
TOWARDS THE AUTOMATIC IDENTIFICATION OF VIOLATIONS
TO THE NORMALIZED SYSTEMS DESIGN THEOREMS

Kris Ven, David Bellens, Philip Huysmans and Dieter Van Nuffel
University of Antwerp, Prinsstraat 13, 2000 Antwerp, Belgium

Keywords: Normalized systems, Software architecture, Modularity, Quality.

Abstract: Contemporary organizations are operating in increasingly volatile environments and must be able to respond
quickly to their environment. Given the importance of information technology within organizations, the evolv-
ability of information systems will to a large degree determine how quickly organizations are able to react to
changes in their environment. Unfortunately, current information systems struggle to provide the required
levels of evolvability. Recently, the Normalized Systems approach has been proposed which aims to address
this issue. The Normalized Systems approach is based on the systems theoretic concept of stability to ensure
the evolvability of information systems. To this end, the Normalized Systems approach proposes four design
theorems that act as constraints on the modular structure of software. In this paper, we explore the feasibility
of building a tool that is able to automatically identify manifestations of violations to these Normalized Sys-
tems design theorems in the source code of information systems. This would help organizations in identifying
limitations to the evolvability of their information systems. We describe how a prototype of such tool was
developed, and illustrate how it can help to analyze the source code of an existing application.

1 INTRODUCTION

Contemporary organizations are operating in increas-
ingly volatile environments. Hence, organizations
must be able to respond quickly to their environment
in order to gain a competitive advantage. Since or-
ganizations are becoming increasingly dependent on
information technology (IT) to support their opera-
tions, the evolvability of the IT infrastructure will de-
termine to a large degree how quickly organizations
are able to react to changes in their environment. Un-
fortunately, current information systems struggle to
provide the requested levels of evolvability. One of
the challenges that contributes to this issue is the ex-
istence of Lehman’s Law of Increasing Complexity
which states: “As an evolving program is continu-
ally changed, its complexity, reflecting deteriorating
structure, increases unless work is done to maintain
or reduce it.” (Lehman, 1980, p. 1068). This law
implies that over time, the structure of software will
become more complex, thereby requiring increasing
effort to add new functionality to an existing system.

To address this issue, the Normalized Systems ap-
proach starts from the systems theoretic concept of
stability to ensure the evolvability of information sys-
tems (Mannaert and Verelst, 2009). It argues that the

main obstacle to evolvability is the existence of so-
called combinatorial effects. The Normalized Sys-
tems approach defines clear design theorems that im-
pose constraints on the modular structure of software
and that eliminate combinatorial effects. Adhering to
these theorems therefore results in information sys-
tems that exhibit stability and that defy Lehman’s law
(Mannaert and Verelst, 2009).

Organizations currently have a large number of in-
house developed information systems in use. These
information systems are likely to contain combina-
torial effects that limit their evolvability. Organiza-
tions will therefore be looking towards ways to iden-
tify these combinatorial effects in their code base, and
to devise solutions to improve the evolvability of their
information systems. Manually inspecting the source
code may be a possibility, but is likely to be a very
time-consuming task. Automatic identification there-
fore seems to be a very interesting alternative. In this
paper, we explore the feasibility of building a tool
to automatically identify manifestations of violations
to the Normalized Systems design theorems. We de-
scribe how a prototype of such a tool was developed,
and illustrate how it can help to analyze the source
code of an existing application.

23
Ven K., Bellens D., Huysmans P. and Van Nuffel D. (2010).
TOWARDS THE AUTOMATIC IDENTIFICATION OF VIOLATIONS TO THE NORMALIZED SYSTEMS DESIGN THEOREMS.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 23-28
DOI: 10.5220/0003005000230028
Copyright c© SciTePress



2 NORMALIZED SYSTEMS

The basic assumption of the Normalized Systems ap-
proach is that information systems should be able to
evolve over time, and should therefore be designed
to accommodate change. This implies that the soft-
ware architecture should not only satisfy the cur-
rent requirements, but should also support future re-
quirements. It is a well-known problem in software
engineering that the structure of software degrades
and becomes more complex over time as changes
are applied to it. This problem has been defined by
Manny Lehman as the Law of Increasing Complexity
(Lehman and Ramil, 2001; Lehman, 1980). The prac-
tical manifestation of this law is that the impact of any
given change to an information system will increase
over time (Belady and Lehman, 1976; Lehman, 1980;
Lehman and Ramil, 2001). This is clearly an impor-
tant concern for information systems development.

Recently, the Normalized Systems approach has
been proposed which aims to address this issue. The
Normalized Systems approach uses the systems the-
oretic concept ofstability as the basis for develop-
ing information systems (Mannaert and Verelst, 2009;
Mannaert et al., 2008). In systems theory, stability
refers to a system in which a bounded input func-
tion results in bounded output values, even ast → ∞.
When applied to information systems, this means that
applying a specific change to the information system
should always require the same effort, irrespective
of the size of the information system or the point in
time at which the change is applied. The Normalized
Systems approach further relies on theassumption of
unlimited systems evolution(Mannaert and Verelst,
2009). This means that the system becomes ever
larger in the sense that the number of modules—and
the number of dependencies between them—become
infinite or unbounded ast → ∞. This may seem an
overstated assumption, but actually, it is quite logical
as even the introduction of a single module or depen-
dency every twenty years corresponds to an infinite
amount for an infinite time period.

Information systems exhibiting stability with re-
spect to a defined set of changes are calledNormal-
ized Systems(Mannaert and Verelst, 2009). In con-
trast, when changes do require increasing effort as the
system grows,combinatorial effectsare said to occur
(Mannaert and Verelst, 2009). In order to obtain sta-
ble information systems, these combinatorial effects
should be eliminated. In order to identify and avoid
most of these combinatorial effects, a set of fourde-
sign theoremswas developed (Mannaert et al., 2008;
Mannaert and Verelst, 2009). We will now briefly
describe each of these theorems. More details are

beyond the scope of this paper and can be found in
the literature (Mannaert et al., 2008; Mannaert and
Verelst, 2009).

The first theorem,separation of concerns, re-
quires that every change driver or concern is sepa-
rated from other concerns. This theorem allows for
the isolation of the impact of each change driver. This
principle was informally described by Parnas already
in 1972 as what was later calleddesign for change
(Parnas, 1972). This theorem implies that each mod-
ule can contain only one submodular task (which
is defined as a change driver), but also that work-
flows should be separated from functional submod-
ular tasks.

The second theorem,data version transparency,
requires that data is communicated in version trans-
parent ways between components. This requires that
this data can be changed (e.g., additional data can be
sent between components), without having an impact
on the components and their interfaces. This can, for
example, be accomplished by appropriate and system-
atic use of web services instead of using binary trans-
fer of parameters. This also implies that most external
APIs cannot be used directly, since they use an enu-
meration of primitive data types in their interface.

The third theorem,action version transparency,
requires that a component can be upgraded without
impacting the calling components. This can be ac-
complished by appropriate and systematic use of, for
example, polymorphism or a facade pattern.

The fourth theorem,separation of states, requires
that actions or steps in a workflow are separated
from each other in time by keeping state after ev-
ery action or step. This suggests an asynchronous
and stateful way of calling other components. Syn-
chronous calls—resulting in pipelines of objects call-
ing other objects which are typical for object-oriented
development—result in combinatorial effects.

3 TOOL DEVELOPMENT

In order to automatically identify manifestations of
violations to the Normalized Systems design theo-
rems, a tool prototype was developed. This tool iden-
tifies manifestations of violations to the Normalized
Systems design theorems at the API level. The tool
was developed in an iterative way using the design
science methodology (Peffers et al., 2007). In this
paper, we are primarily concerned withbuilding and
evaluatinganinstantiationartifact (March and Smith,
1995).

Since each programming language has its own
constructs and syntax, different violations are possi-

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

24



ble in different programming languages. We decided
to focus on the Java programming language since it is
a very relevant language within an enterprise context
(cf., Java EE). The tool consists of two main compo-
nents,NSTVdoclet andNSTVdetect, that have to be
run in succession.

The NSTVdoclet component is written as a cus-
tom doclet tojavadoc. Thejavadoc tool is part of
the Java 2 SDK. By default, it generates documenta-
tion in HTML format of the API of a Java applica-
tion. Thejavadoc tool is, however, easy to extend
by creating custom doclets that provide output in an
alternate format. It was decided to develop a custom
doclet forjavadoc that would write selected informa-
tion obtained byjavadoc to a temporary database.
This method has three main advantages. First, it al-
lows us to reuse the source code parsing algorithm of
javadoc. Second, most Java applications ship with
an ant build file that allows to automatically gener-
ate the API documentation for the application using
javadoc. In that case, it is quite easy to specify in
the build file that our customjavadoc doclet must be
used. Third, it is more efficient to parse the source
code only once, and have theNSTVdetect tool make
use of the already parsed information that is available
in the temporary database. Since we do not require
all the information that is obtained byjavadoc, this
information is filtered and only the information re-
quired byNSTVdetect is written away in a temporary
database.

TheNSTVdetect component processes the infor-
mation in this database and analyzes it to identify
manifestations of violations to the Normalized Sys-
tems design theorems. Hence, we needed to define
which violations will be detected by this tool. To this
end, we determined how Java applications could vio-
late the Normalized Systems design theorems. In this
first iteration, we distinguish between three violations
that may occur in Java applications. Each of these vi-
olations are related to one or more of the Normalized
Systems design theorems. In fact, anN−N relation-
ship exists between the violations and the Normalized
Systems design theorems: a single design theorem
can be violated in several ways, while a single viola-
tion can refer to more than one theorem. Although the
current list of violations is not exhaustive, it includes
common violations against the Normalized Systems
design theorems and covers all four design theorems.
This list can be further expanded in the future. As
such, the current list represents a lower bound of the
violations to the Normalized Systems design theo-
rems that exist in Java applications. For each of these
violations, a separateNSTVdetect module was devel-
oped. Each module analyzes the internal representa-

tion of the source code for manifestations of a specific
violation in Java applications. We will now discuss
these violations and how they are detected by each
module in more detail.

3.1 Import Multiple Concerns Violation

A class is a basic module in the Java programming
language. Java classes can import and use functional-
ity from external technology environments and pack-
ages by using theimport instruction. This may intro-
duce dependencies on these external technologies in
an implicit way. The Normalized Systems approach
considers the use of an external technology in a class
to be a separate concern, since the external technology
can evolve differently from the background technol-
ogy environment of the class (Mannaert and Verelst,
2009). The separation of concerns design theorem re-
quires that each change driver or concern is isolated
from other concerns, so that each concern can evolve
independently. This means that each module should
contain only one change driver. The separation of
concerns theorem therefore implies that a class should
refer to at most one external technology. Otherwise,
combinatorial effects are introduced in the design.

The Import Multiple Concerns Violationmodule
determines which concerns are used by each class
based on the imported libraries (using theimport
statements in Java). Before running the analysis, the
researcher must define which concerns are present in
the application, as well as which libraries fall under
each concern. Based on this definition, it is deter-
mined how many different concerns are combined in
each class. As stated before, a class should not ad-
dress more than one concern. Depending on the ap-
plication, one concern could, for example, be the use
of the Java Swing packages for the graphical user in-
terface, while a second concern could be the use of the
Java JDBC packages to support database access. Ac-
cording to the separation of concerns theorem, both
concerns should not be combined in a single class.
This is consistent with the concept of multi-tier archi-
tectures. Another concern could be the use of another
application, such as Cocoon to provide a web-based
user interface.

3.2 Primitive in Interface Violation

This violation is related to two Normalized Systems
design theorems, namely data version transparency
and action version transparency. The use of primi-
tive data types or thejava.lang.String class in the
interface of a method constitutes a violation to both
design theorems. We illustrate this with an exam-

TOWARDS THE AUTOMATIC IDENTIFICATION OF VIOLATIONS TO THE NORMALIZED SYSTEMS DESIGN
THEOREMS

25



ple. Consider a method that allows the user to search
for a specific string in a set of files and that takes
a single parameter of the typejava.lang.String
that specifies the text to search for. Next, assume
that the developers want to extend the search func-
tionality in the future by allowing users to make use
of regular expressions. In other words, the method
should support searching for regular texts as well as
regular expressions. In that case, the interface of
the method should be extended with aboolean vari-
able to indicate whether the string is a regular ex-
pression. This will, however, affect all other meth-
ods calling the search method. The method is not
action version transparent since the interface of the
method will change, and it is not possible to upgrade
to a new version of the method without having an im-
pact on the rest of the system. The data is not data
version transparent either, since its structure does not
allow to send additional data without any additional
changes to the system. To resolve this issue, it is
better to encapsulate the search parameters in a new
classSearchConfiguration that can be extended
with additional fields as new functionality is added
to the search method. The default constructor of the
SearchConfiguration object should assign a neu-
tral value to newly added parameters (e.g., to indicate
that a search string is not a regular expression). By
calling the appropriateset method, the default set-
tings can be overwritten. Future changes would then
have no effect on methods calling the search method.
This solution would be compliant with the data and
action version transparency theorems.

The implication of both theorems is that the in-
terface of methods should not contain any primitive
data types (or objects from thejava.lang.String
class). ThePrimitive in Interface Violationmodule
inspects the interface of each non-private method and
determines whether the interface includes one or more
primitive data types or thejava.lang.String class.

3.3 Custom Exception Violation

The Java programming language provides the excep-
tion mechanism to handle errors that occur during the
execution of a method. If an exception is thrown by
a method, the calling method must process this error,
either by catching and handling the error internally, or
by throwing the exception further upward the stack.
Unfortunately, this is a violation of the separation of
states theorem which requires that state must be kept
upon return of a method call. This prohibits that a
calling method must be able to react to all possible
error states of a method. Instead, this should be han-
dled by a separate and dedicated module (Mannaert

and Verelst, 2009). Otherwise, combinatorial effects
occur in the design. Consider, for example, a method
that is called byN different methods in the applica-
tion. If the developer working on this method decides
to introduce a new error state by having the method
to throw a new exception, this has an impact on theN
methods that call this method, since they are forced by
the Java environment to catch or throw this exception.
Hence, the error handling takes place inN different
places. SinceN becomes unbounded over time, the
impact of this change will increase over time, thereby
resulting in a combinatorial effect.

The Custom Exception Violation module
therefore determines which and how many
custom exceptions are thrown by all meth-
ods. We consider the use of standard Java
exceptions (e.g., java.lang.Exception and
java.io.IOException) to be acceptable, since they
are related to the background technology being used.
Even in this case, the use of these exceptions should
be kept to a minimum. The use of custom exceptions
should be avoided, since such errors should be
handled in a stateful way.

4 CASE STUDY

In order to test this tool, we performed an investiga-
tion of JabRef.1 JabRef is a bibliography reference
manager that can be used to edit BibTeX files and is
written in Java. We focused on this application for
a number of reasons. First, it is distributed under an
open source license, thereby providing us with access
to the source code of the application. Second, the ap-
plication represents a moderate development effort. It
is not too small to be disregarded as a toy example,
and is not too large and complex to complicate the
evaluation of our tool. Third, the application is quite
popular and widely adopted. The first stable version
was released in November 2003. The latest stable ver-
sion of JabRef that was available to us was version
2.5 and consists of 487 classes, 5,988 methods, and
98,982 LOC.

4.1 Import Multiple Concerns Violation

As mentioned in Section 3.1, we must first specify
which concerns are present in a given application. For
JabRef, we identified 13 different concerns. A list of
these concerns and the packages that fall under each
concern are displayed in Table 1. All classes and
packages belonging to thenet.sf.jabref.* pack-
age were considered part of the application itself and

1http://jabref.sourceforge.net/

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

26



Table 1: List of concerns identified in JabRef.

Concern Description
Java Swing java.awt.*, javax.swing.*
Java Beans java.beans.*
Java IO java.io.*, java.nio.*
Java Net java.net.*
Java SQL java.sql.*
Java XML javax.xml.*, org.w3c.dom.*,

org.xml.sax.*
Java Plugin org.java.plugin.*
antlr antlr.*, org.antlr.*
glazedlists ca.odell.glazedlists.*
jgoodies com.jgoodies.*
ritopt gnu.dtools.ritopt.*
microba com.michaelbaranov.microba.*
jempbox org.jempbox.*
pdfbox org.pdfbox.*

Table 2: Import Multiple Concerns Violations.

Number of
Concerns Classes Percentage

0 306 31.2%
1 320 32.7%
2 228 23.3%
3 86 8.8%
4 34 3.5%
5 6 0.6%

Total: 980 100.0%

were therefore not considered a separate concern. The
results of the analysis are shown in Table 2. It shows
that 626 out of 980 (63.9%) classes include at most
one concern. Consequently, 36.1% of the classes ad-
dress two or more concerns and therefore represent
a manifestation of theImport Multiple Concerns Vi-
olation. Six classes even combine five different con-
cerns. A more in-depth analysis showed that these
classes all combined the glazedlists, Java Swing, Java
IO, and Java Net concerns with either the jgoodies or
Java Plugin concerns. Although most of these con-
cerns are related to the default Java SDK API, it does
create dependencies on different packages within the
API. This data also suggests that file system functions
(Java IO and Java Net) are combined with user in-
terface functions (Java Swing). This may neglect the
concept of multi-tiers and would therefore require at-
tention in a further screening of the source code.

4.2 Primitive in Interface Violation

The results for thePrimitive in Interfaceanalysis are
shown in Table 3. It shows that 4170 out of 5988
(69.6%) methods do not contain any primitive data

Table 3: Primitive in Interface Violations.

Methods with
All methods parameters

Violationsa n % n %
0 4170 69.6% 1592 46.7%
1 1334 22.3% 1334 39.1%
2 294 4.9% 294 8.6%
3 132 2.2% 132 3.9%
4 34 0.6% 34 1.0%
5 18 0.3% 18 0.5%
6 6 0.1% 6 0.2%

Total: 5988 100.0% 3410 100.0%
a Number of primitive andjava.lang.String

data types used in interface of each method

types or thejava.lang.String class in their inter-
face. Further analysis showed, however, that 2578
methods do not take any parameters and therefore
require no input. In the next step in our analysis,
we excluded those methods from the analysis and fo-
cused on those methods that do require input param-
eters. Results showed that 1592 out of 3410 (46.7%)
methods only accept objects in their interface. Conse-
quently, 1818 out of 3410 (53.3%) methods represent
manifestations of thePrimitive in Interface Violation.

4.3 Custom Exception Violation

As mentioned in Section 3.3, we consider the use
of standard Java exceptions to be acceptable, since
they represent the background technology being used.
This means that alljava.* andjavax.* exceptions
were ignored in this analysis. The results for the
Custom Exception Violationmodule are shown in Ta-
ble 4. It shows that 5828 out of 5988 (97.3%) methods
do not throw any custom exceptions. The other 160
methods throw at least one custom exception. Our
data further shows that 5464 methods do not throw
any exceptions. If we only consider those methods
that actually throw one or more exceptions, it can be
seen that only 364 out of 524 (69.5%) methods do
not use any custom exceptions, while the other 160
(30.5%) methods do. These 160 methods therefore
represent manifestations of theCustom Exception Vi-
olation.

5 DISCUSSION AND
CONCLUSIONS

In this paper, we have explored the feasibility to auto-
matically identify manifestations of violations to the
Normalized Systems design theorems. To this end,

TOWARDS THE AUTOMATIC IDENTIFICATION OF VIOLATIONS TO THE NORMALIZED SYSTEMS DESIGN
THEOREMS

27



Table 4: Custom Exception Violations.

Methods with
All methods parameters

Violationsa n % n %
0 5828 97.3% 364 69.5%
1 124 2.1% 124 23.7%
2 16 0.3% 16 3.1%
3 20 0.3% 20 3.8%

Total: 5988 100.0% 524 100.0%
a Number of custom exceptions thrown

we developed a prototype of a tool to analyze Java ap-
plications This tool focuses on violations to the Nor-
malized Systems design theorems at the API level. A
first contribution of our paper is that we have shown
that it is indeed possible to detect manifestations of vi-
olations to the Normalized Systems design theorems
in an automated manner. A second contribution is that
we have identified three violations to the Normalized
Systems design theorems that may occur in Java ap-
plications.

Since this tool is still a prototype, we acknowledge
several limitations with respect to our findings. The
results provide a first-cut and rough assessment of vi-
olations to the Normalized Systems design theorems.
This assessment can increase awareness about—and
give a first impression of—the code quality of an ap-
plication with respect to evolvability. The violations
identified by the tool should at the moment be consid-
ered a lower bound for the existence of combinatorial
effects, since the tool does not analyze the source code
for all potential sources of combinatorial effects.

Given the current limitations of our tool, we do not
want to make any claims with respect to the quality of
JabRef. Instead, the results obtained in the case study
will be used to further refine our tool.

In addition, our results suggest that although the
automatic identification of manifestations of viola-
tions to the Normalized Systems design theorems
is feasible, an additional manual inspection of the
source code is required. This inspection provides
more insight into the seriousness of the issues iden-
tified in the analysis. In practice, some trade-off will
need to take place to judge whether the additional ef-
fort of containing combinatorial effects is warranted
by the likelihood that a future change would manifest
itself. However, such decisions should be carefully
considered and developers should be aware that not
adhering to the Normalized Systems design theorems
may have a negative impact on the evolvability of the
software.

In future research, we intend to further develop
this tool to increase its ability to automatically detect
manifestations of violations to the Normalized Sys-

tems design theorems. To this end, we will further ex-
tend our list of violations to identify a larger number
of violations to the Normalized Systems design the-
orems. Our tool will therefore be expanded with ad-
ditional modules to test for the manifestation of these
new violations.

REFERENCES

Belady, L. and Lehman, M. M. (1976). A model of
large program development.IBM Systems Journal,
15(3):225–252.

Lehman, M. (1980). Programs, life cycles, and laws of soft-
ware evolution.Proceedings of the IEEE, 68(9):1060–
1076.

Lehman, M. and Ramil, J. (2001). Rules and tools for soft-
ware evolution planning and management.Annals of
Software Engineering, 11:15–44.

Mannaert, H. and Verelst, J. (2009).Normalized Systems—
Re-creating Information Technology Based on Laws
for Software Evolvability. Koppa, Kermt, Belgium.

Mannaert, H., Verelst, J., and Ven, K. (2008). Exploring
the concept of systems theoretic stability as a start-
ing point for a unified theory on software engineer-
ing. In Mannaert, H., Ohta, T., Dini, C., and Pel-
lerin, R., editors,Proceedings of the Third Interna-
tional Conference on Software Engineering Advances
(ICSEA 2008),Sliema, Malta, October 26-31, 2008,
pages 360–366, Los Alamitos, CA. IEEE CS Press.

March, S. T. and Smith, G. F. (1995). Design and natural
science research on information technology.Decision
Support Systems, 15(4):251–266.

Parnas, D. L. (1972). On the criteria to be used in decom-
posing systems into modules.Communications of the
ACM, 15(12):1053–1058.

Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chat-
terjee, S. (2007). A design science research method-
ology for information systems research.Journal of
Management Information Systems, 24(3):45–77.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

28


