
MODEL CHECKING IS REFINEMENT
From Computation Tree Logic to Failure Trace Testing

Stefan D. Bruda and Zhiyu Zhang
Department of Computer Science, Bishop’s University, Sherbrooke, Quebec J1M 1Z7, Canada

Keywords: Formal methods, Verification and validation, Failure trace testing, Computation tree logic, Model checking,
Model-based testing, Stable failure, Temporal logic.

Abstract: Two major systems of formal conformance testing are model checking and algebraic model-based testing.
Model checking is based on some form of temporal logic. One powerful and realistic logic being used is
computation tree logic (CTL), which is capable of expressing most interesting properties of processes such as
liveness and safety. Model-based testing is based on some operational semantics of processes (such as traces,
failures, or both) and associated preorders. The most fine-grained preorder beside bisimulation (mostly of
theoretical importance) is based on failure traces. We show that these two powerful variants are equivalent, in
the sense that for any CTL formula there exists a set of failure trace tests that are equivalent to it. Combined
with previous results, this shows that CTL and failure trace tests are equivalent.

1 INTRODUCTION

We refer to conformance testing as the process of for-
mally proving or disproving the correctness of a sys-
tem with respect to a certain specification or property.
In (formal) model-based testing test cases are derived
systematically and automatically from the specifica-
tion; we then run the test cases against the system
under test and observe the final results of the run.
In model checking the specification of the system is
described by temporal logic formulae; we then con-
struct a model of the system and we check whether
the model satisfies the given specification formula.

In this paper we focus on CTL, one particular tem-
poral logic. We also focus on arguably the most pow-
erful method of model-based testing, namely failure
trace testing (Langerak, 1989).

Some properties of a system may be naturally
specified using temporal logic, while others may be
specified using finite automata or labelled transition
systems. Such a mixed specification could be given
by somebody else, but most often algebraic specifica-
tions are just more convenient for some components
while logic specifications are more suitable for others.
Consider some properties expressed as CTL formulae
that hold for some part A of a larger system. They
could be model checked so we know that part A is cor-
rect. The specification of a second part B of the same
system is algebraic. We can do model-based testing

on it and once more be sure that part B is correct.
Now we put them together. The result is not automat-
ically correct. We do not even have a global formal
specification: part of it is logic, and other part is al-
gebraic. Before everything else we thus need to con-
vert one specification to the form of the other. We de-
scribe here precisely such a conversion: We show that
for each CTL formula there exists an equivalent fail-
ure trace test suite. Combined with previous results
(Bruda and Zhang, 2009)—where the conversion the
other way around is established—we effectively show
that CTL and failure trace testing are equivalent.

We are thus opening the domain of combined (al-
gebraic and logic) methods of conformance testing.
While the amount of work in both logic and alge-
braic areas of conformance testing is huge, work in
this combined area is scarce. Specifically, we are
aware of some work in relating LTL and De Nicola
and Henessy testing (Cleaveland and Lüttgen, 2000)
but we are not aware of any work relating CTL and
failure trace testing.

2 PRELIMINARIES

A Kripke structureover a setAP of atomic propo-
sitions is a tupleK = (S,S0,→,L). S is the set of
states,S0 ⊆ S is the set of initial states,→⊆ S× S

173
D. Bruda S. and Zhang Z. (2010).
MODEL CHECKING IS REFINEMENT - From Computation Tree Logic to Failure Trace Testing.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 173-178
DOI: 10.5220/0003006801730178
Copyright c© SciTePress

is the transition relation (s→ t is short for(s, t) ∈→),
L : S→ 2AP specifies which propositions are true in
each state. Apath in a Kripke structure is a sequence
q0 → q1 → q2 → ··· such thatqi → qi+1 for all i ≥ 0.

Temporal logics include CTL*, CTL and LTL
(Clarke et al., 1999). LTL and CTL are strict sub-
sets of CTL*. CTL* features two path quantifiersA
andE (for all/some computation paths) and five ba-
sic temporal operators:X “next”, F “eventually”, G
“always” or “globally”, U “until”, and R “releases”;
we have state formulae (that hold in a state) and path
formulae (that hold along a path). In CTL the tempo-
ral operators must be immediately preceded by a path
quantifier. The syntax of CTL formulae can thus be
defined as follows: Witha ranging overAP, and f ,
f1, f2 ranging over state formulae,

f = ⊤ | ⊥ | a | ¬ f | f1∧ f2 | f1∨ f2 |

AX f | AF f | AG f | A f1 U f2 | A f1 R f2 |

EX f | EF f | EG f | E f1 U f2 | E f1 R f2

The semantics of CTL formulae is defined by the
satisfaction operator�. The notationK,s� f [K,π �

f] means that in a Kripke structureK, formula f is
true in states [along pathπ]. The meaning of� is
defined inductively.f andg are state formulae unless
stated otherwise. We useπi to denote thei-th state of
a pathπ (with the first state being state 0, orπ0).

1. K,s�⊤ is true andK,s�⊥ is false.

2. K,s� a, a∈ AP iff a∈ L(s).

3. K,s� ¬ f iff ¬(K,s� f).

4. K,s� f ∧g iff K,s� f andK,s� g.

5. K,s� f ∨g iff K,s� f or K,s� g.

6. K,s� E f for some path formulaf iff there is a
pathπ = s→ s1 → s2 → ··· → si s.t. K,π � f .

7. K,s�A f for some path formulaf iff K,π � f for
all pathsπ = s→ s1 → s2 → ··· → si .

8. K,π � X f iff K,π1
� f .

9. K,π � f U g iff there existsj ≥ 0 such thatK,πk
�

g for all k≥ j, andK,πi
� f for all i < j.

10. K,π � f R g iff for all j ≥ 0, if K,πi 6� f for every
i < j thenK,π j

� g.

The common model used for system specifica-
tions in model-based testing is the labelled transi-
tion system (LTS), where the labels or formulae are
associated with the transitions instead of states. In
model-based testing (De Nicola and Hennessy, 1984;
Tretmans, 1996) sound and complete test cases are
derived from a model (an LTS) that describes some
functional aspects of the system under test. The sys-
tem under test is also modelled as an LTS.

An LTS is a tupleM = (S,A,→,s0). S is a count-
able set of states,s0 ∈ S is the initial state.A is a set
of labels denoting visible (or observable) events (or
actions).→⊆ S× (A∪{τ})×S is the transition rela-
tion, whereτ 6∈ A is the internal action that cannot be
observed by the external environment. We often use
p

a
−→ q instead of(p,a,q) ∈→; p

a
−→ is a shorthand

for ∃ q : p
a

−→ q. We blur the distinction between an
LTS and a state, calling them both “processes” (since
a state defines completely an LTS under a global→).

A path (or run) π starting from statep is a se-
quencep0

a1−→ p1
a2−→ ·· · pk−1

ak−→ pk, k ∈ N such
that p0 = p and pi−1

ai−→ pi , 0< i ≤ k; |π| is k, the
length ofπ. The trace ofπ is the sequence trace(π) =
(ai)0<i≤|π|,ai 6=τ ∈ A∗. Π(p) denotes the set of all the

paths starting from statep. p
w

=⇒ p′ states that there
exists a sequence of transitions whose initial state is
p, whose final state isp′, and whose visible transi-
tions form the sequencew. The notationp

w
=⇒ stands

for ∃ p′ : p
w

=⇒ p′. The traces of a processp are
traces(p) = {w : p

w
=⇒}. The finite traces of a pro-

cessp are defined as Fin(p) = {w : p
w

=⇒, |w| ∈N}.
A processp which can make no internal progress

(i.e., has no outgoing internal actions) is said to besta-
ble(Schneider, 2000):p↓=¬(∃ p′ 6= p : p

τ
−→ p′). If

there is no actiona∈ X to which a processp can react
thenp will refuse X: p refX iff ∀a∈X :¬(∃ p′ : p

ε
=⇒

p′ ∧ p′ ↓ ∧p′
a

−→). (w,X) is called astable failure
(Schneider, 2000) ofp whenever∃ pw : p

w
=⇒ pw∧

pw ↓ ∧pw ref X. The set of stable failures ofp is then
SF(p) = {(w,X) : ∃ pw : p

w
=⇒ pw∧ pw ↓ ∧pw ref X}.

Thenp⊑SFq iff Fin (p)⊆ Fin(q) and SF(p)⊆ SF(q).
We call⊑SF thestable failure preorder.

Systems and tests can be concisely described us-
ing the testing language TLOTOS (Brinksma et al.,
1987; Langerak, 1989).A is the countable set of ob-
servable actions, ranged over bya and excluding the
three special actionsτ,θ,γ 6∈ A. The set of processes
or tests is ranged over byt, t1 andt2; T ranges over
the sets of processes or tests. The syntax of TLOTOS
is then:

t = stop| a; t1 | i; t1 | θ; t1 | pass| t1 � t2 | ΣT.

The semantics of TLOTOS is defined as follows:

1. inaction (stop): no rules.

2. action prefix:a; t1
a

−→ t1 andi; t1
τ

−→ t1

3. deadlock detection:θ; t1
θ

−→ t1.

4. successful termination: pass
γ

−→ stop.

5. choice: withg∈A∪{γ,θ,τ}, t1
g

−→ t ′1: t1 � t2
g

−→

t ′1, t2 � t1
g

−→ t ′1.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

174

6. generalized choice: withg ∈ A∪{γ,θ,τ}, t1
g

−→

t ′1: Σ({t1}∪T)
g

−→ t ′1.

γ signals the successful completion of a test andθ is
the deadlock detection label. Anyprocess(or LTS)
can be described as a TLOTOS process not containing
γ andθ. A failure trace teston the other hand is a full
TLOTOS process, i.e., may containγ andθ. A test
runs in parallel with the system under test according
to the parallel composition operator‖θ, which defines
the semantics ofθ as the lowest priority action:

p
τ

−→ p′

p‖θt
τ

−→ p′‖θt

t
τ

−→ t ′

p‖θt
τ

−→ p′‖θt

t
γ

−→ stop

p‖θt
γ

−→ stop

p
a

−→ p′

t
a

−→ t ′

p‖θt
a

−→ p′‖θt ′
a∈ A

t
θ

−→ t ′

p‖θt
θ

−→ p‖θt ′
¬∃ x∈ A∪{τ,γ} : p‖θt

x
−→

The outcome ofπ∈ Π(p‖θt) is success (⊤) when-
ever the last symbol in trace(π) is γ, and failure (⊥)
otherwise. The set of outcomes of all the runs in
Π(p‖θt) is denoted byO(p, t). Then p may t iff
⊤ ∈ O(p, t), and p must t iff {⊤} = O(p, t). ⊑SF
can be characterized in terms of may testing only:

Proposition 1. (Langerak, 1989).Let p1 and p2 be
processes. Then p1 ⊑SF p2 iff p1 mayt =⇒ p2 mayt
for all failure trace tests t.

3 PREVIOUS WORK

We summarize our previous results intimately related
to this paper (Bruda and Zhang, 2009). We define
first an LTS satisfaction operator similar to the one on
Kripke structures in a natural way.

Definition 1. (Bruda and Zhang, 2009). A process
p satisfies a∈ A, written by abuse of notation p� a,
iff p

a
−→. That p satisfies some (general) CTL* state

formula is defined inductively as follows: Let f and g
be some state formulae unless stated otherwise; then,

1. p�⊤ is true and p�⊥ is false for any process p.
2. p� ¬ f iff ¬(p� f).
3. p� f ∧g iff p� f and p� g.
4. p� f ∨g iff p� f or p� g.
5. p� E f for some path formula f iff there is a path

π = p
a0−→ s1

a1−→ s2
a2−→ ·· · such thatπ � f .

6. p� A f for some path formula f iff p� f for all
pathsπ = p

a0−→ s1
a1−→ s2

a2−→ ·· · .
7. π � X f iff π1

� f .

8. π � f U g iff there exists j≥ 0 such thatπ j
� g

andπk
� g for all k≥ j, andπi

� f for all i < j.
9. π � f R g iff for all j ≥ 0, if πi 6� f for every i< j

thenπ j
� g.

We also need to define a weaker satisfaction oper-
ator for CTL*.

Definition 2. (Bruda and Zhang, 2009).Consider a
Kripke structure K= (S,S0,→,L) overAP. For some
set Q⊆ S and some CTL* state formula f we define
K,Q � f as follows, with f and g state formulae un-
less stated otherwise:

1. K,Q �⊤ is true and K,Q �⊥ is false for any set
Q in any Kripke structure K.

2. K,Q� a, a∈ AP iff a ∈ L(s) for some s∈ Q.
3. K,Q� ¬ f iff ¬(K,Q� f).
4. K,Q� f ∧g iff K,Q� f and K,Q� g.
5. K,Q� f ∨g iff K,Q� f or K,Q� g.
6. K,Q � E f for some path formula f iff for some

s∈ Q there exists a pathπ = s→ s1 → ··· such
that K,π � f .

7. K,Q � A f for some path formula f iff for some
s∈ Q it holds that K,π � f for all pathsπ = s→
s1 → ··· .

We introduce the following equivalence relation:

Definition 3. (Bruda and Zhang, 2009).Given a
Kripke structure K and a set of states Q, K,Q is equiv-
alent to a process p, written K,Q≃ p (or p≃ K,Q),
iff for any CTL* formula f , K,Q� f iff p � f .

Proposition 2. (Bruda and Zhang, 2009).There ex-
ists an algorithmic functionξ which converts an LTS
p into a Kripke structure K and a set of states Q such
that p≃ (K,Q).

Specifically, for any LTS p= (S,A,→,s0), its
equivalent Kripke structure K is defined as K=
(S′,Q,R′,L′) where S′ = {〈s,x〉 : s∈ S,x ⊆ init(s)},
Q = {〈s0,x〉 ∈ S′}, L′ : S′ → 2A such that L′(s,x) =
x, and R′ contains exactly all the transitions
(〈s,N〉,〈t,O〉) ∈ S′×S′ such that:(a) for any n∈ N,
s

n
=⇒ t, (b) for some q∈ S and for any o∈ O, t

o
=⇒ q,

and (c) if N = /0 then O= /0 and t= s (these loops
ensure that the relation R′ is complete).

Using such a conversion we can define the seman-
tics of CTL* formulae with respect to a process rather
than Kripke structure.

Let now P be the set of all processes,T the set
of all the failure trace tests, andF the set of all CTL
formulae. We have:

Proposition 3. (Bruda and Zhang, 2009).There ex-
ists a functionψ : T → F such that for any process
p, pmayt iff ξ(p) � ψ(t).

MODEL CHECKING IS REFINEMENT - From Computation Tree Logic to Failure Trace Testing

175

4 CTL IS EQUIVALENT TO
FAILURE TRACE TESTING

We go now in the opposite direction from Proposi-
tion 3 and show that CTL formulae can be converted
into failure trace tests. Recall thatP is the set of
processes,T the set of failure trace tests, andF the
set of CTL formulae. By abuse of notation we write
p mayT for someT ⊆ T iff p mayt for all t ∈ T.

Theorem 4. There exists a functionω : F → 2T such
that for any process p,ξ(p) � f iff p mayω(f).

Proof. The proof is done by structural induction over
CTL formulae.

Let ω(⊤) = {pass}. Any Kripke structure sat-
isfies ⊤ and any process passes pass, soξ(p) � ⊤
iff p may {pass} = ω(⊤). Similarly ξ(p) � ⊥ iff
p may {stop} (namely, never!), so we putω(⊥) =
{stop}. We then putω(a) = {a;pass}, noting that
ξ(p) � a iff p maya;pass by the definition ofξ.

For exactly all the testst ∈ ω(f) we addt ′ to
ω(¬ f), wheret ′ is generated out oft using the fol-
lowing algorithm: We force all the successful states
to become deadlock states (i.e., we eliminateγ from
t); whenever the test would have reached a successful
state, it now reaches a deadlock state and fails. Then
we introduce an actionθ followed by an actionγ (suc-
cess) to all the states except the ones that were success
states originally; this way,t ′ can succeed in any state
other than the original success states. This conversion
is very similar to the construction of a finite automa-
ton that accepts the complement of a given language
(Lewis and Papadimitriou, 1998), and its correctness
can be established using a similar argument.

We put ω(f1 ∧ f2) = ω(f1) ∪ ω(f2). Indeed,
ξ(p) � f1 ∧ f2 iff ξ(p) � f1 and ξ(p) � f2 iff
p mayω(f1) andp mayω(f2) (by induction hypothe-
sis) iff p mayω(f1)∪ω(f2). Wheneverξ(p) � f1∧ f2
the processp should pass all of the tests inω(f1) and
ω(f2) (and the other way around).

We have ω(f1 ∨ f2) = ω(¬(¬ f1 ∧ ¬ f2)) by
De Morgan rules (¬(f1 ∨ f2) = ¬ f1 ∧¬ f2) and the
previous definitions ofω(¬ f) andω(f1∧ f2).

Now we put ω(EX f) = {Σ{a; t : a ∈ A} : t ∈
ω(f)}. As shown in Figure 1, the test suite combines
a choice of action from all the available actions with
the tests fromω(f). p mayω(EX f) iff p passes each
all test cases above, equivalent top being able to per-
form an action (any action!) and then pass the tests
in ω(f). By the inductive assumption thatω(f) is
equivalent tof , the above is equivalent toξ(p)� EX f
(namely, perform any action then satisfyf).

We then haveω(AX f)= {a; t � θ;pass :a∈A, t ∈
ω(f)}. As shown in Figure 2, the test suite is gener-

ated by combining an action and a test fromω(f).
When the action is not provided, a deadlock detection
transition takes place and leads to a pass state (so that
particular test does not play any role). The test suite
is generated by providing all the possible actions; the
system under test however does not necessarily have
to perform all the possible actions before going to the
point where the tests are fromω(f). When the sys-
tem under test runs in parallel with the test case, we
get a deadlock whenever the respective action is not
encountered in the system; this leads to a pass state
and then we continue to check the results of the other
runs with the other test cases.p may ω(AX f) iff p
passes each of the test cases above, i.e., wheneverp
can perform an action then after performing it (in the
next state) it passes all the tests inω(f) (which by
inductive assumption is equivalent to the formulaf).

We putω(EF f) = {t ′ = i; t � i;(Σ{a; t ′ : a∈ A}) :
t ∈ ω(f)}. A (slightly simplified) way of depicting
each test fromω(EF f) graphically is shown in Fig-
ure 3(a). The test suite is generated by combining a
choice of actions and the tests inω(f). Then, we com-
bine a choice of action followed by another choice of
action with the tests inω(f), and so on until the last
layer of the the Kripke structure (viewed as a tree).
The resulting test suite is highly nondeterministic.p
satisfiesEF f iff p passesω(f), or p performs one
action and in the next state passesω(f), or p can per-
form two actions and then passesω(f) and so on.
Clearly this corresponds to the formulaEF f given
the induction hypothesis thatω(f) is equivalent tof .

The conversion of the remaining CTL operators is
partially based on “unfolding” these operators using
the operators considered above, nothing that we have
already established the test sets for these operators.

Let ω(AF f) = {i; t � i; t ′ : t ∈ ω(f), t ′ ∈
ω(AX f ′)}, with f ′ = f ∨AX f ′}; f ′ is a recursive
definition. Unfolding f ′ yields f or AX (f ∨AX f ′)
or AX (f ∨AX (f ∨AX f ′)), and so on. The process
should satisfy any of the unfolded formulae in order to
satisfyAF f . That is, the root state of a Kripke struc-
ture must satisfyf (the root being common to every
path, this satisfies the original formula); otherwise,
every next state either satisfiesf (so the respective
path is delivered from all its obligations) or has a set
of next states that all satisfy (recursively)f ′, meaning
that they satisfy the same requirement. In terms of
LTS, a process either passesω(f) or performs some
action to the second layer states; all of these (second
layer) states now either satisfyω(f) themselves or
have a set of next states that all satisfy (recursively)
ω(f ′). These are clearly equivalent.

Similarly, we putω(EG f) = ω(f) ∪ ω(EX f ′),
with f ′ = f ∧EX f ′. When we unfoldf ′ we getf and

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

176

n

. . .

. . .

. . .

. . .

. . .

. . .

. . .a1 a2

t1 t1

an

t1

a1

t2

a2

t2

an

t2

a1

tn

a2

tn

an

t

Figure 1: Test suite for the CTL formulaEX f .

1

. . .

pass

θ

pass

θ
. . .

. . .

pass

θ

pass

θ
a1 an a1 an

tntnt1t

Figure 2: Test suite for the CTL formulaAX f .

EX (f ∧EX f ′) andEX (f ∧EX (f ∧EX f ′)) and so
on. The process should satisfy all of the unfolded for-
mulae in order for the the process satisfy the original
formulaEG f . In a Kripke structure, the states in the
first layer need to satisfyf and then some next states
(in the second layer) need to satisfy the formulaf and
also need to have some next states (in the third layer)
that satisfy (recursively)f ′. In terms of LTS, the pro-
cess need to passω(f) and then perform some action
to the second layer states that then passω(f) and also
(recursively)ω(f ′). Again, these are equivalent.

Once more similarly we putω(AG f) = ω(f)∪
ω(AX f ′), f ′ = f ∧AX f ′. Unfolding f ′ yields f and
AX (f ∧AX f ′) andAX (f ∧AX (f ∧AX f ′)), etc.
Figure 3(b) illustrates that the test suite is generated
by combining a choice of action and the tests inω(f),
then a choice of two actions followed by the tests in
ω(f), etc. p satisfiesAG f iff p passes the tests in
ω(f), i.e., p can perform an action and then in the
next states pass the tests inω(f), andp can perform
two actions and then pass the tests fromω(f), etc.

Finally, ω(E f1 U f2) = {t1 � i; t2 : t1 ∈ ω(f1)∪
ω(EX f ′), t2 ∈ ω(f2) ∪ ω(EX f ′′)}, with f ′ = f1 ∧
EX f ′ and f ′′ = f2∧EX f ′′. This is similar to theEG f
case, but now every path is allowed at some point to
switch from states satisfyingf ′ to states satisfyingf ′′.
Unfolding f ′ and f ′′ yield f1 andEX (f1∧EX f ′) and
EX (f1∧EX (f1∧EX f ′)) and so on, until we change
via an internal action tof2 andEX (f2∧EX f ′′) and
EX (f2∧EX (f2∧EX f ′′)), etc. In a Kripke structure,
the states in the first layer need to satisfy the formula
f1 and then some successive states in the second layer
need to satisfy the formulaf1, etc.. At some point
however, some states need to satisfy the formulaf2
and from then on some successive states need to sat-
isfy f2 along the whole path. In terms of LTS, the
process need to passω(f1) and then perform some
action to the second layer of states where some state

needs to passω(f1) again, and so on until some point
where some state passesω(f2); from then on, some
state from every layer needs to passω(f2).

All the remaining CTL constructs can be rewrit-
ten using only the constructs discussed above. In-
deed,A f1R f2 ≡ ¬E (¬ f1 U ¬ f2), E f1 R f2 ≡
¬A (¬ f1 U ¬ f2). andA f1 U f2 ≡ ¬E (¬ f2 U (¬ f1∧
¬ f2))∧¬EG (¬ f2). The proof is thus complete.

5 CONCLUSIONS

We defined previously a functionψ that converts any
failure trace test into an equivalent CTL formula.
Now we definedω, the function that convert CTL for-
mulae into equivalent failure trace test suites.

It is worth mentioning that the functionξ creates a
Kripke structure that may have multiple initial states,
and so we were forced to use a weaker satisfaction op-
erator. We note however that such an issue manifests
itself only when the LTS being converted exhibitsini-
tial nondeterminism(Bruda and Zhang, 2009), which
can be eliminated by creating a new start state that
performs a “start” action and then gives control to the
original LTS. Our results are thus without loss of gen-
erality: in the absence of initial nondeterminism the
proofs of Theorem 4 (and also Propositions 2 and 3)
revert to the normal satisfaction operator.

This work opens the way toward a combined,
logical and algebraic approach to conformance test-
ing. This is extremely important for large sys-
tems with components at different level of matu-
rity. The canonic example is a communication pro-
tocol: the end points are algorithms that are likely
to be amenable to algebraic specification, while the
communication medium is something we don’t know
much about. It could be a direct link, a local network
or something else. However, its properties are ex-

MODEL CHECKING IS REFINEMENT - From Computation Tree Logic to Failure Trace Testing

177

t

. . .

.

τ
τ τ τ

a A a A

a A

a A

a A

t

t

t

. . .

t

t

t

t

Aa a A

a A

a A

a A

. . .

. . .

(a) (b)

Figure 3: Test suite for the CTL formulaeEF f (a) andAG f (b). The suite is depicted partially, namely only for onet ∈ ω(f).

pressible using temporal logic formulae. In general,
our conversions allow the use of the fastest, most suit-
able, or even most preferred method of conformance
testing, irrespective to the form of the specification.

Our results are important first steps toward a uni-
fied (logic and algebraic) approach to conformance
testing. We believe in particular that this paper opens
several direction of future research. The main chal-
lenge in the method we introduced is dealing with the
infinite-state test cases. Indeed, the test cases pro-
duced from CTL temporal logic formulae are infi-
nite. This is fine theoretically, but from a practical
perspective it is worthy of future work to eliminate
infinite states or to obtain usable algorithms than sim-
ulate runs of infinite-state test suites with the system
under test and obtain useful results in finite time. The
tests developed here can be combined with partial ap-
plication so that another interesting research direction
is to find partial application algorithms that yield to-
tal correctness at the limit and have some correctness
insurance milestones along the way.

On the conversion the other way around (from
tests to CTL formulae) we note that the obtained for-
mulaeψ(t) may not be in their simplest (or more con-
cise) form possible in several respects. More signifi-
cantly, the formulae may even have an infinite length
(this happens for infinite tests), since they don’t really
exploit the operatorsG, F, U, andR. We have strong
reasons to believe that bringing them to more manage-
able proportions is possible, and this is one subject of
our research.

ACKNOWLEDGEMENTS

This research was supported by the Natural Sciences
and Engineering Research Council of Canada. Part of
this research was also supported by Bishop’s Univer-
sity.

REFERENCES

Brinksma, E., Scollo, G., and Steenbergen, C. (1987). LO-
TOS specifications, their implementations and their
tests. InIFIP 6.1 Proceedings, pages 349–360.

Bruda, S. D. and Zhang, Z. (2009). Refinment is model
checking: From failure trace tests to computation tree
logic. In Proceedings of the 13th IASTED Interna-
tional Conference on Software Engineering and Ap-
plications (SEA 09), Cambridge, MA.

Clarke, E. M., Grumberg, O., and Peled, D. A. (1999).
Model Checking. MIT Press.

Cleaveland, R. and Lüttgen, G. (2000). Model checking
is refinment—Relating Büchi testing and linear-time
temporal logic. Technical Report 2000-14, ICASE,
Langley Research Center, Hampton, VA.

De Nicola, R. and Hennessy, M. C. B. (1984). Testing
equivalences for processes.Theoretical Computer Sci-
ence, 34:83–133.

Langerak, R. (1989). A testing theory for LOTOS using
deadlock detection. InProceedings of the IFIP WG6.1
Ninth International Symposium on Protocol Specifica-
tion, Testing and Verification IX, pages 87–98.

Lewis, H. R. and Papadimitriou, C. H. (1998).Elements of
the Theory of Computation. Prentice-Hall, 2nd edi-
tion.

Schneider, S. (2000).Concurrent and Real-time Systems:
The CSP Approach. John Wiley & Sons.

Tretmans, J. (1996). Conformance testing with labelled
transition systems: Implementation relations and test
generation. Computer Networks and ISDN Systems,
29:49–79.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

178

