
A PROCESS-DRIVEN METHODOLOGY FOR MODELING
SERVICE-ORIENTED COMPLEX INFORMATION SYSTEMS

Alfredo Cuzzocrea1, Alessandra De Luca2 and Salvatore Iiritano2
1ICAR-CNR and University of Calabria, Calabria, Italy

2Exeura Srl, Rende, Italy

Keywords: Service-Oriented Information Systems, Information Systems Design Methodologies.

Abstract: This paper extends state-of-the-art design methodologies for classical information systems by introducing
an innovative methodology for designing service-oriented information systems. Service-oriented
information systems can be viewed as information systems adhering to the novel service-oriented paradigm,
to which a plethora of novel technologies, such as Web Services, Grid Services and Cloud Computing,
currently marry. On the other hand, actual state-of-the-art literature encloses few papers that focus the
attention on this yet-interesting research challenge. With the aim of fulfilling this gap, in this paper we
provide a process-driven methodology for modeling service-oriented complex information systems, and we
prove its effectiveness and reliability on a comprehensive case study represented by a real-life research
project.

1 INTRODUCTION

While a lot of research has been done in the context
of design methodologies for classical information
systems (a significant excerpt of them is provided in
Section 2), the issue of design effective and reliable
methodologies for modeling service-oriented
information systems, which, without loss of
generality, can be viewed as information systems
adhering to the novel service-oriented paradigm
(Papazoglou & van den Heuvel, 2006; Papazoglou
& van den Heuvel, 2007), is still a big research
challenge. This is mainly due to the explosion of
novel service-oriented technologies such as Web
Services, Grid Services, Cloud Computing, and so
forth.

Starting from this critical evidence, in this paper
we propose an innovative methodology for modeling
service-oriented information systems, which
introduces several points of research innovation with
respect to the state-of-the-art literature.

Our proposal falls in the context of activity-
based methodologies, since it deeply leverages on
the concept of process, and mostly focuses the
attention on modeling activities to be performed
within the scope of a given process, according to a
hierarchical abstract decomposition. In more detail,
our proposed methodology consists of the four

following hierarchical design phases meaning that
each phase fi is used as a basis for the subsequent
phase fi+1 in the terms that phase fi produces in
output a formal model that acts as input for phase
fi+1:
• Analysis of Requirements, which produces in

output a BusinessModel model;
• Conceptual Design, which originates a

ProjectModel model;
• Logical Design, which produces in output an

ImplementationModel model;
• Services Design, which originates a

ServiceModel model.
Interactions among the various phases of the
proposed methodology follow a feedback-waterfall
methodology (Royce, 1970) characterized by
incremental and iterative procedures in which, at the
end of each phase, all model instances originated by
the previous phase are updated on the basis of the
modeling of the actual phase.

The paper is organized as follows. In Section 2,
we focus the attention on previous efforts which
constitute the active literature for our research.
Section 3 illustrates the Analysis of Requirement
phase, and the BusinessModel model. In Section 4,
the Conceptual Design phase is described, along
with the ProjectModel model. Section 5 focuses the

390 Cuzzocrea A., De Luca A. and Iiritano S. (2010).
A PROCESS-DRIVEN METHODOLOGY FOR MODELING SERVICE-ORIENTED COMPLEX INFORMATION SYSTEMS.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Information Systems Analysis and Specification, pages
390-398
DOI: 10.5220/0003020603900398
Copyright c© SciTePress

attention on the Logical Design phase, and also
provides the description of the
ImplementationModel model. In Section 6, the
Services Design phase is illustrated, along with the
ServiceModel model. Finally, in Section 7 we
derive conclusions of our research, and draw
directions for further efforts in this scientific field.

2 RELATED WORK

Two main literature contexts are relevant for our
research. The first one concerns with design
methodologies for classical information systems
developed in the context of DBMS’ first research
experiences. The second one instead concerns with
innovative methodologies for service-oriented
information systems, which are more and more
attracting the attention from a large community of
researchers, mainly as a direct effect of novel
service-oriented technologies (Papazoglou & van
den Heuvel, 2006; Papazoglou & van den Heuvel,
2007) such as Web Services, Grid Services, Cloud
Computing, and so forth.

We first focus the attention on design
methodologies for classical information systems.
The mutual relationship among business processes
and information systems has been firstly studied in
the early 90’s by the pioneer paper (Davenport &
Short, 1990), which puts in evidence how (i)
business processes have a strong influence on both
the final structure and functionalities of information
systems, and, in turn, (ii) the design of specific
business processes strongly depends on the internal
organization of the target information system itself.

Since then, a plethora of process-based
information system design methodologies have
appeared in literature, and some interesting
applications of them have been proposed as well.
Among the most promising ones, we recall: (i)
integration of process-oriented modeling
methodologies and Data Warehouses (zur Muehlen,
2001), (ii) business processes simulation oriented to
precisely capture information systems requirements
(Serrano, 2003), (iii) process-driven modeling in the
context of e-learning systems (Kim et al., 2005).

Based on this strong mutual interconnection
between business processes and information
systems, (Grover et al., 1994; van Meel et al., 1994)
suggest that achieving a total synergy between
design of business processes and development of
information systems should be a goal for every
business organization.

Nevertheless, (Earl, 1994) notices that, in real-

-life organizations, business analysts and
information system engineers have very often
distinct roles, make use of different tools, techniques
and terminologies. Obviously, this dichotomy
between business analysts and information system
engineers makes the goal of integrating business
processes and information systems far from being
reached. On the other hand, (MacArthur et al., 1994)
points out that it is very difficult to predict mutual
consequences occurring in business organizations
and information systems, and hence re-engineering
becomes critical.

As regards relationships among available design
approaches, (Giaglis, 2001) proposes a taxonomy of
business processes and information systems
modeling techniques, by also highlighting
similarities and differences among state-of-the-art
alternatives. Furthermore, (Giaglis, 2001) analyzes
and systematizes the following perspectives that any
information system should support: (i) functional
perspectives, (ii) behavioral perspectives, (iii)
organizational perspectives, and (iv) informational
perspectives.

With respect to modeling languages,
(Vasconcelos et al., 2001) presents an UML-based
framework for modeling strategies, business
processes and information systems, and proposes the
adoption of a multi-level approach during the
modeling phase. Likewise, (Castela et al., 2001;
Neves et al., 2001) propose the usage of UML for
capturing several aspects of information systems
design. Following this trend, (Cuzzocrea et al.,
2008) proposes a process-driven methodology for
continuous information systems modeling, which
makes use of process mining techniques (e.g.,
(Greco et al., 2005)) to improve the feedback design
phases of the methodology.

As regards design methodologies for service-
oriented information systems, few papers in the
active literature investigate this yet-interesting
research challenge. (Chung et al., 2007) first
discusses principles of service-oriented information
systems re-engineering, and proposes the integration
of a classical business process engine for the
execution of composite services together with pre-
existing database applications in order to raise
traditional legacy systems towards modern service-
oriented information systems. (Arni-Bloch & Ralyté,
2008) focuses instead the attention on service-
oriented information systems engineering, and
proposes a situation-driven approach according to
which an information system is viewed as a
collection of service-shaped inter-related method
chunks, and an innovative integration strategy is

A PROCESS-DRIVEN METHODOLOGY FOR MODELING SERVICE-ORIENTED COMPLEX INFORMATION
SYSTEMS

391

proposed to achieve the comprehensive service-
oriented information system. Finally, (Herold et al.,
2008) studies the suitability of Model-Driven
Development (MDD) paradigms to the issue of
supporting the construction of service-oriented
distributed enterprise information systems via
directly deriving the design of software components
from the underlying business processes of the target
enterprise.

3 ANALYSIS OF
REQUIREMENTS

Analysis of Requirements is characterized by three
main (sub-)activities: (i) identification of actors, i.e.
the entities of the external world which interact with
the information system; (ii) modeling of the
information managed by the organization in form of
archives (i.e., data/information sources); (iii)
modeling of processes of the target organization to
be captured and implemented by the information
system.

Data, information and knowledge collected
during the Analysis of Requirements phase (e.g., by
means of interviews) are formally modeled by a
BusinessModel model. Each BusinessModel
model consists of the following three models (see
Figure 1): (i) BusinessActorSchema model, (ii)
ArchiveSchema model, and (iii) ProcessSchema
models. These models are then instantiated as three
corresponding schemas that aim at representing,
according to logically-separated areas, concepts
characterizing the initial design phase of the
information system, with respect to actors, archives
and processes, respectively. In more detail, a
BusinessActorSchema model represents actors of
the system along with their hierarchical relations
(e.g., Manager ← Employee). An ArchiveSchema
model contains archives representing data and
information sources of the information system (e.g.,
Invoices, Sales). A ProcessSchema model
represents information related to the processes of the
information system (e.g., Invoicing, Hiring). In
particular, a ProcessSchema model is exploited to
describe interdependence relations among
processes, thus modeling the value chain of the
enterprise being modeled.

During the design of processes, the natural
decomposition of processes into sub-processes and,
recursively, activities must be mandatorily taken into
account, as well as for the associations among
processes/sub-process/activities and the involved

Figure 1: Meta-Model of the model BusinessModel.

actors and archives. Both process hierarchical
organization and associations with actors/archives
are modeled by the meta-model of the model
Process depicted in Figure 2.

Figure 2: Meta-Model of the model Process.

In particular, as illustrated in Figure 2, a Process
model represents the static structure of a process,
consisting of the following components: (i)
processes and sub-processes (a sub-process is a
process itself), modeled by the Process model,
which represent main functionalities/procedures of
the target organization; (ii) atomic activities,
modeled by the Activity class, which are atomic
entities describing elementary operations which are
conceptually no further decomposable into simpler
operations (i.e., activities do not have a proper
structure); (iii) associations to actors, modeled by
the ActorReference class pointing to the
BusinessActorSchema model previously-defined;
(iv) associations to archives, modeled by the
ArchiveReference class pointing to the
ArchiveSchema model previously-defined; (v) a
dynamic diagram, captured by the
DynamicDiagram model, which enable us to model
dynamic aspects of processes, thus the activity flow
of the information system, along with pre-conditions
and post-conditions useful to connote and make
richer the overall dynamicity of the information
system.
In particular, a DynamicDiagram model allows us
to model dynamic aspects of those processes
composed by multiple activities. Therefore,
activities, modeled by the Activity class, are also
basic components of dynamic diagrams, like for

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

392

processes, but with the difference that a
DynamicDiagram model focuses on dynamic
aspects of the information system, whereas a
Process model focuses on static aspects of the
information system. In a DynamicDiagram model,
each Activity class is labeled by a label indicating
the action to be performed by the activity itself.
Furthermore, an Activity class can be labeled as
Start Activity (respectively, Final Activity),
representing a starting (respectively, final) activity
of a process. A DynamicDiagram model may also
include so-called conditional branches, which are
instances of the class Branch. Conditional branches
allow us to specify alternative flows of execution of
the process, which are activated based on the
Boolean value of pre-defined conditions.
Conditional branches are graphically represented by
a diamond having a single input transition, denoted
by Tin, and two or more output transitions, denoted
by out

iT , such that i ∈ {0, 1, …, n}. Each output

transition out
iT is associated with a branching

condition, denoted by Cond(out
iT). Branching

conditions are required to be mutually exclusive,
which imposes that only one condition at a time can
be satisfied. More formally, output transitions out

iT
are required to satisfy both the following equalities:
(i) 1)(=∨ out

ii
TCond and (ii)

1)(=⊕ out
ii

TCond , such that symbols ∨ and ⊕

denote the logical OR and XOR operators,
respectively. Semantics associated with the branch
component is as follows. Conditions associated to
output transitions are evaluated upon the activation
of the input transition, and, among all the possible
(n) ones, only the singleton output transition having
the Boolean condition equal to TRUE is activated.
Likewise, it is possible to compose multiple
transitions to capture more complex (logical)
conditions by means of a Merge class. A
DynamicDiagram model may also include parallel
executions of transitions. This of course requires
somewhat synchronization. To this end, we make
use of the construct Fork and Join. Fork has a
singleton input transition and two or more output
transitions. Fork’s semantics is as follows: as soon
as the input transition is activated, all the output
transitions are started in parallel. Conversely, Join
has two or more input transitions and one (singleton)
output transition, which is activated when all the
input transitions are activated.

4 CONCEPTUAL DESIGN

As highlighted in Section 1, the Conceptual Design
phase produces in output the ProjectModel model.
In turn, a ProjectModel model consists of the
following four models (see Figure 3): (i)
ProjectActorSchema model, (ii) DataSchema
model, (iii) ViewSchema model, and (iv)
FunctionSchema model. Similarly to the
hierarchical organization of the BusinessModel
model (see Section 3), each of these models are then
instantiated as four corresponding schemas that aim
at representing, according to logically-separated
areas, concepts characterizing the second design
phase of the information system.

Figure 3: Meta-Model of the model ProjectModel.

Let us now focus on each of the (sub-)models of the
ProjectModel model. A ProjectActorSchema
model represents so-called active actors of the
information system, i.e. those actors that interact
with the information system effectively, along with
their hierarchical relations. A DataSchema model
captures conceptual representations of data sources
handled by the information system. These
conceptual representations are similar to well-known
ER models from DBMS technology. In every
conceptual representation of data sources further
levels of abstraction are necessary. This in order to
cope with the different views over the data sources
themselves used by different
functionalities/procedures of the information system.
These views are captured by the ViewSchema
model, which comprises a set of View classes, each
one being a projection over the whole data source
targeted to support a specific functionality/procedure
of the information system. A FunctionSchema
model describes functions and dependencies among
functions by means of an approach similar to the one
used to model processes (see Section 3). The meta-
model of the model FunctionSchema is shown in
Figure 4.

A FunctionSchema model comprises the
components Function and FunctionDependency.
Function is a model that describes information

A PROCESS-DRIVEN METHODOLOGY FOR MODELING SERVICE-ORIENTED COMPLEX INFORMATION
SYSTEMS

393

Figure 4: Meta-Model of the model FunctionSchema.

system functionalities/procedures by means of a
hierarchical composition of sub-functions and
elementary functions, just like processes are
organized into sub-processes and atomic activities
(see Section 3). FunctionDependency is a class
that models dependencies among sub-functions and
elementary functions, respectively, such as pre-
conditions to alternative executions. For the sake of
explanation, a FunctionDependency class is able
to formally express conditions in the form of:
“before function Fi is executed, function Fj must
have completed”.
Analogously to what happens with processes (see
Section 3), the static description of a function is
modeled by the meta-model of the model Function
depicted in Figure 5, which allows us to capture the
associations of a function with components needed
during its execution.

Figure 5: Meta-Model of the model Function.

In particular, as illustrated in Figure 5, a Function
model consists of the following components: (i)
functions and sub-functions (a sub-function is a
function itself), modeled by the Function model,
which represent functionalities/procedures of the
information system; (ii) elementary functions,
modeled by the FunctionActivity class, which are
atomic entities describing elementary procedures
implemented by the information system (e.g.,
accessing a database); (iii) associations to actors,
modeled by the ProjectActorReference class
pointing to the ProjectActorSchema model
previously-defined; (iv) associations to views,
modeled by the ViewReference class pointing to
the ViewSchema model previously-defined; (v) a
dynamic diagram, captured by the
DynamcDiagram model, which enables us to

model the dynamic behavior of functions, similarly
to what happens in modeling dynamic aspects of
processes (see Section 3).

Constructing a ProjectModel model is an
incremental and iterative task that comprises several
well-separated steps. The first step consists of a raw
modeling of views. In the second step, the global
ProjectModel model is sketched, based on views of
the previous step. On the basis of the global
ProjectModel model so far obtained, the first step is
re-executed iteratively until a refined modeling of
views is achieved. At this point, a refined definition
of the global ProjectModel model can be obtained
based on the refined definition of views, and so
forth, in a feedback-like manner. This (sub-)task is
iterated until a sufficient degree of detail in the
definition of the global ProjectModel model is
achieved. It is worth to remark that the task of
modeling a ProjectModel model is intrinsically
non-deterministic, and a gap between the
BusinessModel model and the ProjectModel
model exists. This gap must be filled by means of
best modeling practices, project experiences,
technological know-how and engineering
methodologies.

5 LOGICAL DESIGN

As illustrated in Section 1, the Logical Design phase
of our proposed methodology produces in output the
ImplementationModel model, which consists of the
following five models (see Figure 6): (i)
RelationalSchema model, (ii) ControlSchema
model, (iii) InterfaceSchema model, (iv)
ComponentSchema model, and (v)
ArchitectureSchema model.

Similarly to what happens with BusinessModel and
ProjectModel models, each model in the
ImplementationModel model is then instantiated
by means of a corresponding schema which aims at
representing, according to logically-separated areas,
concepts characterizing the third design phase of the
information system.

In the remaining part of this Section, we provide an
in-depth explanation of each model characterizing
the meta-model of the ImplementationModel
model. A RelationalSchema model contains
elements necessary to describe the structure of the
relational database underlying the information
system being modeled. Such a model is designed on
the basis of the DataSchema model defined in the

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

394

Figure 6: Meta-Model of the model
ImplementationModel.

ProjectModel model. In this modeling phase, for
each entity previously-defined in the DataSchema
model a relational table with the same name is
created in the RelationalSchema model Tables
created in this phase are characterized by the
presence of some additional and more-detailed
information than the corresponding entities defined
in the DataSchema model, such as type and range
of values of attributes, referential constraints, and so
forth. In addition to this, relations among tables and
constraints over such relations, like cardinality and
foreign-key constraints, are modeled as well.

A ControlSchema model is used to design a
middleware layer between the user interface layer
and the database layer, respectively, in order to
achieve a greater degree of independence among
(software) components of the information system
being modeled. A ControlSchema model describes
functionalities/procedures of the information system
that perform read/write operations on the data
sources defined in the RelationalSchema model.
Each function described in the ControlSchema
model is also linked to the table on which it executes
in the RelationalSchema model, by means of a
dependence relation. When functions operate on
multiple tables rather than only one, they may be
linked to a View class from the ViewSchema
model of the ProjectModel model.

An InterfaceSchema model defines the
structural requirements of the interface used by the
information system, and models the interactions
occurring between the interface layer and the control
layer, respectively. Forms, captured by the Form
class, are the main components of this modeling
phase. In our proposed methodology, a Form class
is modeled as an aggregation of Unit classes. A Unit
class represents a logical/physical portion of the
Form and can be one of the following (specialized)
classes: (i) DisplayUnit, (ii) EntryUnit, and (iii)
DataUnit class, respectively. A DisplayUnit class is
intended to model static data, i.e. data that are not
retrieved by the underlying relational database, but,
instead, is simply inserted into the Form class as

static unmodifiable field, i.e. titles of menus,
descriptions of fields, and so forth. On the other
hand, EntryUnit instances capture input fields by
means of which users submit data, such as
parametric fields, query-aware dates, and so forth. A
DataUnit class models data extracted from the
underlying relational database that must be
displayed to the user. Typically, a DataUnit instance
is displayed on behalf of users throughout queries
submitted by means of EntryUnit instances.

In order to enrich the expressive power of the
InterfaceSchema model, Form instances can be
linked one another by means of the component Link,
with the goal of modeling possible interaction
scenarios. Instances of the Link class can be one of
the following specialized (sub-)classes: (i)
SimpleLink, or (ii) ParamLink class, respectively.
In more detail, a SimpleLink represents an oriented
link between two instances of Form class, whereas a
ParamLink models an oriented link where
somewhat information exchange between source
Form and destination Form needs to be performed.
As an example, the use of ParamLink makes it
possible to model the interaction scenario in which a
user submits a query to the information system by
means of the source Form instance, and then he/she
visualizes the query answer by means of the
destination Form instance.

Furthermore, in order to achieve a much modular
and cleaner representation, it is advisable to group
together all Form instances related to the same
logical area (or sub-area) into an Area model. Each
Area model can contain further Area instances
along with Form instances and other elements from
the ControlSchema model previously-defined, and
belonging to the same functional area. When
modeling Area instances, with a little abuse of
notation, a Link instance can even occur between a
Form instance and an Area instance as well.

A ComponentSchema model describes a set of
software components along with their mutual
interdependency relations, thus giving a high level
view of the entire information system. Such an
abstraction allows the designer to: (i) model the
different layers of the information system; (ii) group
together several control elements previously-
defined; (iii) represent software objects located of
the information system, such as executable
programs, libraries, files, and so forth.
Finally, an ArchitectureSchema model is exploited
to model the hardware/software architecture of the
information system to be deployed. In particular, a
network-based architecture is very-often advocated,
so that a set of architecture nodes, captured by the

A PROCESS-DRIVEN METHODOLOGY FOR MODELING SERVICE-ORIENTED COMPLEX INFORMATION
SYSTEMS

395

class Node, are determined, and ad-hoc
interconnections/protocols among them are derived
accordingly. A Node class models an abstract
computational unit, usually being a hardware device.
In turn, each Node class may contain a number of
atomic elements captured by the class Component,
usually being software modules modeled in the
ControlSchema model.

6 SERVICES DESIGN

The fourth phase of our proposed methodology is
the Services Design phase, which produces in output
a ServiceModel model (see Section 1). This phase
is introduced in order to address the following two
issues: (i) make it possible to model
procedures/functionalities exposed by the
information system by exploiting the service-
oriented paradigm; at the same time, (ii) enable the
development of service-oriented applications
without affecting the models developed by means of
the three previous design phases of the proposed
methodology.

In particular, the aim of our proposal is to devise
a flexible information systems design methodology
capable of easily supporting the conversion of a
traditional information system into a service-
oriented one, thus adding a “service-oriented flavor”
to legacy information systems, and enabling an easy
transition from a traditional three-phase design
methodology to a four-phase one accordingly, where
the final product is represented by the
ServiceModel model.

The ServiceModel model produced as output by
the Services Design phase is structured on a
hierarchy comprising the following four models (see
Figure 7): (i) ServiceSchema model, which
describes functionalities exposed by the information
system in forms of services deployed in the context
of a service-oriented architecture; (ii)
ServiceDataSchema model, which represents data
sources on top of which the previous service-
oriented procedures/functionalities execute; (iii)
ServiceControlSchema model, which captures a
sub-set of hidden-to-the-user service-oriented
functions necessary to support the
procedures/functionalities exposed by the
information system; (iv) ServiceInterfaceSchema
model, which models user interfaces and their
interactions with service-oriented
procedures/functionalities defined in the
ServiceSchema model.

Figure 7: Meta-Model of the model ServiceModel.

In more detail, the ServiceDataSchema model
allows us to model data sources on which service-
oriented procedures/functionalities execute. As
illustrated in Figure 8, data sources modeled by the
ServiceDataSchema model fall into the following
broad categories. The first category comprises
references to relational tables modeled in the
RelationalSchema model of the
ImplementationModel model. This kind of data is
captured by means of the class EntityReference.
On the other hand, data belonging to the second
category models information/metadata necessary to
the proper service management and control, and are
modeled within the ServiceDataSchema model by
means of the class ServiceEntity. The class
ServiceEntityConnection is instead exploited to
create and manage logical references between
services and relational tables on top of which
services execute.

Figure 8: Meta-Model of the model
ServiceDataSchema.

The ServiceControlSchema model (see Figure 9)
is introduced to model baseline services necessary to
support the same service-oriented paradigm. This
component of the proposed methodology makes use
of well-known reference-based service deployment
and orchestration paradigms.

The ServiceSchema model allows us to model
procedures/functionalities exposed by the
information system in a service-oriented manner. As
shown in Figure 10, the ServiceSchema model is
composed by the following three models, each of

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

396

Figure 9: Meta-Model of the model
ServiceControlSchema.

them identifying a specific class of services: (i)
WrappingWebServices model, which models in a
service-oriented manner procedures/functionalities
previously defined as control components within the
ControlSchema model of the
ImplementationModel model; (ii)
SupportWebServices model, which models
services supporting the service-oriented architecture
itself; (iii) WorkflowWebServices model, which
enables us to model orchestration and coordination
primitives for particular kind of services such as
wrapper services and support services, based on the
formalism and the wide availability of constructs of
workflows (e.g., (Greco et al., 2005)).

Figure 10: Meta-Model of the model ServiceSchema.

Let us focus in great detail on all these kinds of
services captured by the design methodology we
propose, and modeled within the ServiceSchema
model. As mentioned before, Wrapping Web
Services represent the service-oriented
implementation of procedures/functionalities
exposed by the information system, via directly
looking at control components of the
ControlSchema model (which, in turn, is contained
by the ImplementationModel model). This
particular deployment mechanism imposes us to
define ad-hoc wrapping components with suitable
state-parameters and methods, beyond to implement
the corresponding control components in the
ImplementationModel model devoted to
effectively make the middleware between
procedures/functionalities of the information system

and its service-oriented realizations. Support Web
Services are needed to support the service-oriented
paradigm at run time. Similarly to the case of
Wrapping Web Services, designing Support Web
Services involves in designing ad-hoc support
(software) objects within the software infrastructure,
beyond to the corresponding control components
within the ImplementationModel model. Finally,
Workflow Web Services are the most critical services
in our proposed design methodology as they deal
with the issue of providing orchestration and
coordination primitives to both Wrapping Web
Services and Support Web Services, respectively.
The complete meta-model of the
WorkflowWebServices model is shown in Figure
11. Due to its inherent complexity and for space
reasons, we only provide a description of its
(interior) model that plays the major role, i.e. the
WorkflowDiagram model.

The WorkflowDiagram model focuses on the
modeling of orchestration and coordination
primitives over services implemented within the
information systems via well-consolidated workflow
formalisms. From this evidence, a clear hegemony
of the WorkflowDiagram model follows.

Finally, coming back to the description of
components of the ServiceModel model, the
ServiceInterfaceSchema model allows us to
capture and describe ad-hoc interfaces that are in
charge of supporting interactions between users and
services. In particular, this is achieved via the design
of suitable forms that directly build on the
workflows defined in the WorkflowDiagram model.

Figure 11: Meta-Model of the model
WorkflowWebServices.

7 CONCLUSIONS AND FUTURE
WORK

Starting from actual limitations of state-of-the-art

A PROCESS-DRIVEN METHODOLOGY FOR MODELING SERVICE-ORIENTED COMPLEX INFORMATION
SYSTEMS

397

service-oriented information systems design
methodologies in capturing both complexity and
new requirements dictated by the emerging service-
oriented paradigm, in this paper we have introduced
an innovative methodology for modeling service-
oriented information systems, which embeds several
points of research innovation with respect to the
active literature.

The essence of our proposal relies in a process-
driven modeling of the information system
functionalities/procedures, which are then enclosed
in ad-hoc routines exposed as services by the
reference architecture on top of which the target
information system is deployed. This strategy has
already demonstrated its effectiveness and reliability
in a number of real-life realizations of complex
service-oriented information systems.

Future work of our research is actually oriented
towards two different goals: (i) devising a complete
suite able to support all the design phases of service-
oriented information systems by also including
additional features such as monitoring and
continuous re-engineering of the at-work
information system; (ii) adding novel characteristics
to our methodology, such as the amenity of
automatically generating wrapper (software)
components for functionalities/procedures of the
information system from the business modeling
layer directly, and the amenity of embedding active
behaviors (like in the style of well-known ECA rules
of DBMS) across all the modeling phases of the
methodology.

REFERENCES

Arni-Bloch, N., and Ralyté, J., 2008. Service-Oriented
Information Systems Engineering: A Situation-Driven
Approach for Service Integration. In Proc. of the 20th
CAiSE Int. Conf., pp. 140-143.

Castela, N., Tribolet, J.M., Silva, A., and Guerra, A.,
2001. Business Process Modeling with UML. In Proc.
of the 3rd ICEIS Int. Conf., Vol. 2, pp. 679-685.

Chung, S., Byung Chul An, J., and Davalos, S., 2007.
Service-Oriented Software Reengineering: SoSR. In
Proc. of 40th IEEE HICSS Int. Conf., pp. 172-181.

Cuzzocrea, A., Gualtieri, A., and Saccà, D., 2008. A
Process-Driven Methodology for Continuous
Information Systems Modeling. In Proc. of the 10th
ICEIS Int. Conf., Vol. 2, pp. 82-88.

Davenport, T. H., and Short, J. E., 1990. The New
 Industrial Engineering: Information Technology and

Business Process Redesign. In Sloan Management
Review, Vol. 31, No. 4, pp. 11-27.

Earl, M. J., 1994. The New and the Old of Business
Process Redesign. In Journal of Strategic Information
Systems, Vol. 3, No. 1, pp. 5-22.

Giaglis, G.M., 2001. A Taxonomy of Business Process
Modeling and Information Systems Modeling
Techniques. In International Journal of Flexible
Manufacturing Systems, Vol. 13, No. 2, pp. 209-228.

Greco, G., Guzzo, A., Manco, G., and Saccà, D., 2005.
Mining and Reasoning on Workflows. In IEEE
Transactions on Knowledge and Data Engineering,
Vol. 17, No. 4, pp. 519-534.

Grover, V., Fielder, K.D., and Teng, J.T.C., 1994.
Exploring the Success of Information Technology
Enabled Business Process Reengineering. In IEEE
Transactions on Engineering Management, Vol. 41,
No. 3, pp. 276-284.

Herold, S., Rausch, A., Bösl, A., Ebell, J., Linsmeier, C.,
and Peters, D., 2008. A Seamless Modeling Approach
for Service-Oriented Information Systems. In Proc. of
5th IEEE ITNG Int. Conf., pp. 438-446.

Kim, K-H, Yoo, H.-J., and Kim, H.-S., 2005. A Process-
Driven E-Learning Content Organization Model. In
Proc. of 4th IEEE ACIS Int. Conf., pp. 328-333.

MacArthur, P.J., Crosslin, R.L, and Warren, J.R., 1994. A
Strategy for Evaluating Alternative Information
System Designs for Business Process Reengineering.
In International Journal of Information Management,
Vol. 14, No. 4, pp. 237-251.

van Meel, J.W., Bots, P.W.G., and Sol, H.G., 1994.
Towards a Research Framework for Business
Engineering. In IFIP Transactions A: Computer
Science and Technology, Vol. 54, pp. 581-592.

zur Muehlen, M., 2001. Process-Driven Management
Information Systems - Combining Data Warehouses
and Workflow Technology. In Proc. of the 4th ICECR-
4 Int. Conf., pp. 550-566.

Neves, J., Vasconcelos, A., Caetano, A., Sinogas, P.,
Mendes, R., and Tribolet, J.M., 2001. Unified
Resource Modelling: Integrating Knowledge into
Business Processes. In Proc. of the 3rd ICEIS Int.
Conf., Vol. 2, pp. 898-904.

Papazoglou, M.P., and van den Heuvel, W.-J., 2006.
Service-Oriented Design and Development
Methodology. In International Journal of Web Engi-
neering and Technology, Vol. 2, No. 4, pp. 412-442.

Papazoglou, M.P., and van den Heuvel, W.-J., 2007.
Service Oriented Architectures: Approaches,
Technologies and Research Issues. In VLDB Journal,
Vol. 16, No. 3, pp. 389-415.

Royce, W.W., 1970. Managing the Development of Large
Software Systems. In Proc. of the 1970 IEEE
WESCON Int. Conf., pp. 1-9.

Serrano, A. 2003. Capturing Information System’s
Requirement Using Business Process Simulation. In
Proc. of the 15th ESS Int. Conf.

Vasconcelos, A., Caetano, A., Neves, J., Sinogas, P.,
Mendes, R., and Tribolet, J. M., 2001. A Framework
for Modeling Strategy, Business Processes and
Information Systems. In Proc. of the 5th IEEE EDOC
Int. Conf., pp. 69-80.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

398

