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Abstract. The majority of this paper relies on some forms of automatic decom-
position tasks into modules. Both described methods execute automatic neural 
network modularization. Modules in neural networks emerge; we do not build 
them straightforward by penalizing interference between modules. The concept 
of emergence takes an important role in the study of the design of neural net-
works. In the paper, we study an emergence of modular connectionist architec-
ture of neural networks, in which networks composing the architecture compete 
to learn the training patterns directly from the interaction of reproduction with 
the task environment. Network architectures emerge from an initial set of ran-
domly connected networks. In this way can be eliminated connections so as to 
dedicate different portions of the system to learn different tasks. Mentioned me-
thods were demonstrated for experimental task solving. 

1 Reasons for a Modular Approach 

The primary reason for adopting an ensemble approach to combining nets into a 
modular architecture is that of improving performance. There are a number of possi-
ble justifications for taking a modular approach to combining artificial neural nets. 
First, a modular approach might be used to solve a problem which could not have 
been solved through the use of a unitary net. A modular system of nets can exploit the 
specialist capabilities of the modules, and consequently achieve results, which would 
not be possible in a single net. Another reason for adopting a modular approach is 
that of reducing model complexity, and making the overall system easier to under-
stand. This justification is often common to engineering design in general. Other 
possible reasons include the incorporation of prior knowledge, which usually takes 
the form of suggesting an appropriate decomposition of the global task. A modular 
approach can also reduce training times and make subsequent modification and ex-
tension easier. Finally, a modular approach is likely to be adopted when there is con-
cern to achieve some degree of neurobiological or psychological plausibility, since it 
is reasonable to suppose that most aspects of information processing involve mod-
ularity. 

A modular neural network can be characterized by a series of independent neural 
networks moderated by some intermediary. Each independent neural network serves 
as a module and operates on separate inputs to accomplish some subtask of the task 
the network hopes to perform [1]. The intermediary takes the outputs of each module 
and processes them to produce the output of the network as a whole. The interme-
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diary only accepts the modules’ outputs. As well, the modules do not interact with 
each other. 

When a modular approach is adopted, for what ever reason, there are different 
ways in which a problem might be decomposed. In particular, task decomposition can 
be either explicit or automatic. Explicit decomposition is likely to depend on an un-
derstanding of the task and the capabilities of the modular components. It provides a 
way of incorporating prior knowledge and understanding of the task in question. For 
instance, a particular decomposition might be implied by the structure of the task, if 
for example, the data came from different sources or took different forms [3]. Simi-
larly, modular decomposition might be guided by theories or evidence about the like-
ly modular structures in the human brain, or the human information processing sys-
tem. By contrast, automatic decomposition, where decomposition is accomplished 
through the blind application of a data partitioning algorithm, is particularly useful 
when expert knowledge of the task is not available.  

There has been a considerable amount of research on automatic decomposition 
methods, for example, the mixture-of-experts [4] and hierarchical mixtures-of-experts 
approaches [6]. Under such methods, the input data is partitioned into several sub-
spaces, and simple systems are trained to fit the local data. Such data partitioning is 
often more effective than training on the whole input data space. In general, the con-
cern in this work is to improve performance, and as such it is closely related to the 
ensemble approach. Thus performance on a task could be improved by either taking a 
modular decompositional approach, or by creating an ensemble of parallel solutions 
to the problem, and combining them in some way. As yet, it is not clear where one 
approach is likely to be better than the other [7]. It is increasingly recognized that the 
effectiveness of ensemble approaches depends on the extent to which their failures 
are correlated and a decompositional approach promotes the reduction of such corre-
lation. However, there are few direct comparisons of the relative effectiveness of a 
modular approach relying on automatic decomposition, and an ensemble-based ap-
proach. Neither are the two alternatives necessarily mutually exclusive, since it is 
possible to envisage an ensemble system, where each member was composed of a set 
of modules created through automatic decomposition. The majority of this paper 
relies on some forms of automatic decomposition tasks into modules. In this way can 
be eliminated connections so as to dedicate different portions of the system to learn 
different tasks.  

2 Automatic Task Decomposition 

An artificial neural network may show slow learning because it is being trained to 
simultaneously perform two or more tasks. For example, suppose that the mapping 
from the input units to each output unit constitute separate tasks and that the network 
is trained via backpropagation algorithm. During training, each output unit provides 
error information to the hidden units from which it receives a projection. It is possible 
that the error information from one output unit may indicate that a hidden unit’s acti-
vation should be lager and, at the same time, the error information from another out-
put unit may indicate that the same unit’s activation should be smaller. This conflict 
in the error information is called spatial crosstalk. Although spatial crosstalk is clearly 
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seen in terms of the backpropagation algorithm, it is limited to networks trained using 
this algorithm. Therefore, spatial crosstalk may be considered as resulting from the 
connectivity of the network and not from the learning algorithm used to training the 
network. By maintaining short connections and eliminating long connections, spatial 
crosstalk can be reduced and tasks can be decomposed into subtasks. Although the 
three systems show in Fig. 1 [5] can be trained to perform the same mapping. System 
in Panel A has its hidden units fully interconnected with its output units and is most 
susceptible to spatial crosstalk. System in the Panel B has its hidden units on the top 
fully interconnected with its top output units and its hidden units on the bottom fully 
interconnected with its bottom output units. Thus, it consists of two separate networks 
(two 4-4-2 networks). If the mapping that this system is trained to perform can be 
decomposed so that the mapping from the input units to the top set of output units 
may be thought of as one task and the mapping from the input units to the bottom set 
of output units may be thought of as a second task, then this system has dedicated 
different networks to learn the different tasks. Because there is no spatial crosstalk 
between the two tasks, such a system may show rapid learning. The Panel C has hid-
den unit project to only a single output unit. It therefore consists of a separate net-
work for each output unit (four 4-2-1 networks) and is immune to spatial crosstalk.  

 

 

 

 

 

 

A B C 

Fig. 1. A: One 4-8-4 network. B: Two 4-4-2 networks. C: Four 4-2-1 networks [5]. 

Artificial neural network with many adjustable weights may learn to training data 
quickly and accurately, but generalize poorly to novel data. One method of improving 
the generalization abilities of network with too many “degrees of freedom” is to de-
cay or eliminate weights during training. A second method is to match the structure of 
the network with the structure task. For example, networks, whose units have local 
receptive fields, can learn to reliably, detect the local structure that is often present in 
pattern recognition tasks. A system that maintains short connections and eliminates 
long connections should generalize well because its degrees of freedom are reduced 
and because its units develop local receptive fields. 

Artificial neural network often develop relatively not interpretable representations 
for at least two reasons. Networks whose units are densely connected tend to develop 
representations that are distributed over many units and, thus, are difficult to interpret. 
In addition, not interpretable representations often develop in networks that are 
trained to simultaneously perform multiple tasks. In contrast, networks, whose units 
tend to have local receptive fields, towards short connections may develop relatively 
local representations. Furthermore, such a system may be capable of eliminating 
connections so that different networks learn different tasks. 
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3 Evolutionary Module Acquisition 

There is a simple model of evolutionary emergence of modular neural network topol-
ogy introduced in the chapter [10]. We describe a method of optimization of the 
modular neural network architecture via evolutionary algorithms that uses a fix part 
of network architecture in the genome. Every individual is a multilayer neural net-
work with one hidden layer of units. We have to fix its maximal architecture (e.g. 
number of input, hidden and output units) before the main calculation. Population P 
consists of P = {α1, α2,...,αp}, where p is equal to a number of chromosomes in P. 
Every chromosome consists of binary digits that are generated randomly with a prob-
ability 0.5. Chromosome, with m hidden units a n output units is shown in Fig. 2, 
where eij = 0, if the connection between i -  th hidden unit and j -  th output unit of the 
individual doesn’t exist, and eij = 1, if the connection exists (i = 1,…,m;  j = 1,…n). 
Connections between input and hidden units are not included in chromosomes, be-
cause they are not necessary for modular network architecture creation. Each individ-
ual (e.g. the network architecture) is partially adapted by backpropagation, its fitness 
function is then calculated as follows (1): 

k
k E

Fitness 1
=  (1) 

where k = 1, …, p (p = number of individuals in the population); 

kE  is the error after backpropagation adaptation of the k-individual. 

 Population P: 
individual: α1 ... individual: αk ... individual: αp 
 
INDIVIUAL αk: 

e11, …e1n, ... em1, …emn 
  

Fig. 2. A population of individuals. 

Only two mutation operators are used, no crossover operators. The first mutation 
operator is defined in following way. In the every generation, one individual is ran-
domly chosen and each bit is changed with probability 0.01 (e.g. if the connection 
exists – after mutation it does not exist and vice versa) in its chromosome. The 
second mutation operator is defined in following way, see Fig. 3. First, we define a 
pattern of t-consecutive zeroes that will be fixed during whole calculation. The pat-
tern is determined by number of neurons in the output layer, which represent individ-
ual modules. Output neurons are organized into d modules, t = min (ti,  i = 1 ,..., d), 
where t is number of neurons in the pattern, and ti is number of neurons in the i-th 
module. Defined pattern is represented as a continuous chain of t-zeros, which is not 
changed during applications of the second mutation operator. Fixation of t-zeros 
chain can be defended by biological motivation, where the protection against muta-
tion is usually related to continuous section. Defined pattern in the chromosome al-
lows temporary fixing the existing module against the application of the second muta-
tion operator. Then we find the define pattern in each chromosome. If we find only 
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one continuous pattern, we fix it. If we find more than n-consecutive zeroes, we ran-
domly choose n-consecutive zeroes from them and fix them. The fixed pattern 
represents a single atomic unit and the second mutation operator is not applied to it. 
Only to the rest of bits from chromosomes are changed with probability 0.01. Thus, 
each individual has a unique collection of fixed patterns. The second mutation opera-
tor is applied to every individual r -  times, where r is a parameter and its value is 
define before calculation. Only the best individual or its best mutation is included into 
the next generation. Next, all individuals in the new generation release a portion of 
the pattern that was fixed that way they can once again be manipulated by reproduc-
tion operators. The process of evolutionary algorithms is ended when the population 
achieves the maximal generation or if there is no improvement in the objective func-
tion for a define sequence of consecutive generations. 

 00...0000010... A: 
 

B:  
 

00100010101 0...01100100...0
  k < t k = t  k > t    

    

  00100010101 0...01100100...000...0000010... 
00100010101 0...01100100...000...0000010...  

Fig. 3. The second mutation operator. The fixed pattern is t- consecutive zeroes, k is number of 
consecutive zeroes in the chromosome. A: An individual before mutation. B: Possible chromo-
somal representation of the individual after mutation. 

4 Modularization Via Evolutionary Hill – climbing Algorithm 

The second presented method is based on hill-climbing algorithm with learning [8]. 
Evolution of the probability vector is modeled by a genetic algorithm on the basis of 
the best evaluated individuals in this algorithm, which are selected on the basis of the 
speed and quality of learning of the given tasks [11]. Population P is presented in Fig. 
2 and is defined in the same way as in the previous chapter. Individuals in the next 
generation are generated from the updating probability vector. Every individual (e.g. 
its neural network architecture) is partially adapted by backpropagation [2] and eva-
luated by the quality of its adaptation. The number of epochs is a very important 
criterion in the described method, because modular architectures start to learn faster 
than fully connected multilayer connectionist networks [9]. Our goal is to produce 
such a neural network architecture that is able to learn a given problem with the smal-
lest error. A backpropagation error is a fitness function parameter. A fitness function 
value Fi of the  i - th  individual is calculated as follows (2): 

con

f
F

con

k
ik

i

∑
== 1  (2) 

where i = 1, …, p (p is number of individuals in a population); 
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ik
ik E

f 1
=  is a fitness function value of the  i-th  individual in the  k-th  

adaptation;  
k = 1, …, con (con is a define constant, con>1); 

ikE  is the backpropagation error of the  i-th  individual in the  

k-th  adaptation.  

Crossover and mutation operators are not used in the described method. This algo-
rithm is based on the probability vector emergency. The probability vector is updated 
on the basis of well - evaluated individuals in the population. Entries  0 ≤ wij ≤ 1  of 
the probability vector w = (w11,…, w1n,..., wm1,..., wmn) ∈ [0,1]mn , (m is number of 
hidden units; n is number of output units) determine probabilities of appearance of  
‘1‘  entries in given positions. 

Entries of the Probability Vector are Calculated in the Next Generation as 
follows:  

− We calculate Favg , e.g the average fitness value of the population in the given 
generation (3):  

,1

p

F
F

p

i
i

avg

∑
==  (3) 

where p  is a number of individual in the population; 
Fi  is a fitness function value of the  i-th  individual, see a formula (2). 

− We choose a set of  q  individuals with  Fi ≥ Favg  , e.g. α1, α2, …, αq   (1 ≤ q≤ p , 
where p is a number of individuals in the population. 

− Entries of the probability vector of the population   w’k ∈ [0,1] are calculated as 
follows (4): 

( ) kkk www ′′+−=′ λλ1  (4) 

where k = 1, …, mn (mn is a number of the probability vector  w  entries); 

kw  is a value of the  k-th entry of the probability vector in the last gen-

eration; 
λ is a constant (0 < λ< 1); 

kw ′′  is a value of the k-th  bit of the probability vector  w that is calcu-

lated as follows (5): 

( )

q

e
w

q

i
ik

k

∑
==′′ 1  (5) 

where (ek)i is a value of the k-th bit of the chromosome of the indi-
vidual  αi (i = 1, ...,q) and it is true Fi ≥ Favg  for these individuals. 
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The best individual in the population is included to the next population automati-
cally. Values of the chromosomes of the rest of individuals αi (i = 2, …,p) are calcu-
lated for the next generation as follows: if  wk = 0(1), then (ek)i = 0(1); if  0 < wk < 1  
the corresponding (ek)i is determined randomly by (6): 

( )
⎩
⎨
⎧ <

=
otherwise0
i1 k

ik

wrandomf
e  (6) 

where k = 1, …, p (p = number of individuals in the population). 
The process of the evolutionary algorithm is ended if the saturation parameter 

τ(w)* is greater than a predefined value. 

5 Experiments 

In the experimental task, a system (neural network) recognizes a binary pattern and 
its rotation. Neural network with one hidden layer of units with topology 9-13-8 
adapted by backpropagation represents a system here. The creation of such modular 
system that would solve partial tasks correctly was our target. Basic set of training 
patterns are organized into a matrix (grid) 3x3, which is represented by binary vector. 
The direction of rotation is defined towards the basic pattern by four possibilities: (a) 
0°-state without rotation, (b) turn 90°, (c) turn 180°, and (d) turn 270°. The training 
set includes four patterns that are defined in four different states, see Fig 4. Thus, we 
get 16 different combinations of shapes and their rotations. Eight output units are 
divided into two subsets of four units. Units in the “shape” subset are responsible for 
indicating the identity of the input. Each input is associated with one of the four 
“shape” units, and one of the four rotations. The system is considered to correctly 
recognize and locate an input.  

Parameters of the Experimental part. 

− Population (both methods):  
Number of individuals: 100. 
Neural network architecture: 9 – 13 – 8. 
Training algorithm: Backpropagation  
(learning rate: 1; momentum: 0; training times: 150 epochs in the partial training). 

− Parameters of method from chapter 3: 
Probability of mutations: 0.01. 
Fix pattern in the second mutation: “0000”. 
r: 5. 
Ending conditions: Maximal number of generations: 500. 

                                                           
* τ(w) = a number of entries (wi) of the probability vector w that are less then weff  or (1- weff), 

where weff is a small positive number. 

29



− Parameters of method from chapter 4: 
con: 100; see formula (2).  
λ: 0.2; see formula (4).  
Ending conditions: The saturation parameter, τ(w): 0.99*m*n 
(m=13, number of hidden units; n=8, number of output units); weff = 0.01. 

 

Fig. 4. A defined pattern in a training set. 

Table 1 shows a table of results. The table shows an evolution of the best individ-
ual in the population. It is evidently seen, the connections among modules are elimi-
nated faster than connection inside modules. These results support also the fact that 
systems were created dynamically during a learning process. Method from chapter 3 
gives the following results: six hidden units of the best individual realise the “shape” 
task and its four units realise the “rotation” task in the last generation. Method from 
chapter 4 gives the following results: seven hidden units of the best individual realise 
the “shape” task and its four units realise the “rotation” task in the last generation. 
Calculation was terminated, when ending conditions were fulfilled, e.g. for method 
from chapter 3 was calculation terminated in the 498-th generation and for method 
from chapter 4 was calculation terminated in the 353-rd generation. Other numerical 
simulations give very similar results. 

 
 
 

Table 1. Table of results. 

OUTPUT 

WHICH SHAPE SHAPE ROTATION 

INPUT 

HIDDEN LAYER 

0°    90°   180°   270° 

INPUT: shape 1, rotation 90° 
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 Method from chapter 3: Method from chapter 4: 

generation 

number of 
hidden 
units: 

„shape“ 
task: 

number of 
hidden units: 

„rotate“ 
task: 

number of 
interferen-

ces:  

number of 
hidden units: 

„shape“ 
task: 

number of 
hidden units: 

„rotate“ 
task: 

number of 
interferen-

ces:  

1 1 1 11 0 0 13 
100 2 3 8 1 3 9 
200 3 3 7 4 3 6 
300 4 3 6 6 3 4 
400 5 4 4 GENERATION: 353 

 GENERATION: 498 7 4 2 
 6 4 3    

We made the following experiment. Neural network with modular architecture (the 
best individual) and network with the same arrangement of neurons, but by all con-
nections between layers have been adapted via backpropagation to solve the above 
defined task. For each model was done 10 adaptations, the weight vector was at the 
beginning of each simulation generated randomly. In Fig. 5 the average error function 
values is shown: (a) modular neural network and (b) fully connected neural network 
during the whole calculation. Adaptation of each neural network was terminated after 
1500 iterations. The figure shows that the network with a modular architecture, which 
includes only a limited number of connections, allows to learn the considered prob-
lem as efficiently as a monolithic networks designed within an appropriate architec-
ture. 

0

5

10

15

0 500 1000

fully connected individual

modular architecture

iterations

E

0

5

10

15

0 500 1000

modular architecture

fully connected individual

iterations

E

A B 

Fig. 5. The history of average error function value during whole calculation A: method from 
chapter 3; B: method from chapter 4. 

6 Conclusions 

Both  described  method  are  methods  of  automatic neural net modularization. The  
problem specific modularisations of the representation emerge through the iteration 
of the evolutionary algorithm directly with the problem. 

When interpreting solutions, we have to be careful, because algorithms’ parame-
ters are not the object of the optimization process, but we obtain solutions just in 
dependence on these parameters. Both numerical simulations reflect the modular 
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structure significance as a tool of a negative influence interference rejection on neural 
network adaptation. As the hidden units in the not split network are perceived as 
some input information processing for output units, where a multiple pattern classifi-
cation is realized on the basis of diametrically distinct criteria (e.g. neural network 
has to classify patterns according to their form, location, colors, ...), so in the begin-
ning of an adaptation process the interference can be the reason that output units also 
get further information about general object classifications than the one which is 
desired from them. This negative interference influence on running the adaptive 
process is removed just at the modular neural network architecture, which is proved 
also by results of the performed experiment. The winning modular network architec-
ture was the product of emergence using evolutional algorithms. The neural network 
serves here as a special way of solving the evolutional algorithm, because of its struc-
ture and properties it can be slightly transformed into an individual in evolutionary 
algorithm.  
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