
SHARE VS. OWN
Software Reuse using Product Platforms

Paul Abraham, Vishal Sikka
Office of the CTO, SAP AG., Dietmar Hopp Allee, NeurottStrasse16, D-69190 Walldorf, Germany

Gordon Simpson
Independent Enterprise Technologist, San Francisco, CA, U.S.A.

Keywords: Software reuse, Product platform, Application platform, Technology platform, Product line architecture.
Cost-benefit analysis.

Abstract: SAP is a complex multi-national development organization with a large number of diverse products and
changing target markets. Effective allocation of resources is a difficult at the best of times. Of late, the
target markets, and supporting technologies, change every couple of years exponentially increasing the
complexity, necessitating a way of recalibrating that keeps pace with new realties. SAP, with a mature
understanding of functional, software and technical relationships, has adopted a platform approach covering
both functional and technology capabilities. However, a variety of factors, many in the management space,
prevent that from being effective. This paper will explain why product-line/platform is a better strategy than
platform or custom product strategies, in a way that can be understood, proven and adopted by management
and developers alike. Specific recommendations of practices for delivering reuse effectively are also
provided.

1 PROBLEM CONTEXT

SAP spends a great deal of time examining how to
allocate resources among its development groups.
This allocation is made most efficient by sharing
resources among products; dedicating resources only
when dictated by necessity. The advent of
groundbreaking technology changes or changes in
the marketplace force us to re-evaluate this
allocation. The acceleration of these previously slow
moving factors requires SAP to develop a systematic
way of matching pace with evaluation. These change
factors and associated resource issues are, to some
degree, applicable in turn to SAP‘s ecosystem i.e.
development partners, technology vendors and
customers.

When, how and what to share, of software
components, processes, infrastructure, people and
knowledge, will need to be continuously evaluated
as SAP products go through several cycles of
renovation. SAP has thus far adopted reuse primarily
through a product platform strategy, using both
technology and applications platforms in its

products. This paper presents the business reasoning
for reuse of software and processes in a product-
line/platform vs. dedicated to a product and attempts
to fully understand the reasoning and economics
behind making such a decision.

Practice has shown that many inhibitors lie in the
realm of management and decision-making. The
most common causes of these failures are: resource
constraints, lack of incentive, single-project view,
time constraints, lack of clarity on reuse utility, and
lack of education. Software project managers and
developers need to achieve better understanding,
estimation, evaluation, and quantification of the
software reuse and associated business factors as
well as their predictive relationship to software
effort and quality.

Contemporary software reference models for
reuse do not consider many of the technical and non-
technical factors in their quantitative models. To
mitigate this, the paper also explores the broader,
industrial engineering perspective and its concepts
of product platforms, product lines and other
relevant methodologies to proposes strategies for

245
Abraham P., Sikka V. and Simpson G. (2010).
SHARE VS. OWN - Software Reuse using Product Platforms .
In Proceedings of the International Conference on e-Business, pages 245-255
DOI: 10.5220/0003006302450255
Copyright c© SciTePress

designing and building reusable application software
components.

We present a rigorous, cost benefit analysis
based methodology for the evaluation of well-
defined metrics to measure the benefits of a
particular strategy and the associated costs. We
recognize that the decision-making is essentially
probabilistic, leveraging imperfect data, making
such decision-making shades of gray among
alternatives rather than black and white. The
presented methodology accounts for these
imperfections in the analysis.

Guidelines are developed to help a decision-
maker decide when the long-term benefits involved
in implementing and maintaining reusable coding
procedures outweigh the short-term benefits of a
dedicated implementation. Specific recommend-
ations are made for coding practices, software
design, documentation and management procedures
that encourage and result in successful code reuse
practices.

2 SOFTWARE REUSE
INVESTMENT SUCCESS
FACTORS

The industrial (manufacturing) world has been
successful for many years in implementing a
product-line approach to reuse using pre-fabricated
(pre-manufactured, interchangeable) components.
Product-line is closely related to the concepts of
horizontal and vertical reuse. Horizontal reuse
provides generic reusable components that can
support a variety of products. Vertical reuse focuses
on developing the preferred parts supporting a given
family of related products or product-line. It is
regular practice for these industries to assemble parts
into products and use the same parts in more than
one product within a "product-line" family.

Can this same "manufacturing" approach be
used in software engineering?

SAP has certainly embraced parts of this
philosophy with its Business Process, Application
and Technology Platform strategies that serve as the
foundation on which our Business Suite (Suite) and
Business By Design (BYD) products are built.

2.1 Managing Diverse Software
Products

To run any software component requires the use of
other software and hardware artefacts that may be

owned by SAP or shared among its partner
ecosystem. It is reiterated that, for this paper, the
topic of reuse also includes artefacts used in the run
time for the software components. Assuming we
have the relevant tools, processes and technologies
for effective software component reuse, the
evaluation of whether to reuse a software component
(share) or develop it (own) is dependent on the
particular reuse strategy we adopt.

There are two dimensions to the strategy.
• On one hand, we look at the product

platform strategy and decide where a
particular component should reside: in
which architectural layer, using what
technology etc.

• On the other hand, we look at the time
horizon for the business initiative the
software component is in support of: i.e.
today's business, the next generation of
emerging businesses, and the longer-term
options out of which the next generation of
businesses will arise.

At SAP, we have adopted multiple strategies
depending on the nature, size, location and
technology associated with the software component
being reused. We briefly outline the problem
environment in the graphic below:

Figure 1: Shared vs. Own problem environment.

Note that there are two cycles in play. Across the
functional cycle of design, develop, deploy,
components change based on fit to purpose with
upgrade and rebuild as the scope of the purpose
changes over time. The vertical cycle is a much
longer and slower moving one based on use density.
As components are more frequently reused, they
sediment down through the platform layers. This
sedimentation can often include 3rd party
infrastructure layers, who adopt technical
capabilities initially developed for a single
application solution. In the most effective model the

ICE-B 2010 - International Conference on e-Business

246

reverse flow is also managed, with components
being factored out of the platform and back into
products as the reuse decreases over time. This
allows for the complexity and overhead of the
platforms to remain optimal over time.

2.2 Balancing Commonality
and Distinctiveness

At a fundamental level, product variety and fit is
valuable in the marketplace. The need for superior
performance of the products and the desire to
preserve distinctiveness (e.g. custom features,
control etc.) promotes product organizations to own
certain key components. On the other hand, it is
costly to deliver, as cost benefits are driven through
commonality. The balanced sharing of assets across
products allows companies to manage this trade-off.

This balance has however, temporarily resulted
in an unwanted side effect in SAP: total cost of
ownership (TCO) increases due to the complex
configuration that we provide customers to tailor our
software products to their needs. As mentioned
above, parameterization is a valuable tool in
leveraging shared assets to fit different solutions.
However, the current architecture leverages the same
parameterization for both SAP engineering product
fit and on-premise customer fit (customization). The
effect is to trade off customer complexity for the
power of reusing, and therefore only having to
support, a single mechanism.

Changing the product architecture can influence
the nature of the trade-off. For example by the use of
pre-configured and interchangeable software
component for a particular industry vertical or
customer group which hide the complexity of
configuration will lower costs of customization.
Another technology solution is the use of model-
based methodologies that lower the fixed cost of
developing software, and/or delivering the software
as a service. The hypothesis is that this type of reuse
promotes mass-customization, shortens the time to
market and promotes consistency in products.

2.3 Common Architecture Strategy

The sharing or owning of software components is
dependent on the architectural strategy. The
architecture relates software components to a
physical problem space (hardware, operating system,
and application packages such as database or user
interface). A common architecture lessens the need
to make reusable software components highly
generic because the environment in which they will

be used is well defined. The architecture defines the
rules for developing software components and
provides standard interfaces and data formats. This
aids in the inter-changeability of reusable software
components across the product-line.

SAP had elements of a common architectural
strategy from its inception. SAP uses this approach
for the lower level technological platform and to
support the user interface. However, there is
considerable difference in higher layers of the
architecture between our Business Suite and
Business by Design (BYD) products, which leverage
the same technology platform but are targeted at
different markets. It should be reiterated that the
platforms should be different if they are
fundamentally different and that the determination
of that “fundamental difference” is at the heart of
SAP’s challenges.

2.4 Product Platform Strategy

Product platform strategy is the foundation of the
existing SAP product strategy, which has multiple
products related by common technology platform. It
defines the cost structure, capabilities, and
differentiation of the resulting products. When the
market and products were less diverse, and the
technology considerations more unified, separating
product platform strategy from product line and
individual product strategy allowed SAP to
concentrate on its most important strategic issues of
reliability and scale. As the diversity and rate of
change has increased, the question as to which
components products share and which are dedicated
has ultimately tied to the product platform strategy
more closely to the product line.

2.5 What is a Software Product Line?

A software product line is a set of software-intensive
systems, satisfying the specific needs of a particular
market segment, that share a common, managed set
of capabilities and that are developed using a
common methodology and leveraging common
skills sets.

This definition is consistent with the traditional
product line definition. But it adds more: it puts
constraints on the way in which the systems in a
software product line are developed. Substantial
production economies are achieved when the
systems in a software product line are consistently
developed from a common set of assets in contrast to
being developed separately, from scratch, or in an
arbitrary fashion. It is exactly these production

SHARE VS. OWN - Software Reuse using Product Platforms

247

economies that make the software product line
approach attractive.

Production is made more economical when each
product is primarily formed from existing
components, tailored as necessary through pre-
planned variation mechanisms such as
parameterization or inheritance, adding any new
components only when necessary, and assembling
the collection according to the rules of a common,
product-line-wide architecture. Building a new
product (system) becomes more a matter of
assembly than one of creation; the predominant
activity is integration rather than programming. For
each software product line, there is a predefined
guide or plan that specifies the exact product-
building approach.

Software product lines give economies of scope,
which means that we take economic advantage of
the fact that many of our products are very similar–
not by accident, but because we planned it that way.
We make deliberate, strategic decisions and are
systematic in effecting those decisions. This concept
must be contrasted with the specifics of a product
platform, which is described next.

3 THE PRODUCT PLATFORM

We define a product platform as a collection of core
assets that are shared by a set of products. These
assets can be divided into four categories:

Software components – A software component is a
unit of composition with contractually specified
interfaces and explicit context dependencies. A
software component can be deployed independently
and is subject to composition by third parties.

Processes and infrastructure - used to make or to
assemble software components into products

Knowledge base – design know-how, mathematical
models, testing methods and data sets

People and relationships – teams, relationships,
between members and between teams

In certain manufacturing systems, these process
and systems are themselves machinery like assembly
lines or manufacturing centres etc. In the software
arena new ideas like software factory embody this
principle. Most companies do have parts of this
automated with production and installation scripts,
configuration of system landscapes etc. However, a
coherent methodology and infrastructure is yet to
emerge. The organizational aspects also need to be

facilitated by automated systems much like
manufacturing centres. This encompasses the
knowledge base since a large part of the knowledge
resides in people. Web 2.0 holds a lot of promise in
this area and is being integrated into development
and production tooling.

A product platform is primarily a definition for
planning, decision-making, and strategic thinking. A
product platform is not a product; it is a collection of
the common elements, especially the underlying
defining technology, implemented across a range of
products. So in a sense this definition is broad, a
generalization of the concept in SAP where we have
of a technology platform and application platform
but in another sense it is distinct, as it results in a
collection of common elements. These common
elements need not necessarily be complete in the
sense that they are something that could be sold to a
customer.

SAP markets and builds its products (Suite and
BYD) as platforms for running the business
processes of large enterprises (LE) and small to
medium enterprises (SME) respectively. The
defining technologies used to implement this
business process platform will evolve over time, at
different velocities and hence it is imperative to
manage this effectively. The platform's unique
differentiation provides a sustainable competitive
advantage. Therefore it may be argued that all
components that are related to business processes
such as orchestration must necessarily be part of the
platform and cannot be owned by an application or
industry solution built on top of it.

3.1 The Platform Influence on SAP’s
Ecosystem

In the context of SAP’s ecosystem, a platform may
be viewed as a realization of the technology strategy
that is made available through a set of access points
or interfaces (APIs). Partner ecosystem members
(ISV’s and SI’s) then leverage these interfaces as a
kind of toolkit for building their own products and
solutions, and think of them as the starting point for
their own value creation. The platform is the
“mechanism” through which the platform
organizations share value with their ecosystem. Any
product contains elements specific to a given use or
solution and elements that are shared with many
other products in the development ecosystem within
and outside SAP development. The latter represent
an opportunity that can be leveraged by other
members of the ecosystem to eliminate redundant
effort.

ICE-B 2010 - International Conference on e-Business

248

The architecture of products and services has a
profound effect on the evolution of ecosystems.
Well-managed platforms shape ecosystem dynamics
as they grow to incorporate new functionality and
create opportunities for SAP to expand its
ecosystem. How a platform evolves and responds
over time, shapes the ecosystem that depends on it:
what firms survive, where diversity can exist, what
will be easy to do and what will be hard, which
things in the ecosystem will do well with little effort,
and which things will be challenging. This happens
because platforms serve as an intermediary between
the underlying technology and the ways in which it
can be easily exploited.

3.2 Platform Architectures

The choice of a defining technology as a platform
strategy is perhaps the most critical strategic
decision for a high-technology company. Typically,
the defining technology of a platform differentiates
the products that are based on that platform. While
SAP is more defined by its business process
centricity, the technology aspect of the platform
strategy is still significant. Business applications can
be classified in different operational or technical
archetypes, based on their characteristics and
requirements at run-time. A few examples of these
archetypes are:

• Online transaction processing systems
(OLTP): characterized by low latency, high
responsiveness, data integrity, predefined UI
workflows. Instances of this archetype are e-
commerce sites, CRM, e-banking systems.

• Analysis systems or online analytic
processing (OLAP): characterized by their
ability to produce complex analytical and highly
customizable queries on large multidimensional
datasets, with low latency responses. Business
Intelligence (BI) systems fall into this category.

• Batch systems: capable of performing
operations on large datasets efficiently,
coordinating jobs to maximize CPU utilization
and energy consumption with recovery policies
when exceptions occur.

• Networked systems: software that integrates
different applications and services into more
complex solutions. It differentiates itself by
delivering a business solution (e.g. Supply
Chain Management) that manages the
information and control flow across many other

systems (Inventory Management, Order
Processing).

SAP has products or components that cover all
of these archetypes. Each of these application
families has its own constraints, characteristics, and
optimal design patterns that can be applied to solve
the specific challenges they present. Very often,
these challenges have conflicting goals. For
example: OLTP will optimize for low latency,
whereas latency for batch or networked systems is
not as important. OLTP scales better horizontally
and benefits from a stateless architecture, while
batch systems scale vertically and tend to be stateful.
The technical infrastructure and services to support
each is consequently significantly different. The key
point is that a platform’s effectiveness is highly
dependent on the archetype served. The more
knowledge of the application a platform has, the
greater its ability to increase the efficiency of
running and operating it, and the greater the degree
of sharing. Thus having multiple platforms that are
tailor made to its constituency (by archetype, mode
of delivery or size: LE, SME Micro) one could
substantially lower the TCO.

Figure 2: Increased reuse through an application runtime
infrastructure.

An increased amount of shared components
leads to higher levels of efficiency, so the question is
which are the most natural candidates to be
"extracted" from applications into the platform? The
obvious candidates are those referred to application
infrastructure services viz. application configuration,
run-time exception, logging etc. Refer example
above. Every application needs them, yet they are
frequently written repeatedly for each platform.

By exposing these basic services publicly or by
sharing them across platforms as libraries or
frameworks, the platform has an increased ability to
automate common procedures and offer more
advanced operational management capabilities and
lower the TCD by sharing the common platform

SHARE VS. OWN - Software Reuse using Product Platforms

249

services. Thus, finer-grain tuning, customization and
troubleshooting are made available. In the example
above, notice that the hosting method does not need
to understand in detail what the application does, but
instead how it does it. (e.g., where are connection
strings to the database stored? How is run-time
exceptions logged and notified?)

4 COST-BENEFIT ANALYSIS
FRAMEWORK

Finally, given one or more credible product platform
strategies for reuse, we would like to evaluate these
alternatives to estimate the immediate economic
benefits of reuse. The following CBA methodology
is adapted from various publications and is presented
for illustrating the benefits of a platform strategy and
for completeness.

4.1 Metrics to Measure Benefits of
Reuse

In this section, we present a conventional cost
benefit analysis. Benefits of reuse are difficult to
measure objectively and hence we present the
current state of the art for it. Cost on the other hand
is easier to compute and only a high-level view of
what is pertinent pointed out. In addition, enterprises
have developed their own methodology for cost
accounting, which are uniform in spirit but not in
detail. Software metric is any measurement that
relates to a software system, process, or related
documentation. Metrics are distinguishing traits,
characteristics, or attributes that are both static and
dynamic. The reuse metrics mentioned below are
those developed by research teams at George Mason
University in Fairfax, Virginia (see Rine & Nada
1998). These relate to the benefits of software reuse
in the cost benefit analysis calculations that is
introduced further down the paper. We also use the
term module in place of software component as the
basic unit for applying metrics. The distinction is
somewhat academic but a software component may
be too coarse grained for meaningful measurements.

In order for a metric value to be statistically
valid, it is necessary to have a reasonable quantity of
data. This data collection is unlikely to be successful
unless it is automated and integrated into the
development process. Finally, product data should
be kept as an organizational asset and historical
records of all projects should be maintained. Once
an appropriate data set is available, model evaluation
involves identifying the parameters that are to be

included in the model and calibrating these using
existing data. Such model development, if it is to be
trusted, requires significant experience in statistical
techniques.

The software reuse metrics are grouped into five
major categories: general, quality, parameterization,
coupling, and cohesion, which are also software
engineering principles that correspond to the reuse
attributes. The general category is for attributes that
are not in the four software engineering categories.
The following table lists the popular reuse metrics:

Table 1: Metrics to Mesure benefits of Reuse.

Category Metric Measures
General
Metrics

Time to market Reduction in
development time

New Product
Opportunity
Opportunities

Potential for long
tail solutions etc.

Understandability Ease of adoption
Size Extent of the

module
Type of module e.g. Specification,

functional
Quality
Metrics

Consistency for centralized
maintenance

Ease of Change The degree to
which it can be
changed

Comments Usefulness,
understandable.
accuracy

Formatting Readability of the
code

Parameter-
ization

Functional
Data

Coupling
Metrics

Coupling the strength of the
interconnection
and dependency
among modules

System
External Coupling

Cohesion
Metrics

Functional
cohesion

degree to which
each part of the
module is
necessary for
performing a
single function.

Data cohesion degree to which it
has a single-data
type associated
with it

4.2 Cost Calculations

The methodology proposed here is an amalgamation
of methodology proposed by the Software Institute
in HP Labs and the Software Engineering Institute in
CMU (see Clements et al., 2005, Petersen, 2004 and
Malan & Wentzel, 1993).

ICE-B 2010 - International Conference on e-Business

250

4.2.1 Development Costs

Setup and Overhead. New systems will be needed
to support a full-fledged systematic reuse program.
It includes ongoing costs of expanding and
maintaining reuse layer or system, a management
support structure to ensure systematic reuse, and
training programs, and should be assessed as indirect
overhead.
Producer. The reusability of software components
depends on a number of factors such as the degree of
generality, complexity, and fit to expected use, as
well as the quality of the component, and the extent
and utility of documentation and accompanying test
suites. Further, the component has to be available,
and hence must be certified and entered in a
platform, library, as software services or broadcast
by some other means. Therefore, component
producers face additional costs over and above the
usual development-cycle costs, and these are
estimated to be anywhere from 30% to 200% higher
than the cost of producing a component not intended
for reuse. This is true even for a component that is
re-engineered from existing code.

Consumer. Selection, specialization and integration
for reuse entails articulation of the component
requirements in a suitable form, search and retrieval
of the component, understanding of what the
component does, and verification that it does indeed
fit the purpose. The component may need to be
specialized to fit the consumer's current needs. This
involves adaptation (with co-requisite program
understanding and subsequent testing). Lastly, the
component must be integrated into the system under
development, and tested.

Lifecycle Costs. The view of maintainability as a
form of reusability is novel and important. It
captures the idea of reusability in time within a
dynamically evolving system. Evolutionary dynamic
systems require reusability in time of unchanging
parts of the system while other parts of the system
evolve. By centrally maintaining the reuse
components, managing their evolution, and
propagating upgrades to new products as well as
updated versions of older products, the organization
can exploit further opportunities to reduce
duplication of effort. Moreover, centralized
enhancements to black box components enable a
whole platform of derivative products to be
produced more quickly at lower cost.

4.2.2 Probabilistic Nature of Calculating
Cost

Time value of Money. When the reuse instances are
expected to occur over a longer time horizon, the
timing of the cash flows should be taken into
account. This is done by incorporating a standard
present value analysis into the model. One typically
uses the Discount Cost Function (DCF) analysis.
Typically Horizon-1 (today’s businesses)
components described previously fall into this
category. In case of Horizon-2 & 3 (emerging
businesses, and the longer term options)
components, more market based approach such as
real options valuation (ROV) may be used to
account for the high uncertainty.

Uncertainty in Reuse Instances. The degree of
uncertainty about the evolution of a product family
tends to increase as the time horizon is stretched.
Thus, anticipated reuse opportunities arising from
products or upgrades planned in a multiyear horizon
is likely to be much more uncertain than those in the
current one-year business plan. To incorporate the
uncertainty as to whether the component will indeed
be reused, the probability of each reuse instance
should be estimated, and the expected consumer
savings computed. This is essentially a DCF
calculation of the NPV and optionally decision tree
analysis .

Future upgrades of Components. The maintenance
and management of evolving components increases
the cost to the producer/maintenance group.
Consumers of the component benefit from not
having to duplicate corrective and evolutionary
maintenance activities, though they do have to incur
some cost to incorporate upgraded component(s)
into their products. This also is essentially a DCF
calculation of the net present value (NPV).

4.3 Cost Benefit Analysis

It is clear from the discussion above that for some
components the choice of strategy dictates whether it
is shared or dedicated for a particular product. In
many cases however software components may not
have a predestined position in the architecture or is
not obvious and hence a cost benefit analysis of
shared versus own using historical data on similar
projects should be performed. Since reuse involves
multiple products evolving through their respective
life-cycles, an assessment of the economic impact of
a systematic reuse program must incorporate cost
and revenue projections that extend beyond that of a
single development project. A template such a cost

SHARE VS. OWN - Software Reuse using Product Platforms

251

benefit analysis that should be performed for each
component based on the research from the Software
Engineering Institute (SEI) at CMU for is presented
below.

Table 2: Cost functions used to compare building a reuse
platform versus building stovepipe products

Function Output
Corg() Cost to setup and run an organization

to adopt the product line approach for its
products

Ccab() Cost to develop a core asset base
suited to satisfy a particular scope

Cunique() Cost to develop the unique parts (both
software and non-software) of a product
that are not based on core assets

Creuse() Costs to build a product reusing core
assets from a core asset base

Cprod () Cost of building a product in a stand-
alone fashion. It relies on historical data
or general software engineering cost
models for its evaluation.

Note: We assume that these functions accommodate
influencing factors such as the time value of money,
uncertainty in reuse instances and the probability
future upgrades. Specific formula’s are available in
the research from several institutions like SEI, HP
Labs etc. (see citations).

This cost can be expressed by Equation 1.
Cost of building a product line =

org cab
1

 C () C () (() ())
n

unique i reuse i
i

C product C product
=

+ + +∑ (1)

This equation says that the cost of fielding a
product line is the cost of organizational adoption
plus the cost of building the core asset base plus the
cost of building each of the n products. The cost of
building a product is the cost of building the unique
part of that product plus the cost of incorporating the
core assets into the product. The cost of building n
products independently, is expressed in Equation 2.

Cost of building n stovepipe products =

1

 (())
n

prod i
i

C product
=
∑ (2)

4.3.1 Evolution and Upgrade

To account for a cycle of product evolution—that is,
the time in which a product appears in a new
version, probably with new or at least improved
features—under the non-product-line, the model
introduces a new cost function, Cevo(). This function
is parameterized with product and version numbers
and returns the cost of producing that version. One

might make a first approximation by assuming that
the cost to produce a new version is some percentage
of producing the original product; for example Cevo()
= 20% * Cprod()

To calculate the analogous cost under a product
line regime, we introduce a new function, Ccabu().
This function returns a measure of how much it costs
to update the core asset base as a result of releasing a
new version of a product. Changes to the core asset
base can occur because the new version required
changes to or exposed bugs in existing core assets.
Changes can also occur when new features expose
new commonalities with other products that were
considered unique but now can be refactored into
commonalities.

4.3.2 Benefits Calculation

Software product lines bestow benefits to the
developing organization besides direct cost savings.
For example, they often allow an organization to
bring a product to market much more quickly. We
can accommodate these other factors by using
benefit functions that are similar to the cost
functions introduced in the basic model. Unlike the
cost functions, there is no fixed number of benefit
functions. However, the metrics discussed
previously help one establish a list of benefits (=
nbrBenefits) to be factored in the analysis as given in
Equation 3.

Benefits of building n products using a product
platform approach =

1
(())

j

nbrBenefits

ben
j

B t
=
∑ (3)

where ben j is a specific benefit and B ben j () is the
benefit function for that benefit. Each benefit
function is parameterized by the time period of
interest since the benefits may vary over time.

The contributions of the benefits are summed
and then used to build a model equation as needed.
For example, to express the development cost
savings (or loss) from using the product platform
approach as opposed to one-off development for
each product equals [Equation 2] – [Equation 1]. A
more complete picture of the cost benefit of using a
product platform approach adds Equation 3 to that
result.

4.3.3 Illustrative Examples of Reuse in the
Design Time

The following example illustrates the impact of the
approach in a new product line. The new product

ICE-B 2010 - International Conference on e-Business

252

line is targeted for the SME space and consists of
about five components called distribution units
(DU). Since this product line was targeted for a
business user and in an effort to maintain the look
and feel across product lines, it was decided that the
current technology platform use for LE space called
NetWeaver is the appropriate platform for this
product line. However, experience has shown that
there was potential to reuse a lot of features and
services among the five DU’s. Thus it was decided
another (sixth) component called the application
platform was to be developed by a producer group
for this product line.

Challenge. Beyond building the initial business
case, there is normally a low confidence level in any
data related to the future success and adoption
timeframe of a new software product line. This tends
to drive the design decision making away from
reusable/platform towards single use components -
“get the first product out of the door and worry
later”. This can have potentially damaging effects on
the actual ability to grow the product line in a cost
effective manner but has always required subjective
judgement on the part of the solution manager. Use
of the CBA would allow the initial solution
managers to “run the numbers” associated with
making certain “reasonable estimates” around
different componentization strategies and the short,
medium and long term financial impact.

Solution. Based on measured data obtained from
many prior software development projects, estimates
show that with a 50% reuse level and a 5x quality
improvement in the reused component over new
code. However, Producer effort was increased by
108% and consumer effort reduced by 40% during
the development phase. During the maintenance
phase it is estimated that producer effort was
increased by 25%. and consumer effort reduced by
42%.

These effort factors (assuming a 50% reuse
level) are used together with the following
assumptions to estimate reuse benefits:

• Hourly rate for software engineers
(including basic salary $75 and
administration overhead)

• Project team size 20
• Development cycle time without reuse

(months) 12
• Annual inflation in labour rate 5%

A simplifying assumption that all of the products
are comprised of the same amount of new and
reused code is made to better demonstrate, a number
of points. We have also simplified the cost benefit
calculations and used only NPV calculations. We
divide the calculations into four models that have
self-explanatory titles. The model results are shown
in the table below.

Table 3: Examples of Reuse in the design time.

Model 1: Basic Development Phase Costs

 Producer Cost Product1 Product2 Product3 Product4 Product5

Year of Release 0 1 1 2 2 3

Without Reuse 300,000 630,000 630,000 661,500 661,500 694,575

With Reuse 624,000 378,000 378,000 396,900 396,900 416,745

Reuse specific Overhead 35,000 25,000 25,000

Consumer Saving 252,000 252,000 264,600 264,600 277,830

Cumulative Net Saving (-)624,000 (-)407,000 (-)155,000 84,600 349,200 602,030

Model 2: Taking the Time Value of Money Into Account

Consumer Saving after Discounting i 234,419 234,419 228,967 228,967 223,642

Cumulative Discounted Net Saving (-)624,000 (-)422,140 (-)187,721 19,613 248,580 452,098

Model 3: Taking Uncertainty In Reuse Instances Into Account

Probability of Reuse 1 1 0.90 0.75 0.50

Consumer Saving with Discounting & Uncertainty 234,419 234,419 206,070 171,725 111,821

Cumulative Discounted Expected Net Saving 624,000 422,140 187,721 3,284 168,441 260,138

i The interest rate may be the prevailing bank rate, reflecting the interest that the investment would earn if it was deposited instead of invested in reuse, or the
company's hurdle rate, reflecting what the investment would earn in some alternative use within the company.

SHARE VS. OWN - Software Reuse using Product Platforms

253

Table 4: Examples of Reuse in the design time. (cont.)

Model 4: Including a Future Upgrade

 Producer Cost Product1 Product2 Product3 Product4 Product5

Year of Release 1 2 2 3 3 4

Probability of Reuse 1 1 0.68ii 0.38 0.25

Upgrade without Reuse 75,000 157,500 157,500 165,375 165,375 173,644

Upgrade with Reuse 93,750 91,350 91,350 95,918 95,918 100,713

Reuse specific Overhead 10,000 10,000 10,000

Additional Consumer Saving 57242 57242

 38019 21246 13653

Cumulative Discounted Expected Net Saving (-)717,750 (-)467,301 –175,641iii 38,766 231,737 329,599

5 CONCLUDING REMARKS

SAP, the world’s largest provider of enterprise
applications software, originally architected its reuse
strategy around horizontal application and
technology platforms that provided focus on the
scaling and reliability desired by its mainly
homogenous enterprise market. On top of this
strategy, it built a large and geographically
distributed organization and a large portfolio of
diverse products.

Recently, an increased rate of change in market
needs and supporting technology innovations has
stressed that strategy. Solution managers,
development decision makers, are challenged to
effectively handle the conflicts of rapid solution
delivery while identifying candidate components for
application or infrastructure reuse. This complexity
extends out beyond the company into its ecosystem
of partners and customers as they fit the applications
to specific business needs. Thus, guidelines should
be developed and specific recommendations made to
streamline this evaluation process.

It is our position that a product-line approach,
supported by provable cost benefit analysis, is a
more effective model for delivering reuse benefits in
this dynamic market environment. As software
industry models of reuse are not sufficiently robust,
we have looked to traditional manufacturing
industries for guidance; moulding their models to fit
the imperfect data base of software decision making.

This paper proposes a cost benefit analysis based
model which, when combined with a methodology,
software engineering tooling and organizational
guidelines, will enable the engineering management
to effectively balance product specific and platform
reuse requirements, in a cost and market effective
manner.

As this model has not yet been adopted, the
paper also describes the steps necessary to fit the
proposed approach to a specific organization and
how the calculus would provide objective
componentization and reuse data. Solution
management in the design of new product lines
would leverage this. Comparative examples are
given covering the first product in a new line, new
market segment and the first product in a product
line largely similar to an existing line. These two
scenarios have significantly different subjective
influences, requiring different use of the cost/benefit
analysis.

REFERENCES

Clements, Paul C., McGregor, John D., Cohen, Sholom
G., 2005. The Structured Intuitive Model for Product
Line Economics (SIMPLE), Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA.

Dale R. Peterson, F. van der Linden (Ed.), 2004.
Economics of Software Product Lines, PFE 2003,
LNCS 3014, pp. 381–402, 2004. Springer-Verlag
Berlin Heidelberg.

Iansiti, Marco and Levien, Roy., 2004. The Keystone
Advantage: What the New Dynamics of Business
Ecosystems Mean for Strategy, Innovation, and
Sustainability, Harvard Business Press.

Malan, Ruth, Wentzel, Kevin, 1993. Economics of
Software Reuse Revisited, Software Technology
Laboratory.

ii Conditional on Product 3 being produced, the probability of its upgrade
being produced is assessed as 0.75. Thus, the probability of producing the
upgrade is 0.9*0.75 = 0.68. Similarly, the conditional probability of
upgrades to products 4 and 5 being produced is 0.5.
iii This is the cumulative saving for the first product plus its upgrade.
Overhead for the year is assumed to be incurred regardless of whether the
next reuse instance is actualized (i.e. a semi-fixed cost, such as salaries).

ICE-B 2010 - International Conference on e-Business

254

McGrath, Michael E. 2001. Product Strategy for High-
Technology Companies: Accelerating Your Business
to Web Speed, McGraw-Hill.

Rine, David C., Nada, Nader 1998. Software Reuse
Manufacturing Reference Model: Development and
Validation, School of Information Technology and
Engineering, George Mason University, Fairfax,
Virginia.

Robertson, David, Ulrich, 1998. Karl Planning for
Product Platforms, Sloan Management Review.

Viguerie, Patrick, Smit, Sven and Baghai, Mehrdad,
2008. The Granularity of Growth: How To Identify
The Sources Of Growth And Drive Enduring Company
Performance, John Wiley & Sons (US).

SHARE VS. OWN - Software Reuse using Product Platforms

255

