
A TOOL FOR USER-GUIDED DATABASE APPLICATION
DEVELOPMENT

Automatic Design of XML Models using CBD

Carlos Rossi, Antonio Guevara, Manuel Enciso, José Luis Caro
Dpto. Lenguajes y CC de la Computación, Universidad de Málaga, Málaga, Spain

Angel Mora, Pablo Cordero
Dpto. Matemática Aplicada, Universidad de Málaga, Málaga, Spain

Keywords: Software development tools, Requirements elicitation and specification, Analysis and design, Functional de-
pendencies, Logic.

Abstract: Beyond the database normalization process, much work has been done on the use of functional dependencies
(FDs), their discovery using mining techniques, their use in query optimization and in the design of algorithms
dealing with the implication problem etc. Nevertheless, although much research expounds the benefits of using
functional dependencies, only a few modeling tools actually use them. In this work we present CBD, a new
software development tool which allows end users to specify their requirements. CBD allows the user to design
his/her own GUI for the application using forms and interface elements and it builds a meta-data dictionary
with information on functional dependencies. This data dictionary will be used to generate the unified data
model and a behavior model.

1 INTRODUCTION

Database design is not only a matter of dealing with
the data that has to be stored. Since E.F. Codd in-
troduced the Relational Model (Codd, 1970), experts
have agreed on the importance of storing both the data
and the semantics related to it.

Most relational database management systems
(DBMS) and modeling tools use dependencies in a
simple way and they rely on the specification of pri-
mary keys. The reason is that the number of keys are
just equal to the number of tables in a database model,
but the number of functional dependencies (FDs) are
greater and they are more complex, because they may
establish a relation among attributes that are in differ-
ent tables (using the inclusion dependencies). Thus,
the main obstacle is not the inclusion of FDs but their
efficient treatment.

In (Evaluation, 1000) a new architecture which
promotes the use of FDs was presented. The work
focussed on the problem of view integration and pro-
posed FDs as a key tool to discover knowledge and to
facilitate the integration task. In addition to this ar-
chitecture, a set of efficient methods to manage func-

tional dependencies should be considered. In the lit-
erature, functional dependencies are dealt with using
ad hoc methods designed for specific purposes which
are difficult to extend. An alternative approach is to
use a proper subset of classical logic to reason about
FDs. There are many equivalent logics in the litera-
ture which follow this approach and all of them are
very similar to that proposed by (Armstrong, 1974).
As we will mention later however, these logics are
not appropriate for automated reasoning. In (Cordero
et al., 2002) a new kind of FD logic which allows the
design of automated methods is presented (Cordero
et al., 2002).

In this work we present CBD 1, a new modeling
tool which allows the user to participate directly in the
design process. Unlike the classical tools, CBD pro-
vides an interface to design directly each user view
of the application. The information is captured using
GUI elements (forms, buttons, etc) and they are stored
in a meta-data dictionary. We have used an XML
database instead of a relational database because we
need flexible data storage, easy to share with other

1Spanish acronym for Cooperation in Databases.

195
Rossi C., Guevara A., Enciso M., Luis Caro J., Mora A. and Cordero P. (2010).
A TOOL FOR USER-GUIDED DATABASE APPLICATION DEVELOPMENT - Automatic Design of XML Models using CBD.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 195-200
DOI: 10.5220/0003009401950200
Copyright c© SciTePress



applications. The FDs deduced from the GUI ele-
ment connections provide some valuable information.
CBD works by using the XML dictionary to gene-
rate the unified data model and the application code
to cover user requirements. In (Nelson et al., 2005)
the quality of data models is studied and redundancy
elimination is cited as one of the important issues for
increasing software quality. We will use an automated
method based on FD Logic to reduce redundancy in
the CBD dictionary.

The paper is organized as follows: in section 2
CBD is introduced and a comparison with other com-
mercial tools is shown. Section 3 is devoted to pre-
senting some efficient methods to reason with FDs
and an explanation of how to use these methods to
reduce redundancy in the CBD XML data dictionary.
After the conclusions are drawn and the plans for fu-
ture work are outlined in section 5, we include an ap-
pendix which illustrates how CBD works.

2 SOFTWARE DEVELOPMENT
TOOLS

Nowadays, software development can be approached
in two ways depending on who leads it:

1. Software development by professional teams,
who gather user requirements by means of inter-
views, document inspection, etc. In this case, de-
velopers apply a direct engineering process, using
a variety of CASE tools, such as (UML) model-
ing tools, integrated development environments,
project management tools, etc.

2. Software development by the end user by means
of application generators. These tools allow users
to edit the application interface and to generate
the end application (usually with a web architec-
ture). This low-cost approach, although adequate
for individuals and small businesses, is not op-
timal, since these tools are very limited in the
management of non-trivial data relations and they
have other drawbacks that reduce software qual-
ity.

CBD combines both types of development and
also improves software quality using automated rea-
soning techniques. As we shall see in the following
section, we apply an efficient transformation to the
CBD data model and we reduce redundancy in the
specification of the FDs. The simplification method
produces a refined data model and consequently the
corresponding relational database will be easier to
manage.

2.1 CBD Overview.

CBD was developed in order to solve one of the
main problems in professional software development:
vagueness and incorrectness in gathering user require-
ments, which leads to serious flaws in the final prod-
uct. This problem, widely detailed in Software En-
gineering literature (Pressman, 2006), has been tra-
ditionally approached by introducing new modeling
techniques or applying process models that increase
client interaction, such as iterative models (Jacobson
et al., 2000) or agile processes (Martin, 2003). Never-
theless, in these approaches a human (the analyst) is
still needed to translate the information provided by
the client into requirements and models. This trasla-
tion usually causes mistakes generated by errors in
analyst interpretation or by ambiguities and omissions
in the client information.

CBD aims to solve this problem by avoiding the
leading role of the analyst in requirement gathering:
in CBD the end user records directly the input for
requirements specification by means of collaborative
techniques. More specifically, the user designs in-
tuitively the GUI s/he wishes to have in their ap-
plication, and then CBD that generates a catalogue
of functional and information requirements (Guevara
et al., 2007; Carrillo et al., 2008). The CBD engine
processes this catalogue and it creates a relational
database for the user application, as well as structural
(classes), use case and behaviour (interaction) models
in UML notation. These models are stored in XMI
format. In this way, models can be imported in widely
used CASE tools (MagicDraw, Enterprise Architect,
Rational, etc), where an analyst could optimize the
results automatically generated by CBD.

CBD manages semistructured data using eXist-
db, a native XML database management system. In
particular, requirements metadata, as well as user in-
terface specifications are stored in XML documents.
This architecture allows the application of reason-
ing methods for the treatment of dependencies in
semistructured data and to optimize the relational
database generated by CBD. At the moment, this task
is carried out by a different application not integrated
inside the CBD tool.

2.2 CBD Versus other Similar Tools

To explore the benefits of CDB, we believe it is nec-
essary to compare it with other modeling tools. Be-
cause of the nature of CDB, we have chosen for
this comparison those tools geared to the manage-
ment, generation and creation of forms. There-
fore, for this study we have considered the follow-

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

196



Figure 1: Definition of relations.

ing applications Wufoo (Infinity Box Inc., 2010),
FormSpring (FormSpring LLC, 2010), FormAssem-
bly (Veer West LLC, 2010), JotForm (Interlogy
LLC, 2010), FormLogix (FormLogix.com, 2010) and
Leonardi (Groupe W4 S.A, 2010), all of which have
an analogical approach to CBD. The main feature
common to all these tools is the construction of
an automatic database model, using forms designed
by users who may have no previous knowledge of
databases.

We have organized the comparison according to
the double use which may be made of these tools: ei-
ther by users as a tool to create their own application
or as a tool which captures requirements. First we will
present the characteristics necessary for each of these
uses, indicating which of the tools of the comparison
have these particular features. Then, to close the sec-
tion, we will present a comprehensive table of all the
tools and their respective properties.

Firstly we compare the design and execution of
the forms designed by the users. In this comparison,
the following characteristics should be observed:

1. Most of the applications studied, exclusively im-
plement systems with only one form, or, if sev-
eral are possible, they are unrelated. Only Wu-
foo and Leonardi have multi-form mode possible
and in the latter case it is extremely complicated
to use. CBD addresses this issue and implements
a solution based on the creation of a multi-form
project, with the possibility of establishing navi-
gation flows.

2. Secondly, it is important to study the expressive-
ness of the data models that can be designed. As
can be observed in the comparative table in Fig-

ure 2, most of the tools only allow relations 1:n.
Furthermore, the approach of the tools studied is
to consider these relations as simple sets which
can be selected and displayed, they are not tables.
In this respect, both CBD and Leonardi both al-
low relations 1:n and n:m including parameterized
grids (see Figure 1) . It should be noted that CBD
can define reflexive relations 1:m, a characteristic
which distinguishes it from the other tools.

3. One characteristic which is common to all the
tools is the management of end users in the ap-
plication generated. However, what makes CBD
different is that it contemplates the participation
of various users in the design, allowing user col-
laboration to take place. Furthermore, in keeping
with this approach, CBD also includes a system
that allows users to control and validate different
versions.

As previously mentioned, as well as generating
the application, it is possible to use these tools to ex-
tract requirements and to elaborate models from these
requirements. In this second part of the comparison,
we wish to highlight the following characteristics:

1. CBD allows data model generation in SQL. Other
tools such as FormSpring or FormAssembly also
allow the data model to be exported, but in this
case it is only possible to do so using CSV files,
which must be processed manually in order to be
able to create the relational schema on a database
management system.

2. Another important feature is that CBD offers the
analyst a control panel for the forms and the rela-
tions that the users have designed, thereby allow-

A TOOL FOR USER-GUIDED DATABASE APPLICATION DEVELOPMENT - Automatic Design of XML Models
using CBD

197



ing analysts to obtain better knowledge of the sys-
tem requirements. This characteristic is exclusive
to CBD.

3. As we mentioned previously, our intention is for
CBD to be useful also to professional develop-
ers. For this reason, CBD allows knowledge ac-
quired in requirements gathering to be exported
to other modeling environments (MagicDraw or
Enterprise Architect for example). This is done
in the form of UML class models, use cases and
sequence diagrams, using standard XMI format,
in such a way that this information can be inte-
grated with other information obtained with these
professional modeling tools.

Figure 2 illustrates all the aspects considered in
this study. The table shows in great detail each func-
tionality for all the tools included in this work:

Figure 2: Tools comparison.

From this study, it can be concluded that CBD per-
forms much better than the other tools, and its main
advantages are the following:

• Collaborative design of forms and project man-
agement.

• Expressiveness in the models: it contemplates the
relations 1:n, n:m and the reflexive relations 1:n

• Exportation of the the data model in SQL.

• Advanced control panel for expert users (system
analysts).

• Possibility of modeling the navigation between
forms.

• Exportation of models in XMI format for the inte-
gration with team-based modeling environments.

These characteristics illustrate how CBD is a tool
that allows both form design and the generation of ap-
plications directly by non-expert users. However, un-
like the other tools in this field, CBD is not intended
only for this use and it can also be used in profes-
sional environments, in the same way as commercial
modeling tools, and integrated with these tools. In the
appendix at the end of this work, the CBD work inter-
face and its most important functions are presented in
more detail.

3 FUNCTIONAL DEPENDENCIES
MANAGEMENT

The normalization theory highlights the importance
of the semantic information collected in the FDs of a
schema. In (Armstrong, 1974) the author presents the
well-known Armstrong’s Axioms, a sound and com-
plete inference system for FDs which can be consid-
ered the pioneer for other equivalent FD logics(Fagin,
1977; Paredaens, 1982). All of them have a similar
pattern, their axiomatic systems are strongly based on
the transitivity rule which avoids the development of
automated methods directly based on logics.

In (Cordero et al., 2002) a novel inference rule
for FDs was presented. This rule is the core of a
new sound and complete FD logic named Simplifi-
cation logic for FDs (SLFD ). The new inference sys-
tem does not include the transitivity rule as a primitive
rule. This property allows us to consider Simplifica-
tion logic as an executable logic and to develop effi-
cient deduction methods directly based on the FD in-
ference system. In the following we summarize SLFD :

Definition 1. We define the SLFD logic as the pair
(LFD,SFDS) where LFD is the language

{X→Y | X ,Y ∈ 2Ω with Ω being the attributes set} 2

and SFDS is the following axiomatic system:
bAxc Axiom scheme: if Y ⊆ X

` X→Y

bFRc Fragmentation rule: if Y ′ ⊆ Y

X→Y ` X→Y ′

bCRc Composition rule:

X→Y, U→V ` XU→YV

2As usual, XY is used as the union of sets X ,Y ; X ⊆ Y
as X included in Y ; Y −X are the elements in Y that are not
in X (difference); and → is the FD.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

198



bSRc Simplification rule: if X ⊆U and X ∩Y =∅

X→Y, U→V `U-Y→V -Y

Moreover, we have the following derived rule:
brSRc r-Simplification rule: if X ⊆UV , X ∩Y =∅

X→Y, U→V `U→V -Y

The main characteristic of SLFD logic is the simpli-
fication rule, which was originally developed to be
applied to the redundancy elimination problem. The
inference rules can be rewritten as equivalences that
allow reducing the specification

{X→Y} ≡ {X→Y -X}
{X→Y,X→U} ≡ {X→YU}
{X→Y,U→V} ≡ {X→Y,U-Y→V -Y} if X ⊆U
and X ∩Y =∅
{X→Y,U→V} ≡ {X→Y,U→V -Y} if X ⊆ UV
and X ∩Y =∅

Therefore, applying the SLFD rules, the redun-
dancy (Cordero et al., 2002) can be eliminated, the
closures (Mora et al., 2006) can be calculated and
the implication problem (Mora et al., 2004) can be
solved. This means that by simply applying the infer-
ence rules of the logic, these problems can be solved
with a similar cost to that of the best algorithms ex-
isting in the literature. However in this case using the
logic directly, allows us to analyze the reasoning pro-
cess.

4 FUNCTIONAL DEPENDENCIES
IN ACTION

From the point of view of the practical implementa-
tion of FDs in relational database management sys-
tems, it is clear that FD technology has begun to be
incorporated in commercial tools. Currently, almost
all of them implement the concept of primary key and
candidate key, which is stronger than that of FDs.

At present, it is assumed that relational database
designers should normalize their tables during the de-
bugging process on the original design, which lim-
its the automation of the design process. If the man-
agement systems incorporated directly the concept of
FDs, then these systems could be automatically han-
dled and in this way intelligent debugging of the DB
could be carried out.

The technology for performing this process has
already been developed, but as yet it has not been
included in the management systems. In our opin-
ion the reasons for this are two-fold: firstly there is

no formal framework for the validation and manipu-
lation of FDs using the logic (Cordero et al., 2002)
and secondly there are no tools existing to gather re-
quirements which allow the user or designer to in-
clude their knowledge on FDs.

In this work we present an approach to this prob-
lem, using the formal framework provided by the
SLFD logic and using the information found in the
XML dictionary of CBD In this way, we use CBD as
a tool to capture the requirements with the form being
the main element for the user. We wish to point out
that in CBD each form is not moved directly to a ta-
ble, as is the case for the rest of the form design tools.
As we have mentioned, CBD allows a connection be-
tween various forms belonging to the same user, al-
lowing greater information control and more possi-
bilities as regards restrictions than if there were only
one key per table. This change in the approach allows
the existence of FDs among the attributes input by the
users to be deduced.

Our approach has been to use SLFD -based meth-
ods for FDs about the information contained in the
data dictionary of the CBD. Specifically, we car-
ried out the application of the algorithm presented
in (Cordero et al., 2002) to eliminate redundancy in
the information contained in the XML database. Cur-
rently this debugging process of the restrictions stored
in the CBD is done externally of the CBD, and it is
executed before the CBD generates the unified rela-
tional database model. The algorithm uses the CBD
database, consulting the metadata specification and
extracting the information on the FDs. This informa-
tion is debugged and returned to the CBD so that a
model with less redundancy is generated. This debug-
ging process is efficient, and as presented in (Cordero
et al., 2002), it has a lower cost than the other algo-
rithms dealing with the same problem in the bibliog-
raphy.

5 CONCLUSIONS AND FUTURE
WORK

In this work, we present CBD, a tool which allows
the direct participation of the users. The tool itself
has been presented and a comparison made with other
tools created for the design of forms and the genera-
tion of applications based on this design. In this com-
parison, it can be seen that CBD is a more powerful
tool than the others presented in every sense. Never-
theless our intention is not to bind the use of CBD to
the problem of form design, but rather to open it up to
a greater use in the area of modeling.

The prototyping and generation of applications

A TOOL FOR USER-GUIDED DATABASE APPLICATION DEVELOPMENT - Automatic Design of XML Models
using CBD

199



from an interface design created by the user is a func-
tionality offered by some solutions. Nevertheless, as
far as we know none of them manages FDs nor do
they generate UML models. In this way, the user can
generate better quality applications and we overcome
some of the limitations of other automated application
generators. This differentiates CBD from the other
tools available, as by using the forms designed by the
user, systems analysts can obtain requirements in the
initial development phases of an information system.
Therefore, CBD is extremely useful as a tool for gath-
ering requirements as it allows extracting knowledge
and exporting it for analysis and design processes.

The second contribution of this work is the use
of SLFD logic to eliminate redundancy in the XML
database, which works as a data dictionary of CBD.
This efficient use is possible using an inference sys-
tem, which provides not only soundness, but also al-
lows us to explain the reasoning which has been fol-
lowed in the execution of the application. Our goal
when designing the SLFD logic was to clear the way
for future construction of an automatic technique that
systematizes the use of rules of the axiomatic sys-
tem. In our opinion, it is not enough to know simply
whether a FD is redundant or not, we also need to be
able to report on which FDs allow that deduction and
the SLFD rules used, something that is not possible if
we use the indirect methods that are commonplace in
the literature.

As regards future work, we have begun work in
two areas:

• We are working to produce a second version of
CBD that will generate web applications from its
model. This application can be deployed in the
user servers, or hosted in CBD servers in a com-
bination of PaaS (Platform as a Service) and SaaS
(Software as a Service) models.

• We wish to incorporate the debugging algorithms
of the SLFD logic into the CBD. The objective of
this integration is not only to make the tool easier
to use, but to be able to use the information the
algorithms provide on the reasoning to help the
analyst explain the overlaps in the different views
of the model.

REFERENCES

Armstrong, W. W. (1974). Dependency structures of data
base relationships. In IFIP Congress, pages 580–583.

Carrillo, A. L., Falgueras, J., Dianes, J. A., and Guevara, A.
(2008). A guided interface for web interaction. In Pro-
ceedings of ICEIS 2008 - 10TH International Confer-

ence On Enterprise Information Systems., pages 70–
77.

Codd, E. F. (1970). A relational model of data for large
shared data banks. Commun. ACM, 13(6):377–387.

Cordero, P., Enciso, M., Guzmán, I. P., and Mora, A.
(2002). Slfd logic: Elimination of data redundancy in
knowledge representation. Lecture Notes in Artificial
Intelligence, 2527:141–150.

Evaluation, B. (1000). This is a paper written by one of
the authors of this paper. In We have remove this data
following the submission guidelines for authors. Pub-
lished.

Fagin, R. (1977). Functional dependencies in a relational
database and propositional logic. IBM. Journal of re-
search and development, 21 (6):534–544.

FormLogix.com (2010). http://www.formlogix.com.

FormSpring LLC (2010). www.formspring.com.

Groupe W4 S.A (2010). http://www.lyria.com.

Guevara, A., Caro, J. L., Leiva, J. L., and Gmez, J. L.
(2007). I. comis: Cooperative methodology for in-
formation systems. In Proceedings of ENC’2007 Ad-
vances in Computer Science, pages 81–87.

Infinity Box Inc. (2010). http://wufoo.com/.

Interlogy LLC (2010). http://www.jotform.com/.

Jacobson, I., Booch, G., and J., R. (2000). El proceso unifi-
cado de desarrollo de software. Addison Wesley.

Martin, R. (2003). Agile software development : principles,
patterns, and practices. Prentice Hall.

Mora, A., Aguilera, G., Enciso, M., Cordero, P., and
Guzmán, I. P. (2006). A new closure algorithm based
in logic: Slfd-closure versus classical closures. In-
teligencia Artificial. Revista Iberoamericana de IA,
31:31–40.

Mora, A., Enciso, M., Cordero, P., and Guzmán, I. P.
(2004). The functional dependence implication prob-
lem: optimality and minimality. An efficient pre-
processing transformation based on the substitution
paradigm. Lect. Notes in Artificial Intelligence,
3040:136–146.

Nelson, H. J., Poels, G., Genero, M., and Piattini, M.
(2005). Quality in conceptual modeling: five ex-
amples of the state of the art. Data Knowl. Eng.,
55(3):237–242.

Paredaens, J. (1982). A universal formalism to express de-
compositions, functional dependencies and other con-
straints in a relational database. Theoretical Computer
Science, 19 (2):143–160.

Pressman, R. (2006). Ingenieria del Software. McGraw
Hill.

Veer West LLC (2010). www.formassembly.com.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

200


