
MODEL-DRIVEN ENGINEERING OF FUNCTIONAL SECURITY
POLICIES

Michel Embe Jiague1,2, Marc Frappier1, Frédéric Gervais2, Pierre Konopacki1,2

Régine Laleau2, Jérémy Milhau1,2 and Richard St-Denis1

1GRIL, Département d’informatique, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
2LACL, Université Paris-Est, IUT Fontainebleau, 77300 Fontainebleau, France

Keywords: Security model, Security policy, Specification, Verification, Process algebra, Hierarchical state transition dia-
gram, EB3SEC, EB3, MDA, SOA, BPEL.

Abstract: This paper describes an ongoing project on the specification and automatic implementation of functional secu-
rity policies. We advocate a clear separation between functional behavior and functional security requirements.
We propose a formal language to specify functional security policies. We are developing techniques by which
a formal functional security policy can be automatically implemented. Hence, our approach is highly inspired
from model-driven engineering. Furthermore, our formal language will enabled us to use model checking
techniques to verify that a security policy satisfies desired properties.

1 INTRODUCTION

Information systems (ISs) are prevalent in today’s
economy. Public companies as well as private cor-
porations have most of their ISs on-line and rely on
data exchange with customers and partners to carry
out their day-to-day business. Due to their nature,
they must be highly accessible over Internet.

Strict security and privacy regulations are imposed
on financial and health sectors. For instance, health
software applications in the USA must comply with
HIPAAA (Health Insurance Portability and Account-
ability Act); those in Canada with PIPEDA (Per-
sonal Information Protection and Electronic Docu-
ments Act). A financial software application must sat-
isfy a security policy according to the Sarbane-Oxley
law in the USA.

We distinguish betweenfunctional security, which
deals with security requirements at thebusiness level,
andarchitectural security, which deals with software
design level issues, like authentication, encryption,
and secure communication protocols. Functional se-
curity essentially determineswhocan dowhat, when
andwhere.

The aforementioned laws and regulations mostly
deal with functional security. Unfortunately, func-
tional security is poorly managed in most organisa-
tions. Requirements are often vaguely described and

handled in various disconnected parts of a software
systems. For instance, basic role-based access con-
trol, RBAC (Ferraiolo et al., 2003) is used to grant
access to a service. But RBAC does not depend on
the state of the service; authorization is granted solely
on the basis of the role of the user and the service
requested. Additional functional security require-
ments are thus handled in the service itself. For in-
stance, business requirements that determine who can
do what and when are mixed with functional require-
ments and implemented together in the service code.
As most organisation and popular agile software pro-
cesses advocate little documentation, the code is the
ultimate description of functional security policies. It
is then highly difficult to demonstrate that a software
satisfies security regulations. It is even more diffi-
cult to evolve a security policy to satisfy new require-
ments.

To deal with this issue, we propose a new ap-
proach that is based on the following principles.1)
Business requirements should be clearly separated in
two parts: i) functional behavior, which states what
the system services should do; ii) functional security,
which states who, when, and where can these services
be used. 2) Functional behavior and functional se-
curity should be separately implemented in distinct
components of the system.3) The implementation of
functional security policies should be completely au-

374 Embe Jiague M., Frappier M., Gervais F., Konopacki P., Laleau R., Milhau J. and St-Denis R. (2010).
MODEL-DRIVEN ENGINEERING OF FUNCTIONAL SECURITY POLICIES.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Information Systems Analysis and Specification, pages
374-379
DOI: 10.5220/0003019403740379
Copyright c© SciTePress

Application

IS
model

code

CIM

policy

PIM
Security
model

PSM
Security
kernel

N
atural

languages
F

orm
al

P
rogram

m
ing

Transformation
rules

Functional
behavior

languages
language

Security
Validation

Properties

and
verification

Figure 1: The proposed MDE approach.

tomatic, to ensure reliability, maintainability and cor-
rectness with respect to regulations.

To implement this approach, we use the princi-
ples ofmodel-driven engineering(MDE), which rec-
ommends to elaborate abstract models independently
of any implementation techniques. It includes three
steps as shown in Figure 1. The first step focuses
on the creation of acomputation independent model
(CIM) of the IS by considering various kinds of re-
quirements (including security) formulated in a nat-
ural language. The second step consists in the de-
velopment of aplatform independent model(PIM)
that allows the IS to be defined at an abstract level
using appropriate domain-specific languages, prefer-
ably formal languages. The third step refines the lat-
ter in a concrete model according to aservice ori-
ented architecture(SOA) environment, which results
in a platform specific model(PSM) that takes into ac-
count implementation issues. Generally, the security
requirements of an IS are collected at the CIM level
by means of a security policy, that consists of high-
level security rules, specified more precisely at the
PIM level and enforced at the PSM level by a security
kernel. Figure 1 emphasizes the separation of security
aspects and functional aspects in all the three steps
of the MDA approach. First, the functional security
policy is stated separately from functional behavior
requirements. Second, the PIM consists of two ab-
stract models derived from business rules and the se-
curity policy, respectively. Third, the security kernel,
responsible for the enactment of the security policy,
is independent of the application code, enabling mod-
ifications of security rules without having to change
the application code. The proposed approach also in-
cludes activities for the validation or verification of
the three main models (CIM, PIM and PSM). For in-
stance, the security model can be checked with re-

spect to some properties in order to guarantee that it
does not restrict unduly the behavior of the IS.

There are several ongoing projects and initia-
tives related to security of Web-based systems.
ORKA (ORKA, 2009) explores ways to bridge the
gap between organizational control and access rights
management. It includes the development and im-
plementation of integrated security concepts founded
on role-based security policies while considering or-
ganizational control principles. TheNGN-44(ICTI,
2010) project is an initiative inside theCarnegie
Mellon|Portugal Program. It consists in the devel-
opment of new notions of semantically rich interface
languages, and an associated programming language
as well as logic-based verification techniques with the
aim of enforcing security, integrity, and correctness
requirements on distributed extensible Web-based ap-
plications. Finally, Meinel proposes a security model
that enables the description of security policies as a
set of abstract security intentions, which can be trans-
lated automatically into concrete security policies. An
identity model, which makes possible the propagation
of identity information to all services, and methods to
describe trust between two unrelated parties in order
to carry out sensitive transactions are also under in-
vestigation (Meinel, 2009). Since all these projects
are in their infancy, it is difficult to appraise their real
impact and compare the efficiency of the proposed
tools.

The solutions introduced in this paper are in the
spirit of recommendations of a re-engineering project
initiated by one of our partners in Canada in the
banking industry This firm is currently examining
the functional security aspects of its ISs, particularly
those interacting with brokers, customers and exter-
nal financial systems to manage investment portfolio
and trade financial products like stocks and options.
These solutions will also be validated in a companion
French project, called SELKIS, which targets medical
ISs (SELKIS, 2009).

This paper focuses on the formalization of func-
tional security rules by using the EB3SEC method and
automatic translation of EB3SEC specifications into
algebraic state transition diagram(ASTDs) in order
to implement security policies efficiently and verify
their consistency. Two techniques are investigated for
the implementation of security policies. ASTDs are
either refined into BPEL models executed by a BPEL
engine or simulated by an interpreter with persistent
objects, the BPEL engine and the interpreter being in-
tegrated into Web services of an SOA environment.

MODEL-DRIVEN ENGINEERING OF FUNCTIONAL SECURITY POLICIES

375

2 SPECIFICATION OF THE
SECURITY MODEL WITH THE
EB3SEC METHOD

An EB3SEC specification includes a data model and a
process expression for the definition of functional se-
curity rules at two granularity levels: atomic services
(actions or transactions) and business processes (col-
lections of related, structured atomic services). Per-
missions related to the execution of actions are de-
scribed in the former. Security rules of the latter are
defined by a process expression in the EB3SEC lan-
guage, which is inspired from process algebras. The
process expression can refer to the data model to spec-
ify state-oriented constraints. The EB3SEC method is
an extension of EB3 (Frappier and St-Denis, 2003),
a method specifically devised to derive the input-
output behavior of an IS (i.e., the IS model in Fig-
ure 1). There is another granularity level suitable
for the static permissions for users to access data at-
tributes. The EB3SEC method is not really concerned
with this lowest granularity level. Nevertheless, it is
taken into account during the refinement of the PIM
into the PSM.

Person

User

name
pId

name

1..n

1..n

Unit

uId

1..n

Role

rId
1..n

1..n

Action

aId
name

1..n

Play

Permission

Figure 2: Class diagram of the security model.

The example data model represented by the class
diagram of Figure 2 includes four main entity types
and two associations. The entity typesUnit, Person,
Role and Action correspond respectively to the
units of an organization (e.g., hospital wards or bank
branches), the users or customers of the IS, the roles
assigned to persons (e.g., patient, nurse, doctor) and
the visible operations of the IS, more precisely the
atomic operations that come from the IS’s class di-

agram of an EB3 model (e.g.,Register, OpenFile).
The associationPlay allows to define the role of a
person in a unit. Finally, the associationPermission
provides a means to define functional security rules at
the granularity levels of atomic services.

The data model allows one to borrow concepts
from role-based access control models, such as
RBAC (Ferraiolo et al., 2003) and OrBAC (Kalam
et al., 2003). In return, one is not limited to the
framework of these models, and can include any
entity deemed relevant for the security problem at
hand. The concept of role is important to grant ac-
cess rights to users according to their roles. Each
user in a given role can then access the only part of
the system (atomic services and data attributes) cir-
cumscribed by his access rights or privileges. These
technologies have been extended to take into account
temporal constraints on user-role assignments (X-
GTRBAC (Joshi et al., 2005)) and Web services as
protected resources (WS-RBAC (Bhatti et al., 2007)).
They are, however, not adapted to long running pro-
cesses, as those encountered in an SOA environment,
and lack the expressive power to refer to past actions
(which are elements of traces in process algebra no-
tations). Nonetheless, the EB3SEC language solves
this problem. Indeed, ordering constraints on actions
can be easily formulated while considering the asso-
ciationsPermission and Play. For example, the
following security requirement include ordering con-
straints of actions:

A professor must approve a book prior to its
acquisition and prior to its discard.

||| bId : BOOKID | pId : PERSONID

ApproveAcquire(bId; pId, professor, _)

Discard(bId; _, librarian, _)

ApproveDiscard(bId; pId, professor, _)

Acquire(bId; _, librarian, _)

Figure 3: Specification of the security rule using the ASTD
notation.

These constraints on the acquisition and discard of
books is formalized as follows in EB3SEC:

ApprovalRule() =
9bId : BOOKID : | pId : PERSONID:
〈pId,professor, ,ApproveAcquire(bId)〉�
〈 , librarian, ,Acquire(bId)〉 �
〈pId,professor, ,ApproveDiscard(bId)〉�
〈 , librarian, ,Discard(bId)〉

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

376

ESB

Service A

14

Service B

Consumer Service registry

1 2

9
17 15

3

8

16

PDP
Secondary
poll service

ASTD

5

11

Security kernel

Transformation
10

BPEL+WS−BPEL
engine

12
6

7
13

18

Authentification

4

Figure 4: SOA environment for the enforcement of security policies using BPEL.

In this process expression, each action is embedded
in a quadruple, which also includes the identifica-
tion number of a person (pId), a role (professor,
librarian), and a unit. The symbol “”, used as
a wildcard, means that the corresponding field is not
constrained by any value. The actionsAcquire and
Discard can only be executed by librarians (not nec-
essarily the same), and actionsApproveAcquireand
ApproveDiscard by a professor for a given book.
The sequential composition operator “�” is used to
specify the execution order of actions for a given
book. The quantified interleaving (“9”) takes into ac-
count all entities of typeBook while the quantified
choice (“|”) indicates the entity of typePerson in-
volved for every book.

The valid system input trace, which records the
actions in their execution order, must match the traces
defined by the security rules. The following process
expression puts the security rules together:

main() = rule1() ‖ rule2() ‖ · · · ‖ rulen(),

where the operator “‖” is the parallel composition
(i.e., CSP’s synchronization on shared actions).

3 TRANSLATION OF EB3SEC
SPECIFICATIONS INTO ASTDS

EB3SEC and EB3 are trace-based formal languages.
To make easier the verification of properties with
model-checking techniques and interpretation of
functional security policies at the PSM level, the
state-based formalism of ASTDs (Frappier et al.,
2008) has been adopted. This choice has no impact
on the formalization of security policies. In fact an
EB3SEC specification can be easily translated into an
ASTD because there is a one-to-one correspondence
between syntactical elements of EB3SEC and those
of the ASTDs notation. Figure 3 shows the ASTD

for theApprovalRuleintroduced in the previous sec-
tion. This representation, closely related to process
algebras and statecharts, acts as a pivot language.

A translator and a prototyping version of an ASTD
interpreter have been written in the OCaml program-
ming language. The current state of the interpreted
ASTD is stored in a relational database in order to
ensure that the IS can recover after a crash. This in-
terpreter benefits from EB3PAI (Fraikin and Frappier,
2002; Fraikin and Frappier, 2009), an interpreter of
EB3 processes. Another version of the ASTD inter-
preter written in Java is under development with the
sole intention to integrate it more easily into an SOA
service. OCaml and Java versions should be com-
pared with respect to efficiency and access time cri-
teria. Such a comparison may lead to better optimiza-
tions of the underlying algorithms and data structures.

4 IMPLEMENTATION OF THE
SECURITY MODEL WITH
BPEL

In the context of an IS along with security mecha-
nisms, the security kernel is responsible for the en-
forcement of the security policy. Its primary com-
ponents is a WS-BPEL engine and apolicy decision
point (PDP). The former is a back end server for the
latter as illustrated in Figure 4. The WS-BPEL engine
runs security processesor security workflowswhen
using BPEL as a specification language for security
policies. The numbers in Figure 4 indicate the order
of messages when a consumer requests the serviceA,
which in turn requests the serviceB.

A security process cannot be arbitrarily defined.
It must comply with a BPEL model based on the se-
mantics of ASTDs as well as with the BPEL stan-
dard and the interaction schema between security pro-
cesses and the PDP (as illustrated in Figure 5). It

MODEL-DRIVEN ENGINEERING OF FUNCTIONAL SECURITY POLICIES

377

if parameters OK

Yes/No

Yes

Process flow

No

operationSecurity message

operationSecurity response

Figure 5: Communication protocol between a PDP and a
security process.

should also be possible to deploy each security rule
as a service in order to promote its reuse.

Since a security process must be executed by
a WS-BPEL engine, an ASTD specification must
be transformed into one or more security processes.
Such a transformation is founded on a behavioral and
semantic equivalence rather than a simple syntactical
mapping, even though a first evaluation has revealed
similarities between some ASTD operators (e.g., se-
quential composition, (quantified) choice, (quanti-
fied) interleaving, synchronization) and BPEL con-
structs (e.g.,sequence,pick, flow) or combinations
of tags (e.g.,sequence with correlationSet on
var for a quantified choice). The resulting BPEL pro-
cess needs to be efficient, particularly when dealing
with quantified operators, like quantified interleaving
over large sets of data. In addition, the data model is
translated into an XSD and permissions related to the
execution of actions are accessed via services.

There have been many attempts to transform spec-
ification written in process algebra like languages.
Amstel and al. (Amstel et al., 2008) developed a trans-
formation from the process algebra ACP (Algebra of
Communicating Processes) into UML state machines
while preserving the semantics as much as possible.
The execution context of ACP specifications is, how-
ever, the usual one, in the sense that events are re-
ceived from the environment and then accepted or dis-
carded by the interpreter based on the current state
of the process. If the event is accepted, the pro-
cess evolves into another state where it waits for spe-
cific events to happen. Chirichiello and Salaün de-
signed Web services using a process algebra and en-
coded them into WS-BPEL processes (Chirichiello
and Salaün, 2007). In the case of the combination
ASTD/BPEL, the execution schema is quite different
and must be considered when dealing with transfor-
mation. An ASTD specification does not model the
IS itself but rather a policy, which is enforced during

the execution of the IS.
Using the communication protocol depicted in

Figure 5, the following XML code shows a part of
the BPEL security process obtained from the ASTD
of Figure 3:

<sequence>

<repeatUntil name="repUtlAppAcq">

<sequence name="seqAppAcq">

<receive name="recAppAcqSec"

createInstance="yes"

operation="appAcqSec"

variable="inAppAcq">

<correlations> ... </correlations>

</receive>

<assign name="assappAcqSec">

<copy><from>

’professor’ = $inAppAcq.credential/ns0:role/ns0:roleName

</from>

<to variable="outAppAcq"

part="canExecute"/>

</copy>

</assign>

<reply name="repappAcqSec"

operation="appAcqSec"

variable="outAppAcq">

</reply>

</sequence>

<condition>$outAppAcq.canExecute</condition>

</repeatUntil>

[...]

</sequence>

5 VERIFICATION OF THE PIM

A number of typical properties that a security policy
should satisfy have been identified. For instance, if
a useru can play a given roler in an organisation
o according to associationPlay in the security class
diagram, then process expressionmain(or the ASTD)
should allow him to execute at least an action under
this role. This is a reachability property which can be
expressed in temporal logic (CTL) as follows:

∀t ∈ Play : ∃σ,a :
σ = 〈t.u, t.r, t.o,a〉∧ sp(σ)∧main|= EF(σ))

Another typical class of properties is permission fea-
sibility: at least one person can execute a given action
allowed for a role in an organisation.

∀t ∈ Permission: ∃σ,u :
σ = 〈u, t.r, t.o, t.a〉∧ sp(σ)∧main|= EF(σ)

We are currently experimenting the verification of
these properties using model checking techniques.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

378

6 CONCLUSIONS

We have presented an MDE solution to functional se-
curity management in service-oriented IS. Security
policies can be comprehensively described in a sin-
gle specification language called EB3SEC, which in-
tegrates traditional RBAC-like access control poli-
cies, using its security data model, and stateful con-
trol rules using a process algebra or ASTDs. EB3SEC
can be automatically implemented using symbolic
computation, thereby streamlining policy evolution.
EB3SEC is amenable to automated analysis using
model-checking techniques. We are currently experi-
menting several model checkers to determine the most
appropriate one. We are also investigating the trans-
lation of EB3SEC policies into BPEL policies, to pro-
vide a more standard implementation.

EB3SEC subsumes RBAC organizational control
principles like separation of duties, delegation of
rights and hierarchical structuring of concepts. These
can all be express as elements of a security class
diagram and their semantics defined using a first-
order predicate. EB3SEC goes beyond access con-
trol rules typically expressed in RBAC-like policies
and XACML, by taking into account stateful rules,
i.e. rules that can deal with the history of service re-
quests to determine the authorization of the next re-
quests. These stateful rules are abstractly described
using a process algebra or ASTDs. In an RBAC or
XACML approach, stateful business rules are sepa-
rately described in a conventional programming lan-
guage, hence are hard to modify and analyse. Ap-
proaches based on workflows can also be expressed in
EB3SEC. Our process algebra and ASTDs offer more
powerful modeling mechanisms than BPEL, which
streamlines the specification of workflow constraints.
For instance, synchronisation, quantification, and ac-
cess to state variables in guards can be used to model
complex ordering constraints. Timing constraints can
also be represented through the use of action time-
stamps, guards and time attributes in the security class
diagram.

REFERENCES

Amstel, M. F. V., van den Brand, M. G. J., Proti, Z., and
Verhoeff, T. (2008). Transforming process algebra
models into UML state machines: Bridging a seman-
tic gap? InTheory and Practice of Model Transfor-
mations, volume 5063 ofLecture Notes in Computer
Science, pages 61–75. Springer Berlin/ Heidelberg.

Bhatti, R., Sanz, D., Bertino, E., and Ghafoor, A. (2007).
A policy-based authorization framework for web ser-
vices: Integrating xgtrbac and ws-policy. InWeb Ser-

vices, 2007. ICWS 2007. IEEE International Confer-
ence on, pages 447 –454.

Chirichiello, A. and Salaün, G. (2007). Encoding process
algebraic descriptions of web services into bpel.Web
Intelli. and Agent Sys., 5(4):419–434.

Ferraiolo, D., Kuhn, D., and Chandramouli, R. (2003).
Role-based access control. Artech House Publishers.

Fraikin, B. and Frappier, M. (2002). EB3PAI: an Interpreter
for the EB3 Specification Language. In Haneberg, D.,
Schellhorn, G., and Reif, W., editors,5th Workshop on
Tools for System Design and Verification (FM-TOOLS
2002), proceedings, Reisensburg Castle, Günzburg,
Germany.

Fraikin, B. and Frappier, M. (2009). Efficient symbolic
computation of process expressions.Science of Com-
puter Programming, 74(9):723 – 753. Special Issue
on the Fifth International Workshop on Foundations of
Coordination Languages and Software Architectures
(FOCLASA’06).

Frappier, M., Gervais, F., Laleau, R., Fraikin, B., and St-
Denis, R. (2008). Extending statecharts with process
algebra operators.Innovations in Systems and Soft-
ware Engineering, 4(3):285–292.

Frappier, M. and St-Denis, R. (2003). EB3: an entity-based
black-box specification method for information sys-
tems.Software and Systems Modeling, 2(2):134–149.

ICTI (2010). Carnegie mellon| portugal program.
interfaces - certified interfaces for integrity and
security in extensible web-based applications.
http://www.cmuportugal.org/tiercontent.aspx?id=
1564&ekmensel=568fab5c68 0 1564 6.

Joshi, J., Bertino, E., Latif, U., and Ghafoor, A. (2005). A
generalized temporal role-based access control model.
Knowledge and Data Engineering, IEEE Transactions
on, 17(1):4 – 23.

Kalam, A. A. E., Benferhat, S., Miège, A., Baida, R. E.,
Cuppens, F., Saurel, C., Balbiani, P., Deswarte, Y., and
Trouessin, G. (2003). Organization based access con-
trol. Policies for Distributed Systems and Networks,
IEEE International Workshop on, 0:120.

Meinel, C. (2009). Soa — security. hasso-plattner-institut
für softwaresystemtechnik. http://www.hpi.uni-
potsdam.de/meinel/research/securityengineering/
soasecurity1.html.

ORKA (2009). The orka consortium. germany. http://
www.organisatorische-kontrolle.de/index-en.htm.

SELKIS (2009). Project anr-08-segi-018. france. http://

lacl.fr/selkis/.

MODEL-DRIVEN ENGINEERING OF FUNCTIONAL SECURITY POLICIES

379

