
SPECIFICATION AND VERIFICATION OF WORKFLOW
APPLICATIONS USING A COMBINATION OF UML ACTIVITY

DIAGRAMS AND EVENT B

Ahlem Ben Younes and Leila Jemni Ben Ayed
Research Unit of Technologies of Information and Communication (UTIC) ESSTT, Bab Manara, Tunisia

Keywords: Specification, Formal Verification, Validation, UML, Event B, Workflow Applications.

Abstract: This paper presents a transformation of UML activity diagrams (AD) into Event B for the specification and
the verification of workflow applications. With this transformation, UML models could be verified by
verifying derived event B models, automatically, using the B powerful support tools like B4free. The
workflows is initially expressed graphically with UML AD and translated into Event B. The resulting model
is then enriched with Invariants/Assertions describing functional properties of workflow models such as
deadlock-inexistence. We present translation rules of UML AD into EventB, and we propose also a
translation process of UML AD into EventB specifications based on the refinement technique of Event B to
encode the hierarchical decomposition in UML AD. Also, we propose a solution to specify time in Event B,
and by an example of workflow application, we illustrate the proposed technique.

1 INTRODUCTION

The workflow applications are characterized by a
high complexity. Increasingly, they have to obey to
realiabity, safety, timed requirements. Today, UML
AD (Johason, 1998) are considered as an OMG
standard notation in the area of workflow
applications modelling (Dumas, and Hofstede,
2001). However, the fact that UML lacks a precise
semantics is a serious drawback of UML-based
techniques. Also, UML AD is not adapted to the
verification of workflow applications. In previous
works (Ben Younes and Jemni Ben Ayed,
2007,2008), we have proposed a specification and
verification technique for workflow applications
using a combination of UML AD and Event B. The
work presented in this paper is a part of them. The
proposed approach gives readable models and an
appropriate formal method which allows verification
of required properties (no_deadlock, liveness,
fairness) to prove the correctness of the workflow
specification. In this context, several solutions have
been proposed. Some of them use model checking
for the verification. Van der Aalst (Van der Aalst,
2000) proposed a technique which uses Petri nets for
the verification of the correctness of workflow
applications using a compositional verification

approach. Karamanolis and al (Karamanolis and all,
2000) use process algebra for the verification of
workflow properties. Our contribution, in this
context, consists of using event B method and its
associate refinement process and tools for the formal
verification of workflow applications. The
verification is based on a proof technique and
therefore it does not suffer from the state number
explosion occurring in classical model checking as
in the cases of works in (Van der Aalst, 2000),
(Guelfi and Mammar, 2005) and (Karamanolis and
all, 2000). The Event B method (Abrial, 1996b) is a
variant of the B formal method (Abrial, 1996a),
proposed by Abrial to deal with distributed, parallel
and reactive systems (Abrial, 1996b). B models
provides an automatic proof which convince the user
that the system is effectively correct and satisfies
properties which are presented as
invariants/assertion. The concept of refinement is the
key notation for developing B models. The
refinement of a formal model allows one to enrich
the model in step by step approach. The last
refinement gives the implementation machine which
map directly to a programming language such as C
or ADA. The strong point of B is support tools like
as AtelierB (Clearsy,2001) or B4free (Clearsy,2004),
an academic version of AtelierB. Most theoretical
aspects of the method, such as the formulation of

312
Ben Younes A. and Jemni Ben Ayed L. (2010).
SPECIFICATION AND VERIFICATION OF WORKFLOW APPLICATIONS USING A COMBINATION OF UML ACTIVITY DIAGRAMS AND EVENT B.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 312-316
DOI: 10.5220/0003012003120316
Copyright c© SciTePress

proof obligations, are carried out automatically. The
automatic and interactive provers are also designed
to help specifiers to discharge the generated proof
obligations. All of these points make B well adapted
to large scale industrial projects (Behm,1998).
However, B is still difficult to learn and to use.This
is why we have proposed in our previous work (Ben
Younes and Jemni Ben Ayed, 2007) an approach
which combines the use of UML AD and Event B
for the specification and the verification of workflow
applications. The workflow is initially modeled
graphically with UML AD (Step1). After that, the
resulting graphical readable model is translated into
Event B in incremental development with successive
refinements (Step2). This refined model is enriched
by relevant properties (no deadlock, no livelock,
strong fairness, etc) (Step3) which will be proved
using the B4free tool (Clearsy,2004) (step4). So, this
allows one to rigorously verify semi-formal
specifications in AD UML by analysing derived
Event B models. On the other hand, we can use AD
UML specifications as a tool to develop Event B
specifications. In our works (Ben Younes and Jemni
Ben Ayed, 2007,2008) , we have presented the
translation process which uses the B method
refinement and proposed translation rules for the
basic concepts of UML AD (activity, Sequence of
activities, choice (decision), loop parallel activities
(fork and join) and atomic process) and also for
dynamic invocations concept (Ben Younes and
Jemni Ben Ayed, 2008) into Event B. In this paper,
we discuss contribution of our proposed approach
for the verification of workflow applications and we
extend our work presented in (Ben Younes and
Jemni Ben Ayed, 2007) by adding new translation
rules for the synchronization in UML AD (event,
send/receive concepts) into Event B. Also, we
propose in this paper a solution to specify time in the
event B method and derivation of temporal
expressions in UML AD (timeout) into Event B.
These translation rules give not only a syntactical
translation, but also give a formal semantics using
the Event B method semantics for the activity
diagrams. In this context, there have been efforts for
defining semantics for activity diagram in the works
of Eshuis (Eshuis and al, 2001, 2004) and also the
works of (Guelfi and Mammar, 2005). However,
these works not consider the hierarchical
decomposition of activities in UML AD, and suffer
from the state number explosion. Moreover, in
Eshuis (Eshuis and al, 2004, 2001) approach, no
details are given about how time is defined.
Although, the work of (Guelfi and Mammar, 2005)
propose a systematic way for translating the

semantic of timed activity Diagrams into the
PROMELA input language of the SPIN model
checker, but they no consider the hierarchical
decomposition of activities in UML AD, no
translation rules are given about the refinement in
UML AD. Our contribution, in this context, consists
of using Event B method and its associate
refinement process to encode the hierarchical
decomposition of activities in UML AD and tools
for the formal verification of workflow applications.
Moreover, in the refinement of B, it is not needed to
re-prove these properties again while the model
complexity increases. Notice that this advantage is
important if we compare this approach to classical
model checking where the transition system
describing the model is refined and enriched like in
SPIN model checker. This paper is structured as
follows. Section 2 presents derivation rules of event,
send/receive event and time in UML AD into Event
B notation. By an example we illustrate our
contribution in section3. Finally, a summary of our
work concludes the paper

2 TRANSLATION FROM UML AD
TO EVENT B

A- The translation of the send event action into
Event B

In Event B, we translate the send of an internal event
by the definition of new variable v_Name_Evt for
each new internal event Name_Evt. This variable
takes the value TRUE if the event occurs and FALSE
in the other case.
B- The translation of the receive event action in

UML AD into Event B
In Event B, we translate the receive event action by:
The definition of a new boolean variable
v_Name_Evt for each event Name_Evt generated
by the environment. The definition of a new variable
hand;the generation of an event Detect_Evt. The B
event Detect-Evt allows all event (for example v-E)
to have a random value. It simulates the event
detection when the detection system has the control.
The control is given alternatively to the detection
system when hand =1 and to the control system in
the other cases.
C- The representation of the time in Event B
The timeout expressed in B, will impose alternation
between the clock, the control system and the
detection system. We use the variable hand and the
control is given alternatively to the clock when

SPECIFICATION AND VERIFICATION OF WORKFLOW APPLICATIONS USING A COMBINATION OF UML
ACTIVITY DIAGRAMS AND EVENT B

313

Figure 1: The UML AD model of the workflow ATM application.

hand=2 and to the system in the other cases. In
UML AD, temporal event is specified with the after
keyword (see Fifure1). The after (n) event
expression, where n is a positive integer, means that
n time units after the source of the edge was entered
a timeout is generated. The formulation of the
timeout in Event B is based on some derivation rules
that we already introduced.

 Act0 Act01
after (n)

We propose to drift the timeout by: the definition
of a integer variable Timeout which represents the
time of the next generation of the event timeout; the
definition of the event Evt_Init for initializing the
variable Timeout with the value of the current time
and the duration n (Exemple n =10 time unit); the
definition of the B event Evt_Wait. Initially,
hand=0. The event Evt_Init sets this variable to 1,
and initializes the variable timeout. This passes the
control to Evt_wait or Evt_Act01(Associated to the
activity Act01). If (time < timeout)) then the variable
hand passes to 1 (event Evt_Wait) to increment the
time (event tick) but if (time>= timeout) this
(Evt_Act01) is allows the following activity Act01
to be execute.

3 EXAMPLE

We illustrate the proposed technique over an
example of a workflow application, which we have

implemented using Event B tool B4free. This
application represents a simplified ATM login.
Step1: Initially, we describe this workflow
application using UML. The resulting model is
composed of three decomposition levels (See Figure
1). Step2: In the second step, by the application of
the translation process and using the translation
rules. Three refinement steps which correspond to
each level of three level of decomposition in the
UML AD model are necessary. Step3 (Verification
and Validation of the ATM Login application):
The ASSERTIONS clause contains liveness
properties expressing that there is no deadlock. This
property is ensured by asserting that the disjunction
of all the abstract events guards implies the
disjunction of all the concrete events guards. This
guaranties that the new events can be fired (no
deadlock). In each new refinement, we add this
property. The INVARIANT clause allows to
express the safety properties (called safety invariant)
and the typing information (Typing invariant). Each
refined model is enriched by relevant properties
(safety, liveness, ect) which will be proved using the
B4free tool. These properties shall remain true in the
whole model and in further refinements: It is not
needed to re-prove again verified properties in the
refined model while the model complexity increases.
It is the advantage of using B4free tool. For
example:
- The safety property that the system ejects the card

reader only if the card details are false: this
property is added in the resulting refined model
Ref1_ATMcard (associated to the LEVEL1) in
the clause INVARIANT as follows:

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

314

- The temporal property T1 (the system should not

be continuously open for more than 10 seconds
without the even PIN present) can be proved by
adding the safety invariant, in the resulting
refined model Ref3_ATMcard (associated to the
LEVEL3 in UML AD model), which expresses
that if the system is in the node Abounding (
pin_state =1), then necessarily the deadline has
arrived:

In the refinement Ref3_ATMcard, the event
Tick maintains the control and allows time advance.
In this way, we avoid the Livelock problem in the
construction of a resulting B system. By the
application of the translation rule for the time (see
section 4.2), we use the variable hand (see section
4.2.B) and the control is given alternatively to the
clock when hand=2, to the system when hand= 0,
and to the detect system when hand=1. The variable
hand describes the events interleave and prevent
that an event is fired infinitely (an event will be
infinitely crossed in detriment of others).

4 CONCLUSIONS

In this paper we have proposed a specification and
verification technique for workflow applications
using UML AD and Event B. We have extended our
work (Ben Younes and Jemni Ben Ayed, 2007,2008)
and have proposed new derivation rules for the
synchronization in UML AD (event, send/receive
concepts) into Event B. Also, we propose in this
paper a solution to specify time in the event B
method and derivation of temporal expressions in
UML AD (timeout) into Event B. In our approach,
variants are defined to ensure the correct firing order
of events in these models. Also, decreasing variants
are defined to solve livelock problem. These
translation rules give not only a syntactical
translation, but also a formal semantics using the
Event B method semantics for the UML AD.
Currently, we are working on the implementation of
this approach. Another thing needed to be mentioned
is that we just formalize the subset of UML activity
diagrams. For instance, object flows do not be
included in our model. However, our approach is
also suitable for formalizing it.

REFERENCES

Johason.R, I. Jacobson, and G.Booch, 1998. “The Unified
Modelling Language reference Manual” .Addison-
Wesley,.

Ben Younes, A and L Jemni. Ben Ayed , 2007 “ Using
UML Activity Diagrams and Event B for Distributed
and Parallel Applications”. In 31st Annual IEEE
International Computer Software and Applications
Conference (COMPSAC 2007), Volume 1.

Dumas, M. and ter Hofstede, A. H. M., 2001 “ UML
activity diagrams as a Workflows Specification
language ”. In UML2001 page 76-90. Spinger-Verlag.

Clearsy, 2001. System Engineering Atelier B, Version
3.6,.

Abrial. J. R, 1996a “The B Book. Assigning Programs to
Meanings”. Cambridge University Press.

Clearsy 2004, “B4free,” Available at http://
www.b4free.com.

Eshuis, R., and Wieringa R., 2001. A formal semantics for
UML Activity Diagrams – Formalising workflow
models, Technical Report. Twente, Dept. Of Computer
Science.

Abrial J-R., 1996b.” Extending B without changing it”
(for developing distributed systems)”. In H Habrias,
editor, First B Conference.

Van der Aalst, W. M. P., 2000 “Workflow Verification:
Finding Control-Flow Errors Using Petri-Net-Based
Techniques”, in Business process management:
models, techniques, and empirical studies. Lecture
Notes in Computer Science 1806, Springer-Verlag.

REFINEMENT Ref1_ATMcard
REFINES ATMcard
INVARIANT
 /* Safety properties*/
(card_reader_eject = TRUE => card_detail= FALSE)

REFINEMENT Ref3_ATMcard ………………….
REFINE Ref2_ATMcard
INVARIANT /*Temporal properties*/
 (pin_state = 1) (time >= timeout) /* T1*/

REFINEMENT Ref3_ATMcard
………………….;
VARIABLES
hand, time, evt_pin, pin_state, timout …..
INVARIANTS
 hand ∈ {0,1,2} ∧ evt_pin ∈ BOOL∧ time ∈ N∧ timeout∈ N
∧ pin_state∈{0,1,2,3 } /* the state variable pin_state is associated to the
composed activity Chek_PIN*/
INITIALISATIOIN
hand:= 0 || evt_pin:=FALSE|| time :=0|| pin_state:=3……

EVENTS
Dect_Evt= SELECT hand =1 THEN hand := 0 || evt_pin :∈ BOOL
END;
Tick= SELECT hand =2 ∧ pin_state=2
 THEN hand :=1|| time := time+1 END;
Evt_GetPin= SELECT hand=0∧ pin_state=3 ….
 THEN hand :=1|| pin_state :=2|| timeout := time+ 10
 END;
Evt_Wait_Pin = SELECT hand=0∧ pin_state=2 ∧ evt_pin = FALSE
 ∧ time < timeout…
 THEN hand := 2 END;
Evt_ValidPin= SELECT hand=0∧ pin_state=2 ∧ evt_pin = TRUE ∧
 time < timeout
 THEN pin_state :=0
 END;
Evt_Abounding= SELECT hand=0∧ pin_state=2 ∧ evt_pin = FALSE
 ∧ time >=timeout
 THEN pin_state := 1 END;

SPECIFICATION AND VERIFICATION OF WORKFLOW APPLICATIONS USING A COMBINATION OF UML
ACTIVITY DIAGRAMS AND EVENT B

315

Karamanolis, C., Giannakopoulou D., Magee, J., and S.
M. Wheater, 2000 “Formal verification of workflow
schemas,” University of Newcastle, Tech. Rep.

Ben Younes, A and Jemni. Ben Ayed, L .2008 “From
UML Activity Diagrams to Event B for the
Specification and the Verification of Workflow
Applications”. In 32st Annual IEEE International
Computer Software and Applications Conference
(COMPSAC 2008).

Eshui R., and Wieringa. R. 2004. Tool Support for
verifying UML Activity Diagram, IEEE transaction on
software Engineering , vol 30 , N°7;

Guelfi N, and Mammar A. 2005. ‘’A Formal Semantics of
Timed Activity Diagrams and itsPROMELA
Translation’’. In the 12th Asia-Pacific Software
Engineering Conference (APSEC’05).

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

316

