perspective, their understanding of their
own conceptions and of those of other members are
both broadened and specified. Eventually, for all
team members, the negotiated ‘boundary object’ still
carries diverse but transparent meanings. In this
way, they become a useful resource that enables
better communication and diversity within teams.

5 CONCLUSIONS

A deconstructivist methodology to software en-
gineering aims at reflecting collective work practices
which unconsciously reproduce hegemonic dis-
courses and unquestioned ‘ways of doing’. It pro-
vides an analytic and interventionist approach to
disclose the societal dimensions inherent to devel-
opment practices. ‘Deconstructive design’ offers a
procedure for development teams to open ‘trading
zones’, i.e. to establish a space for negotiation and to

A DECONSTRUCTIVIST METHODOLOGY FOR SOFTWARE ENGINEERING

211

identify layers of ‘boundary objects’ that have been
silenced and are worth negotiating consciously.
Whereas ‘mind scripting’ has been used in two em-
pirical case studies with commercial development
teams, more empirical and practice-based research
needs to be done to elaborate a practicable method-
supported process implementing a sustainable
learning routine. Whereas innovation in software
engineering practice commonly tends to be nar-
rowed down by unconsciously neglecting the
implicit normativity of unreflected work practices,
such a process shall widen scopes of action and
incite cooperative process improvement. Analytical
and socio-politically oriented STS research, as well
as the value-related dimensions of critical technical
practice add to SE research by connecting crucial
societal aspects with process-oriented questions of
practice-based feasibility and applicable methods.

REFERENCES

Akrich, M., 1995. User Representations: Practices, Meth-
ods and Sociology. In: A. Rip, T. J. Misa & J. Schot
eds., 1995. Managing Technology in Society. The
Approach of Constructive Technology Assessment.
London, New York: Pinter Publishers, pp.167-84.

Argyris, C., 2002. Double loop learning, teaching, and
research. Academy of Management. Learning and
Education, 2(2), pp.206-18.

Allhutter, D., in review. Mind Scripting. A deconstructive
method in software development. Submitted to
Science, Technology and Human Values.

Allhutter, D. & Hanappi-Egger, E., 2005. Making the
Invisible Visible: Mind-Scripting as Method of De-
constructing (IT-)System Design. In Proceedings and
CD-ROM of ICWES13, KWSE.

Allhutter, D. & Hofmann, R., 2010. Deconstructive
Design as an Approach to opening Trading Zones. In:
J. Vallverdú ed., Thinking Machines and the
Philosophy of Computer Science: Concepts and
Principles. Hershey, PA: IGI Global, in print.

Bresnen, M., Goussevskaia, A. & Swan, J., 2005.
Organizational Routines, Situated Learning and
Processes of Change in Project-based Organizations.
Project Management Journal, 3(3), pp.27-41.

Butler, J., 1990. Gender trouble. Feminism and
Subversion of Identity. New York, London: Routledge.

Coleman, G. & O'Connor, R., 2007. Using grounded
theory to understand software process improvement: A
study of Irish software product companies.
Information and Software Technology, 49(6), pp.654-
67.

Dittrich, Y., John, M., Singer, J. & Tessem, B., 2007.
Editorial for the special issue on Qualitative Software
Engineering Research. Information and Software
Technology, 49(6), pp.531-39.

Dittrich, Y., et al., 2008. Cooperative method develop-
ment. Combining qualitative empirical research with
method, technique and process improvement.
Empirical Software Engineering, 13(3), pp.231-60.

Dittrich, Y., Randall, D. W. & Singer, J., 2009. Software
Engineering as Cooperative Work. Editorial.
Computer Supported Cooperative Work, 18(5/6),
pp.393-99.

Flood, R. & Romm, N., 1996. Diversity Management.
Triple Loop Learning. Chichester: J. Wiley.

Foucault, M., 1971. L'archéologie du savoir. Paris:
Gallimard.

Friedman, B., Kahn, P. H. & Borning, A., 2006. Value
Sensitive Design and information systems. In: P.
Zhang & D. Galletta eds., Human-computer
interaction in management information systems:
Foundation. New York: AMIS, pp.348-72.

Hanappi-Egger, E., 2006. Gender and Software
Engineering. In: E.M. Trauth ed., Encyclopaedia of
Gender and Information Technology. Hershey,
London: Idea Group Publishing. pp.453-59.

Hedberg, B., 1981. How organizations learn and unlearn.
In: P.C. Nystrom & W.H. Starbuck eds., Handbook of
Organizational Design, Vol. 1. New York: Oxford
University Press, pp.3-27.

Kellogg, K. C., Orlikowski, W. J. & Yates, J., 2006. Life
in the Trading Zone: Structuring Coordination Across
Boundaries in Postbureaucratic Organizations.
Organization Science, 17(1), pp.22-44.

Lave, J. & Wenger, E., 1991. Situated Learning.
Legitimate Peripheral Participation. Cambridge,
U.K.: Cambridge University Press.

McAvoy, J. & Butler, T., 2007. The impact of the Abilene
Paradox on double-loop learning in an agile team.
Information and Software Technology, 49(6), pp.552-
63.

Mathiassen, L., 1998. Reflective Systems Development.
Aalborg: Institute for Electronic Systems, Department
of Computer Science. Available at:
http://www.mathiassen.eci.gsu.edu/rsd.html [Accessed
5 August 2009].

McKenzie, D. & Wajcman, J., 1999. The Social Shaping
of Technology. 2nd ed. Buckingham: Open University
press.

Nonaka, I. & Takeuchi, H., 1995. The Knowledge-
Creating Company. How Japanese Companies Create
the Dynamics of Innovation. New York: Oxford
University Press.

Oudshoorn, N. & Pinch, T. eds., 2003. How Users Matter:
The Co-Construction of Users and Technology.
Massachusetts: MIT Press.

Rip, A., Misa T. & Schot, J. eds., 1995. Managing
Technology in Society. The Approach of Constructive
Technology Assessment. London, New York: Pinter.

Robinson, H., Segal, J. & Sharp, H., 2007. Ethnographi-
cally-informed empirical studies of software practice.
Information and Software Technology, 49(6), pp.540-
51.

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

212

Rönkkö, K., 2007. Interpretation, interaction and reality
construction in software engineering: An explanatory
model. Information and Software Technology, 49(6),
pp.682-93.

Sengers, P., Boehner, K., David, S. & Kaye, J., 2005.
Reflective Design. In Proceedings of the 4th Decennial
Conference on Critical Computing: Between Sense
and Sensibility. ACM Press, pp.49-58.

Star, S. L. & Griesemer, J. R,. 1989. Institutional Ecology,
'Translations' and Boundary Objects: Amateurs and
Professionals in Berkeley's Museum of Vertebrate
Zoology, 1907-39. Social Studies of Science, 19(4),
pp.387–420.

Suchman, L., 2007. Human-Machine Reconfigurations.
Plans and Situated Action. 2nd ed. Cambridge:
Cambridge University Press.

Trauth, E. M., 2001. Qualitative Research in IS: Issues
and Trends. Hershey: IGI Global.

A DECONSTRUCTIVIST METHODOLOGY FOR SOFTWARE ENGINEERING

213

