
Classification of Datasets with Missing Values: Two
Level Approach

Ivan Bruha

McMaster University, Dept. Computing & Software, Hamilton, Ontario, L8S4K1, Canada

Abstract. One of the problems of pattern recognition (PR) are datasets with
missing attribute values. Therefore, PR algorithms should comprise some
routines for processing these missing values.
There exist several such routines for each PR paradigm. Quite a few
experiments have revealed that each dataset has more or less its own 'favourite'
routine for processing missing attribute values. In this paper, we use the
machine learning algorithm CN4, a large extension of well-known CN2, which
contains six routines for missing attribute values processing. Our system runs
these routines independently (at the base level), and afterwards, a meta-
combiner (at the second level) is used to generate a meta-classifier that makes
up the overall decision about the class of input objects.
This knowledge combination algorithm splits a training set to S subsets for the
training purposes. The parameter S (called ‘foldness’) is the crucial one in the
process of meta-learning. The paper focuses on its optimal value. Therefore, the
routines used here for the missing attribute values processing are only the
vehicles (for the function of the base classifiers); in fact, any PR algorithm for
base classifiers could be used. In other words, the paper does not compare
various missing attribute processing techniques, but its target is the parameter S.

1 Introduction

There exist several aspects of processing real-world databases by pattern recognition
(PR) algorithms. These PR algorithms have to take into account various aspects of
imperfection of existing data collected within the real applications. One of these
aspects are missing (unknown) attribute values in such real-world databases.
Therefore, robust PR algorithms have to exhibit some routines for processing these
missing attribute values when acquiring knowledge from real-world databases.

The aspect of processing missing values has been discussed and analyzed by
several researchers in the field of machine learning [1], [4], [6], [10], [11], [12], [13],
[14]. Our paper [6] discusses both the sources of 'missingness' and the six routines for
processing missing attribute values; the rule-inducing machine algorithm CN4, a large
extension of the well-known algorithm CN2 [3], [7], [8] has been used for the
experimental analysis. The paper [6] concludes that each dataset needs more or less
its own 'favourite' routine for processing missing attribute values. It evidently depends
on the magnitude of noise and source of missingness in each dataset. The conclusion
is obvious: All the routines should be independently run on a small subset (window)

Bruha I.
Classification of Datasets with Missing Values: Two Level Approach.
DOI: 10.5220/0003017800900098
In Proceedings of the 10th International Workshop on Pattern Recognition in Information Systems (ICEIS 2010), page
ISBN: 978-989-8425-14-0
Copyright c© 2010 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

of a database supplied and a suitable routine should be selected according to their
classification accuracies.

This paper describes another way of processing missing attribute values. We were
inspired by the idea of multiple knowledge, multi-strategy learning, and meta-
learning, particularly by the concept of combiner and stack generalizer [9]. This
concept is employed as follows. The algorithm CN4 processes a given database for
each of six routines for missing attribute values independently. We can thus view the
CN4 algorithm with various routines as independent base learners. Consequently, we
obtain (at the base level) six independent base classifiers. Also, a meta-database is
derived from the results of the base classifiers, and then a meta-learner induces a
meta-classifier. We call the entire system meta-combiner (namely Meta-CN4 to
emphasize the origin of the algorithm).

Hence, if an unseen object is to be classified, then each base classifier yields its
decision (class of the input unseen object), and the meta-classifier combines their
results in order to produce the final (over-all) decision about the class of the given
input object.

In this paper, we focus on one important parameter of the meta-combiner. If we go
to its detailed structure, it encompasses several parameters that are to be set up by the
designer or user of the system. One of the crucial parameters is the number S of
subsets which a training set is partitioned into during the meta-learning. We are then
talking about S-fold meta-combiner. Usually, the ‘foldness’ S is equal to 2 or the size
of the training set. This paper exhibits the performance of the meta-combiner for
processing missing attribute values as a function of S . The results of experiments for
various values of the parameter S and various percentages of missing attribute values
on real-world data are presented and analyzed.

Note that the routines used here for the missing attribute values processing are only
the vehicles (for the function of the base classifiers); in fact, any PR algorithm for
base classifiers could be used. In other words, the paper does not compare various
missing attribute processing techniques, but its target is the parameter S .

The way CN4 processes missing attribute values are briefly presented in Section 2.
Section 3 introduces the principle of the meta-combiner. Experiments exhibiting the
performance of Meta-CN4 are discussed in Section 4. The results are analyzed in
Section 5.

2 Processing of Missing Attribute Values

The inductive rule-generating algorithm CN4 generates decision rules from a set of K
training examples (objects), each accompanied by its desired class Cr , r = 1,...,R .
Examples (objects) are formally represented by N attributes which are either discrete
(symbolic) or numerical (continuous). A discrete attribute An comprises J(n) distinct
values V1,...,VJ(n) ; a numerical attribute may attain any value from a continuous
interval. Numerical attributes are usually converted to a sequence of intervals by a
discretization algorithm, see e.g. [2].

To deal with a real-world situation, it is necessary to process incomplete, imperfect
data, i.e. data with missing attribute values. Six routines for processing of missing
attribute values were designed for CN4 [6].

91

The following natural ways of dealing with missing attribute values were
incorporated:

(i) ignore an example (object) with missing values (routine Ignore),
(ii) consider the missing value as an additional regular value for a given attribute

(routine Missing), or
(iii) substitute the missing value for matching purposes by a suitable value which is

either
• the most common value (routine Common), or
• a proportional fraction (routine Fraction), or
• a random value from the probabilistic distribution (routine Random), or
• any value of the known values of the attribute that occur in the training set

(routine Anyvalue).
Treating missing attribute values is determined by the following statistical

parameters (here the classes are subject to the index r=1,...,R , attributes An for
n=1,...,N , their values j=1,...,J(n)):

• the over-all absolute frequencies Fn,j that express the number of examples

exhibiting the value Vj for each attribute An ;
• the class-sensitive absolute frequencies Fr,n,j that express the number of examples

of the class Cr exhibiting the value Vj for each attribute An ;
• the over-all relative frequencies fn,j of all known values Vj for each attribute An ;
• the class-sensitive relative frequencies fr,n,j of all known values Vj for each

attribute An and for a given class Cr .
The underlying idea for learning relies on the class distribution; i.e., the class-

sensitive frequencies are utilized. As soon as we substitute a missing value by a
suitable one, we take the desired class of the example into consideration in order not
to decrease the noise in the data set. On the other hand, the over-all frequencies are
applied within classification.

(1) Routine Ignore: Ignore Missing Values

This strategy simply ignores examples with at least one missing attribute value before
learning. Consequently, this approach does not contribute to any enhancement of
processing noisy or partly specified data.

(2) Routine Missing: Missing Value as a Regular One

A missing value is considered as an additional attribute value. Hence, the number of
values is increased by one for each attribute that depicts a missing value in the
training set.

(3) Routine Common: The Most Common Value

This routine needs the class-sensitive absolute frequencies Fr,n,j to be known before
learning and the over-all frequencies Fn,j before classification. A missing value of a
discrete attribute An of an example belonging to the class Cr is replaced by the class-

sensitive common value which maximizes the Laplacian formula
F

F R

r,n,j

n,j

+

+

1
 over j for

the given r and n. A missing value within classification is replaced by the over-all

92

common value which maximizes Fn,j over subscript j . We use here the Laplacian
formula within learning because it prefers those attribute values that are more
predictive for a given class in the contrary to the conventional 'maximum frequency'
scheme.

(4) Routine Fraction: Split into Proportional Fractions

The learning phase requires that the relative frequencies fr,n,j above the entire training
set are known. Each example x of class Cr with a missing value of a discrete attribute
An is substituted by a collection of examples before the actual learning phase as
follows: missing value of An is replaced by all known values Vj of An and Cr. The
weight of each split example (with the value Vj) is
 wj = w(x) * fr,n,j , j=1,...,J(n)

where w(x) is the weight of the original example x . The original weights w(x) are
provided by the designer of the training database of a given task; usually (by default)
it is 1 .
If a training example involves more missing attribute values, then the above splitting
is done for each missing value.

(5) Random Value: Generate Attribute Value Randomly

A missing attribute value is replaced by one of the values of the given attribute by
utilizing a random number generator; it yields a random number in the range <0; 1>
which is exploited to the select corresponding value by utilizing the distribution of its
attribute values. In the learning phase, the distribution is formed by the class-sensitive
relative frequencies fr,n,j of all known values Vj for each attribute An and for a given
class Cr . In the classification phase, the over-all relative frequencies fn,j are used.

(6) Routine Anyvalue: Any Value Matches

A missing value matches any existing attribute value of an example (object), both in
learning and classification. This routine in fact emulates the situation that a designer
of a training database does not care about a value of a certain attribute for a given
example (so-called dont-care scenario).

3 Methodology: Meta-combiner

As we stated at the beginning, each database has its own ‘favourite’ routine for
processing of missing attribute values. We have exploited the rule-inducing machine
learning algorithm CN4. It contains six routines for missing values processing. Our
system runs these routines independently, and afterwards, a meta-learner is used to
derive a meta-classifier that makes up the overall (final) decision about the class of
input unseen objects.

Each of the six base learners (CN4 with different routines for processing missing
attribute values) generates a base classifier. Afterwards, the decisions of the base
classifiers form a meta-database, a set for training meta-objects (examples) for the
meta-learner. The meta-learner then generates a meta-classifier. The meta-classifier
does not select the best base classifier (routine for processing missing attribute values)

93

but rather combines the decisions (predictions, classes) of all the base classifiers. In
the classification phase, the base classifiers first derive their predictions (classes,
decisions); then a meta-object is deduced from these predictions which is then
classified by the meta-classifier.

More precisely, the meta-combiner consists of two phases: meta-learning and
meta-classifying; we will now define both phases in detail.

For the meta-learning purposes, a training set is split into two subsets: the genuine-
training and examining ones. The genuine-training subset is applied for inducing the
base classifiers; the examining one for generating a meta-database.

Let q be the q-th base classifier, q=1...,Q (where Q is the number of the base
classifiers; in our project Q=6). Each examining example x of the examining subset
generates a meta-object of the meta-database as follows. Let zq be the decision
(class) of the q-th base classifier for the examining object x ; then the corresponding
meta-object of the meta-database looks as follows:

[z1, ... , zQ , Z]

where zq , q=1...,Q is the decision the of q-th base classifier, Z is the desired class of
the input examining object.
 Let T be a training set of K training examples, S be an integer in the range
<2; K> . Let us assume to have Q different base learners BLq , q=1,...,Q, and a meta-
learner ML. The flow chart of the meta-learner looks as follows:

procedure Meta-Learning-Phase(T, S)

1. Partition the training set T randomly into S disjoint subsets of equal size (as
equal as possible); let Ts be the s-th such subset, s=1,...,S, card(Ts) the
number of its objects (examples); the splitting (partition) procedure has to
preserve the original distribution of classes as in T.

2. Form S pairs [Ts , T \ Ts] , s=1...,S ; for each s , T \ Ts is the genuine-
training subset and Ts the examining one, generated from the training set T

3. Let MetaDatabase be empty
4. for s=1,...,S do

4.1 Train all base learners BLq using the genuine-training
subset T \ Ts ; the result is Q base classifiers BClq , q=1,...,Q

4.2 Classify the examining objects from Ts by these base
classifiers
4.3 Generate card(Ts) meta-objects and add them to

MetaDatabase
enddo

5. Train the meta-learner ML using the meta-database MetaDatabase ; the result
is a meta-classifier MCl*

6. Generate the base classifiers BClq*, q=1,...,Q using the entire training set T
which will be used in the meta-classification

94

Similar scenario is applied for classifying an unseen object x :
procedure Meta-Classifying-Phase(x)

1. Classify the unseen object x by all Q base classifiers BClq* (generated in the
step 6 of the meta-learning phase); let the output of the q-th base classifier
BClq* be zq , q=1,...,Q

2. Generate the corresponding meta-object [z1, ..., zQ]
3. Classify the above meta-object by the meta-classifier Mcl*; its result

(decision) is the class to which the given input object x is classified
The number S of split subsets is crucial for this system. Therefore, we call it S-

fold meta-learner or S-fold meta-combiner. The paper [9] introduces two architectures
of their meta-system: combiner and stacked generalization. Their combiner
corresponds to the 2-fold and stacked generalized to the K-fold meta-learner.

This was the reason, why we have focused on the ‘foldness’ S of the meta-
combiner. In the following, we present a few experiments whose purpose is to
compare the performance of the S-fold meta-combiner for various values of the
parameter S .

4 Experiments

The ‘foldness’ S is one of the crucial parameters of a meta-combiner. In order to find
out empirically the dependance of the meta-combiner’s performance on various
values of its ‘foldness’ S, we carried out several experiments. Unlike the previous
experiments and analysis [5] (where we compared Meta-CN4 and Meta-ID3 with the
original CN4 with various routines for missing attribute value processing, as well as
C4.5), here we have focused just on Meta-CN4; we have studied its performance for
various values S and various percentages of missing attribute values on real-world
data.

All the above experiments were tested on four databases that can be found in UCI
machine learning depository (http://www.ics.uci.edu/~mlearn) and STATLOG project
(http://www.the-data-mine.com/bin/view/Misc/StatlogDatasets):

● ThyroidGland: This task of diagnosis of thyroid gland disease has been
provided by the Institute of Nuclear Medicine of Inselspital, Bern, Switzerland. The
database has been used at the Dept. of Advanced Mathematics, University of Bern,
and also in the project CN4. The entire set involves 269 patients' data. Each patient is
described by 19 attributes, 5 of them are numerical attributes, the rest are symbolic
ones; the average number of values per symbolic attribute is 4.9 . About 30% of
attribute values are unknown. The task involves two classes; the frequency of the
majority class is 72%.
● BreastTumor: This dataset has been provided by the Jozef Stefan Institute, the
research group of Prof. Dr. I. Bratko, Ljubljana. It involves 288 examples and two
classes. Each attribute is represented by 10 attributes, 4 of them are numerical;
symbolic attributes exhibit on average 2.7 values per attribute. 0.7% of attribute
values are unknown. The majority class has frequency 80%.
● Onco: The oncological data were used for testing in the Czech Academy of
Sciences, Prague, Czechland, and also in the project CN4 [6]. The entire set involves

95

127 examples. Each example is represented by 8 attributes; 7 of them are numerical
attributes, the only symbolic one involves 3 values. All attribute values are known.
The task involves three classes; the frequency of the majority class is 50%.
● Soybean: This well-known data has been used in many various experiments in
machine learning, namely within the AQ family. The set available involves 290
training examples and 15 classes. Each example is characterized by 24 attributes, all
are symbolic ones with average 2.9 values per attribute. The set exhibits 3.7%
unknown attribute values. There are 4 classes exposing the maximum frequency
(14%).

Each database has been randomly split to two sets (70% training, 30% testing) and
this scenario has been executed 10 times for each combination. The following table
thus involves in each slot an average of classification accuracy (of testing sets)
acquired from 40 runs, i.e. an average above all four databases.

We have to realize that the above splitting procedure has nothing common with the
splitting procedure within the meta-learner. The 70% of training examples are
furthermore split within the S-fold meta-learner into a genuine-training subset of the
size 70*(S-1)/S % and an examining subset of the size 70/S % of the original
database.

Following [9], we selected 2-fold, then the promising 4-fold meta-combiner (S=4),
and also S=8, S=16, and S=32 for comparison.

To achieve extensive and comprehensive comparison of the above meta-
combiners’ behaviour we have also decided to find how classification accuracy
depends on various percentage of missing attribute values in databases. Only one
database (ThyroidGland) exhibits a reasonable size of ‘missingness’. As for the
remaining databases, to emulate various number of missing values, we have run the
original data through a filter which randomly changes attribute values to missing
ones. The filter procedure ('missingizer') has the percentage of missing attribute
values as its parameter.

Table 1 comprises the average classification accuracy (in %) above all four
databases for various percentage of missing values and various values of the
parameter S.

Table 1. Average classification accuracy (in %) of Meta-CN4 as a function of unknownness
and ‘foldness’ S (above all four databases).

 S=2 S=4 S=8 S=16 S=32
5% 79.6 80.6 80.7 80.7 79.6
10% 78.5 79.3 79.2 79.4 78
20% 77 77 77.4 77 74.7
30% 75.6 76.7 76.3 76 75.5

96

5 Conclusions

The two-level (or meta-level) approach to machine learning has been studied for
many years. This research paper continues in our larger project whose purpose is to
design, implement, and empirically compare the meta-learner Meta-CN4 with other
algorithms for processing of missing attribute values. Namely, this paper exhibits a
portion of the above project that considers the importance of the ‘foldness’ S of such a
meta-combiner as its crucial parameter. The only, but widely used criterion in our
experiments was the classification accuracy acquired from testing sets.

By analyzing the results of our experiments we came to the following:
Although there were carried out the experiments only for a few values of the

parameter S, we can observe that there is the ‘optimal’ value S that maximizes the
classification accuracy. One can easily observe it namely along the series for S=32
that exhibits always worse performance than that for other values.

To be more precise, the statistical results of the t-test (with the confidence level
0.05) depict that the performance of the meta-combiner for S=4, S=8, and S=16 are
statistically equivalent, but they are significantly better than that for S=2 and S=32.

Because of time limitations, we did not perform more experiments. We did not use
the stack generalizer (fold S=K) because it is much more time consuming; the paper
[9] indicates that the timing cost for the stack generalizer is much more larger than
that for the meta-combiner for relatively small parameters S.

For the future research, we plan to perform more experiments and to study how the
optimal value of the parameter S depends on a processed database. It is just our
impression that even for this issue (to find an optimal value of S), we would need to
introduce another ‘meta-level’.

References

1. Batista, G., Monard, M.C.: An analysis of four missing data treatment methods for
supervised learning. Applied Artificial Intelligence, 17 (2003), 519-533

2. Berka, P. and Bruha, I.: Various discretizing procedures of numerical attributes: Machine
Learning, and Knowledge Discovery in Databases, Heraklion, Crete (1995), 136-141

3 Boswell, R.: Manual for CN2, version 4.1. Turing Institute, Techn. Rept. P-2145/Rab/4/1.3
(1990)

4 Bruha, I.: Unknown attribute values processing utilizing expert knowledge on attribute
hierarchy. 8th European Conference on Machine Learning, Workshop Statistics, Machine
Learning, and Knowledge Discovery in Databases, Heraklion, Crete (1995), 130-135

5 Bruha, I.: Unknown attribute values processing by meta-learner. International Symposium
on Methodologies for Intelligent Systems (ISMIS-2002), Lyon, France (2002)

6 Bruha, I. and Franek, F.: Comparison of various routines for unknown attribute value
processing: Covering paradigm. International Journal Pattern Recognition and Artificial
Intelligence, 10, 8 (1996), 939-955

7 Clark, P. and Boswell, R.: Rule induction with CN2: Some recent improvements.
EWSL'91, Porto (1991), 151-163

8 Clark. P. and Niblett, T.: The CN2 induction algorithm. Machine Learning, 3 (1989), 261-
283

9 Fan, D.W., , Chan, P.K., Stolfo, S.J.: A comparative evaluation of combiner and

97

 stacked generalization. Workshop Integrating Multiple Learning Models, AAAI, Portland
(1996)

10. Fortes, I. et al.: Inductive learning models with missing values. Mathematical and
Computer Modelling, 44 (2006), 790-806

11 Quinlan, J.R.: Induction of decision trees. Machine Learning, 1 (1986), 81-106
12 Quinlan, J.R.: Unknown attribute values in ID3. International Conference ML (1989),

164-8
13 Wu, X., Barbara, D.: Constraints in data mining of contents. ACM SIGKDD Explorations

Newsletter (2002), 1931-1945
14 Zhang, S. et al.:’Missing is useful’: Missing values in cost-sensitive decision trees. IEEE

Trans. Knowledge and Data Engineering, 17, 12 (2005), 1689-1693

98

