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Aix-Marseille III University, Marseilles, France

Keywords: Model based diagnosis, Multi-modelling, Knowledge.

Abstract: The TOM4D methodology is based on constructing models at the same level of abstraction that experts use to
diagnose a process; thus, the resultant models are more simple and abstract allowing a more efficient diagnosis.
For this purpose, the framework CommonKADS to interpret and organize the available knowledge of experts is
combined with a multi-modelling approach in order to describe the knowledge. This paper complements works
accomplished previously about TOM4D, introducing the combined use of Formal Logic and the Tetrahedron
of States in order to build models more suitable for the diagnosis task. Formal Logic provides a logical
interpretation of expert’s reasoning. The Tetrahedron of States provides a physical interpretation of the process
variables and allows to exclude of the logical model those states physically impossible.

1 INTRODUCTION

Knowledge-based diagnosis of systems deals with the
difficulty of knowledge acquisition and representa-
tion. The main problem is to determinate the right
level of abstraction in which the models have to be
constructed to obtain an efficient diagnosis. Most
modelling approaches use the abstraction level of the
available models, generally design models. How-
ever the abstraction level of the design task requires
the definition of a lot of components, some of which
might be meaningless in the diagnosis task. This re-
sults in a hight computational cost since the number
of possible diagnosis increases exponentially with the
number of components.

TOM4D (Timed Observations Modelling For Di-
agnosis) (Goc and Masse, 2007; Goc et al., 2008) is
a modelling methodology based on the idea that ex-
perts use implicit models to formulate their knowl-
edge about a process and the way of diagnosing it.
Such models only consider components that are con-
cerned with a diagnosis and thus, the number of com-
ponents is minimal allowing a more efficient diagno-
sis.

This paper completes the TOM4D modelling pro-
cess presented in (Goc et al., 2008) to propose the
construction of two models that complement each

other: a logical model that provides a reasoning
model consistent with the Reiter’s theory (Reiter,
1987) and a physical model that provides a physi-
cal dimension to the process variables and so, defines
its physical structure. This latter allows to identify
those states that, although they are valid in the logical
model, are physically impossible.

The next section provides a brief overview of the
main modelling approaches and the major difficulties
that they present. Section 3 presents a case study on
the use of Formal Logic and the Tetrahedron of States
(ToS) (Chittaro et al., 1993) to define a logical model
and a physical model which complement each other
and are presumably close to those models that experts
build to carry out a diagnosis. Finally, section 4 states
our conclusions and perspectives.

2 MODELLING APPROACHES
FOR DIAGNOSIS

The diagnosis of malfunctioning of devices or sys-
tems is a research area of Artificial Intelligence since
the decade of the seventies. Different approaches
(Zanni, 2004), such as heuristic reasoning (Clancey,
1985), Model-Based Diagnosis (MBD) (Reiter, 1987;
Dagues, 2001) and Multi Model Based Diagnosis
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(MMBD) (Chittaro et al., 1993), have arisen from that
time to the present. However, diagnostic reasoning
approaches present, in general, two major drawbacks
(Goc and Masse, 2007; Goc et al., 2008). First, the
large number of components of the resulting model
leads to computing difficulties in the diagnosis task.
That is to say, the number of possible diagnoses grows
exponentially with the number of components. This
problem is directly connected to the level of abstrac-
tion used. These models generally come from the de-
sign model which has nothing to do with knowledge
model to diagnosis. Second, even when the system
has few components, the consistency based theory of
diagnosis provides no means to eliminate diagnoses
which are logically acceptable but meaningless.

TOM4D (Goc and Masse, 2007; Goc et al., 2008)
is a modelling methodology for dynamic systems
based on the hypothesis that an expert uses a set of
models at a level of abstraction that allows efficient
diagnostic reasoning, and this level is directly linked
with the diagnosis task, not with the design task. This
methodology proposes to combine the modelling of
the experts’ cognitive process, using CommonKADS
(Breuker and de Velde, 1994; Schreiber et al., 2000),
with a multi-modelling approach for dynamic systems
(Chittaro et al., 1993; Chittaro and Ranon, 1999), in
order to try to get around the aforesaid problems.

3 TOM4D: INTERPRETATION
MODELS

The TOM4D modelling process (Goc et al., 2008),
shown in Figure 1, aims to produce a generic model
of system, from the available knowledge and data, in
order to obtain a suitable model for the diagnosis task.
This modelling process consists of three fundamental
phases: knowledge interpretation, whose objective
is organizing and interpreting the available knowl-
edge; process definition where the boundary of the
process that governs the system, operating goals and
normal and abnormal operating modes are defined;
and generic modelling, in which the aim is to define
a more general and more abstract model. This mod-
elling process is generally cyclical and each stage can
require to return to previous phases with the objective
of revising expert’s knowledge, results, ideas, mod-
elling decisions, etc. We shall focus our attention on
how, in the second and the third phases, Logic Formal
and the ToS can be used as interpretation paradigms in
order to carry out a logical interpretation and a physi-
cal interpretation of the process.

Figure 2 depicts the domain concerning the di-
agnosis of problems with a car that the authors of
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Figure 1: TOM4D modelling process.

(Schreiber et al., 2000) introduce in their book. The
figure presents nine rules of knowledge, noted as
R1, ..,R9, whose meaning is, for example: R1 indi-
cates that if the fuse is blown then the result of the
fuse inspection is broken.

fuse
blown

fuse
inspection

broken

battery dial
zero

gas dial
zero

gas in engine
false

battery
low

fuel tank
empty

power
off

engine behaviour
does not start

engine behaviour
stops

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8 R

9

Figure 2: Knowledge pieces in the car-diagnosis domain.

We shall suppose that the components associated
with concepts fuse inspection, battery dial and gas
dial work properly. Therefore, the variables and com-
ponents considered in the modelling process are listed
below and rewritten as x1, x2, x3, x7, x8, x9 and c1, c2,
c3, c7, c8, c9, respectively.

x1 ≡ fuse.status c1 ≡ fuse
x2 ≡ battery.status c2 ≡ battery
x3 ≡fuel-tank.status c3 ≡ fuel-tank
x7 ≡ power.status c7 ≡ electric supply
x8 ≡ gas-in- c8 ≡ gas supply

engine.status
x9 ≡ engine- c9 ≡ engine

behaviour.status
The rules R8 and R9 establish fuzzy knowl-

edge since the value of x9 is indeterminate; that
is, if x8 = f alse, then x9 = does not start ∧ x9 =
stops. In order to eliminate this ambiguity, we
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shall interpret and rewrite the values does not start
and stops as ¬works; that is to say, if x8 =
f alse then x9 = ¬works. Therefore, the val-
ues that the variables can assume are the follow-
ing ones: x1 ∈ {blown,¬blown}, x2 ∈ {low,¬low},
x3 ∈ {empty,¬empty}, x7 ∈ {o f f ,¬o f f}, x8 ∈
{ f alse,¬ f alse}, x9 ∈ {works,¬works}.

From the modelling process and analysis on this
example presented in (Goc and Masse, 2007), a rep-
resentation by means of logical gates of the process is
possible, as Figure 3 shows.
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Figure 3: Logical model of the process.

The process variables x1,x2,x3,x7,x8,x9 are then
interpreted as binary variables xB

1 ,x
B
2 ,x

B
3 ,x

B
7 ,x

B
8 ,x

B
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spectively, which take values 1 (true) or 0 ( f alse).
For example, x1 = blown is logically interpreted and
represented as xB

1 = 0, x1 = ¬blown is represented
as xB

1 = 1, and so on for each variable. Consequently,
each component ci, i = 1,2,3,7,8,9 is interpreted as a log-
ical gate cB

i i = 1,2,3,7,8,9 in Figure 3. For example,
R2,R3 allow to write xB

1 = 0∨ xB
2 = 0⇒ xB

7 = 0 and
to define xB

7 = and(xB
1 ,x

B
2 ), which is the functional

model of the component cB
7 .

This logical interpretation leads to build a logical
model according to the consistency-based diagnosis
theory of (Reiter, 1987) as a set of first order predicate
formula. The problem with Reiter’s theory is that it
subsumes that logically consistent states corresponds
to normal (desired) behaviours and the inconsistent
states to abnormal (undesired) behaviour denoting a
problem with at least one component. But this cor-
respondence does not resist with a physical interpre-
tation of the states. For example, the consistent state
xB

1 = 0,xB
2 = 1,xB

3 = 1,xB
7 = 0,xB

8 = 1,xB
9 = 0 describes

a normal behaviour that is not desirable: the fuse is
blown and the engine does not work. The inconsistent
state xB

1 = 0,xB
2 = 0,xB

3 = 1,xB
7 = 0,xB

8 = 0,xB
9 = 0 is

abnormal (the tank has fuel (xB
3 = 1) but there is not

gas in engine (xB
8 = 0)) and corresponds to a problem

with the gas supply (component cB
8 ). In contrast, the

inconsistent state xB
1 = 0,xB

2 = 0,xB
3 = 0,xB

7 = 0,xB
8 =

1,xB
9 = 0 (the fuel tank is empty and there is gas in

the engine) can not be associated with a problem of
a component: it is a transient state that is a normal
behaviour.

These examples shows that the logical interpreta-

tion of the variables that is required by Reiter’s the-
ory must be completed with a physical interpretation.
For this purpose, (Chittaro et al., 1993) proposes to
use ToS: in our example, the Hydraulic ToS and the
Electric ToS will be used (Figure 4). So, with the
TOM4D methodology, each variable xi of the pro-
cess is mapped both with a logical variable xB

i and a
physical variable xP

i of the corresponding ToS. For ex-
ample, using the Hydraulic ToS, the variable x3 (fuel
tank status) is associated with the gas volume V (t)
in the tank so that xB

3 = 0 is interpreted as V (t) = 0
(x3 = empty) and xB

3 = 0 is interpreted as V (t) 6= 0
(x3 = ¬empty ). The variable x8 (gas supply status) is
associated with the gas flow Qv(t) in the gas supply
so that xB

8 = 0 is interpreted as Qv(t) = 0 (x8 = f alse)
and xB

8 = 1 is interpreted as Qv(t) 6= 0 (x8 = ¬ f alse).
Similarly, the Electric ToS allows the following asso-
ciations: x2 (battery status) corresponds to the elec-
tric charge Q(t) in the battery, x1 (fuse status) with
the system resistance R(t), x7 (electric supply status)
with the voltage U(t). In this interpretation phase, the
functions of time F(t) corresponding to a variable xi
are defined over ℜ. Now to interpret the process be-
haviour and the correspond states, we assume that the
current I(t), the voltage U(t) and the resistance R(t)
are piecewise constant over time: I(t) = ic or I(t) = 0
(no current), U(t) = uc or U(t) = 0 (no voltage) and
R(t) = rc or R(t) = ∞ (the fuse is blown). Thus,
x1 = blown (xB

1 = 0) means R(t) = ∞ and R(t) = rc
otherwise, and x7 = o f f (xB

7 = 0) means U(t) = 0 and
U(t) = uc 6= 0 otherwise. Since I(t) = dQ(t)

dt , when
I(t) is zero, the electric charge of the battery is a con-
stant: x2 = low (xB

2 = 0) means Q(t) = q and other-
wise Q(t) evolves over time.
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Figure 4: Physical model of the process.

The physical interpretation with through the ToS
allows to provide a semantic to each states and to
identifies those that are useful for diagnosis. For ex-
ample, because Qv(t) = dV (t)/dt, all the states where
xB

3 = 0 and xB
8 = 1 corresponds to a transitory situ-
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ation: the fuel tank is empty (V (t) = 0) but there is
still a fuel flow in the engine (Qv(t) 6= 0). We can
then assume that ∃tk ∈ℜ so that: ∀t ≥ tk,V (t) = 0⇒
Qv(t) = 0. This interpretation allows to consider that
x3 = empty⇒ x8 = f alse and hence, xB

3 = 0⇒ xB
8 =

0. Consequently, each states containing xB
3 = 0 and

xB
8 = 1 can be removed from the logical model.

Similarly, the logical states xB
2 = 0 (battery is low)

and xB
7 = 1 (electric supply is on) can be removed:

∃tk ∈ ℜ,∀t ∈ ℜ, t ≥ tk, Q(t) = q ⇒ I(t) = 0. Be-
cause U(t) = R(t).I(t), this rule can be rewritten:
Q(t) = 0⇒U(t) = 0. Then, all states where Q(t) = 0
and U(t) 6= 0 are not usefull for diagnosis, and all
states where xB

2 = 0 and xB
7 = 1 can be eliminate of

the logical model. The same reasoning can be done
with the resistance (R(t) = ∞⇒U(t) = 0) so that all
states where xB

1 = 0 and xB
7 = 1 can be eliminated of

the logical model. In our example, the physical inter-
pretation of the variables allows to reduce the 26 = 64
states of the logical model to 16 interesting states for
diagnosis.

As a consequence, the TOM4D methodology con-
siders that to build a generic model of a process, the
expert’s knowledge must be interpreted both in logi-
cal and physical terms. The logical model (Figure 3)
describes the structure of the expert’s diagnosis rea-
soning and the physical model (Figure 4) provides the
diagnosis knowledge required for this reasoning. So
both logical and physical models are necessary and
complement each other. These models are, ultimately,
those ”constructed” by experts to do the diagnosis
tasks. In practice, the combination of these two mod-
els simplify the diagnosis task.

4 CONCLUSIONS

The present paper complements the works presented
in (Goc and Masse, 2007; Goc et al., 2008) about
TOM4D, introducing a case study that verifies the
main hypothesis of TOM4D: experts use implicit
models to formulate their knowledge about a process
and the way of diagnosing it, these models belong to
a level of abstraction linked with the diagnosis task
but not with the design task. The combination be-
tween Formal Logic and the ToS allows to build mod-
els close to those constructed by experts. The former
provides a logic reasoning mechanism, the latter al-
lows to discriminate the states having a meaning ac-
cording to the diagnosis task and thus, to reduce the
state space to only those concerned with the diagno-
sis.

Our current work focus on relating TOM4D with
a method to discover experts’ knowledge from se-

quence of discrete event occurrences registered by a
machine. Linking this two approaches would allow
to define a modelling process which takes experts’
knowledge and data recorded by a machine and pro-
duces models useful to diagnosis.
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