
Framework for Performance Evaluation of Service
Negotiations in Agent Systems∗

Mihnea Scafeş and Costin Bădică

University of Craiova, Software Engineering Department
Bvd. Decebal 107, Craiova, RO-200440, Romania

Abstract. We propose a framework and method for evaluation of performance of
multi-issue, collaborative service negotiations in multi-agent systems. The frame-
work uses the following evaluation criteria: computation complexity, communi-
cation complexity, and scalability. Our proposal is applied to analyze a version of
Contract Net protocol that we use in an agent system for disaster management.
In particular we discuss how agents compute the additional effort they must de-
ploy to meet conditions of negotiation issues. Two negotiation issues specific to
disaster management problems are given as example: location and time.

1 Introduction

Currently, complexity of real-world problems demands for special support for collabo-
rative problem solving in distributed environments. Each node of a distributed system
runs a set of processes that gather and generate information, either from other nodes or
from the environment. This information can be integrated and combined to create more
complete views of the environment, as well as to improve the problem solving process.

Multi-agent systems are a special class of intelligent distributed systems that com-
bine intelligence with distribution of computation to improve problem solving pro-
cesses. Each node of the system is represented by an agent with local domain knowledge
and a set of processing abilities. Multi-agent systems have been successfully applied
for solving problems involving distributed reasoning, decentralization and collabora-
tion. An example is a collaboration system for helping human experts and population
to fight against disaster situations, like those addressed by DIADEM project1 (more
specifically, DIADEM project targets potential disasters caused by chemical incidents
in industrial and urban areas). Agents in DIADEM support human experts as well as
other stakeholders that participate in the process of responding to a chemical incident.

DIADEM is based on Dynamic Process Integration Framework – DPIF [1] multi-
agent platform. DPIF agents run reasoning processes to decide for the best course of ac-
tion that fits their own objectives. Agents can be fully-autonomous or human-controlled

∗Mihnea Scafeş was partly supported by IOSUD-AMPOSDRU contract 109/25.09.2008 and
partly supported by DIADEM project. Costin Bădică was supported by DIADEM project. Dia-
dem project is funded by European Union under Information and Communication Technologies
(ICT) theme of the 7th Framework Programme for R&D, ref. no: 224318.

1DIADEM project – Distributed information acquisition and decision-making for environ-
mental management: http://www.ist-diadem.eu/

ScafeÅ§ M. and BÄČdicÄČ C.
Framework for Performance Evaluation of Service Negotiations in Agent Systems.
DOI: 10.5220/0003024700190029
In Proceedings of the 8th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems (ICEIS 2010), page
ISBN: 978-989-8425-12-6
Copyright c© 2010 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

(i.e. a sort of partially-autonomous). This means that humans can intervene into or com-
pletely replace the agent’s reasoning processes. Reasoning processes of the agents are
made available into the system as services. Services have input and output parameters.
Input parameters consist of the necessary information for the agents to provide their
services (e.g. the location at which an agent should measure gas concentrations). Out-
put parameters are results of service execution and can be input parameters of other
services. Therefore, each service may depend on other services in the system.

During an incident response, agents get connected through services and create com-
plex workflows [1]. They execute local processes, request information from other agents
(request services from provider agents) and supply information to other agents (provide
services to requester agents). There might be multiple agents that are simultaneously
able to provide the same service, but usually some agents promise better results than
others. Alternatively, agents could be too busy and thus not able to meet the conditions
of requested service. We propose the use of service negotiation for dynamic selection of
optimal service providers. Whenever an agent requests a service, it negotiates with other
agents about the provision of the required service. On the other hand negotiation brings
a computational overhead into distributed reasoning processes. Therefore we must as-
sure that this overhead is not a performance hit to the system, as it must handle complex
situations for which time and human effort resources are important.

Based on our literature review, we observed that there are quite few works address-
ing evaluation of performance impact of negotiations in multi-agent systems ([2–5]). So
we propose a framework and method for evaluation of negotiations in the context of the
DIADEM project. We first define a set of evaluation criteria (computation complexity,
communication complexity and scalability) and then analyze a version of negotiation
that we use in our system with respect to these criteria. For computation complexity we
analyze the complexity of the decision steps of the negotiation (creating task announce-
ments, making proposals and task awarding). While analyzing the phase of making pro-
posals, we discuss how agents compute the additional effort they will have to deploy by
taking into account the negotiation issues (two issues are given as an example: location
and time). For communication complexity we analyze the communication overhead (the
number of messages). For scalability we study if the system can effectively support a
large number of negotiations about location and time. The results show that service ne-
gotiation has an affordable computation complexity, while communication complexity
can be quite large.

2 Negotiation Framework

This section briefly introduces our negotiation framework [6]. The framework is generic
and addresses negotiation protocols, negotiation subject and decision components (how
agents make proposals and how they select the best proposals).

The protocol supports one-to-many negotiations and therefore it defines two agent
roles: manager and contractor. The manager is the agent that requests a service and
thus initiates the negotiation. The contractor is the agent that is able to provide the
service requested by the manager. A set of generic negotiation steps have been defined:
(i) the initial step consisting of subject identification and negotiation announcement

20

(initiation of negotiations), (ii) the process of making proposals and counter-proposals,
(iii) deciding whether an agreement or a conflict has been reached, and (iv) termination.

Agents negotiate about terms and conditions of service provision. A service takes a
set of input and output parameters. The input parameters represent necessary informa-
tion for the agents to provide their services. Output parameters represent new informa-
tion produced by services.

Negotiation subject comprises the service description and a subset of the service
parameters that are important decision factors during negotiation (i.e. they are taken
into consideration when selecting the appropriate service providers). During negotia-
tion, these parameters are considered negotiation issues. Thus, when the negotiation
designer configures the service, he also defines the negotiable parameters of the service
(negotiation issues). Issues are described by properties like: name, data type, weight.

Note that in our current model negotiation issues are considered independent. This
means that total utility of a negotiation proposal is the weighted sum of partial utilities
of each independent negotiation issue [6].

The default negotiation in DPIF is an implementation of Contract Net (CNET in
what follows [7]). A manager agent starts a negotiation for a service by sending a call
for proposals (task announcement) to contractor agents. Contractor agents then decide
whether to engage in negotiation or not. If their decision regarding engagement in nego-
tiation is positive, they must set the conditions under which they will be able to provide
the required service (compute proposals). Contractors evaluate possible proposals using
a utility function that takes into consideration the effort needed to provide the service
under the conditions in the proposals. After all the proposals have been received or
after a given deadline has passed, the manager selects the best proposal received (i.e.
the proposal that returns him the highest utility) and informs the winner agent. The
manager uses a weighted sum utility function to evaluate proposals. A connection is
created between the manager agent and the contractor that is awarded the service. At
this point negotiation ends. Service provisioning will be done at a later step, following
the connection created between manager and the winner contractor.

Although the default negotiation protocol is CNET, the system allows the use of
arbitrary negotiation schemes, supporting domain specific one-to-many negotiation ap-
proaches where protocol, negotiation subject and strategies are specified during the
configuration phase. Our model supports two levels of configuring negotiations: (i) ne-
gotiation type level where designer defines the negotiation protocol, identifies the nego-
tiation issues and sets default values for their properties; (ii) negotiation instance level
where a human expert can tune the issue properties for a certain situation.

3 Evaluation Criteria

We introduce the following performance measures for evaluation of DIADEM service
negotiation mechanisms [8]: (i) Computation complexity. Represents the amount of
time that execution of computations required for service negotiations add to the total
system execution time. Agents must make certain decisions during negotiations (e.g.
compute offers/counter-offers, decide if to submit a bid or not, a.o.) [9]. These decisions
consume time that can be estimated using measures of computation complexity, derived

21

using asymptotic analysis of the computation time; (ii) Communication complexity.
Represents the amount of communication activities incurred during service negotia-
tion processes. Negotiation assumes interaction between participants. In multi-agent
systems, interaction between agents is done using messages that transport information
or commands. A large number of messages represents a performance hit to the system;
(iii) Scalability. This performance measure tells us if the system can effectively sup-
port a large number of negotiations. It would be difficult to discuss scalability without
taking into consideration the other performance measures. Therefore we will analyze
the scalability after we analyze computation and communication complexities. Because
computation, communication and scalability are typical problems of multi-agent sys-
tems that use negotiation for dynamic service discovery and provisioning, we consider
that our type of analysis can be also applied to similar systems.

Note that our problem deals with service negotiation between cooperative agents.
Negotiations for certain service provision are carried out only with agents that are able
to provide the required service (i.e. that posses the domain knowledge or physical ca-
pabilities – in the case of humans – that are needed to provide the service). Provider
agents will usually accept to provide their services if they are currently able to do so
(i.e., for example, they have all the necessary resources), without asking in compensa-
tion for payments from requester agents. In our model payments are not necessary and
consequently are not taken into consideration. Additionally, as agents are only able to
provide certain types of services, tasks cannot be exchanged between agents as it hap-
pens in task-oriented domains [10]. Role of negotiation is to select the optimal provider
of requested service in a specific context without considering the problem of distribut-
ing tasks evenly between available agents. Under these assumptions, criteria like load
balancing, fairness and utilization of resources are out the scope of our discussion.

Note also that we evaluate only the performance of negotiations, rather than perfor-
mance of the whole system.

4 Sample Evaluation

The protocol that we use for service negotiation is a variant of Contract Net (CNET)
Protocol [7]. We motivate our choice by the fact that CNET has been widely used for
distributed problem solving [7, 10]. Other suitable negotiation protocols were intro-
duced in [11, 12]. There is a key difference between our version and other versions of
CNET that is driven by the nature of our problem: it does not involve payments.

Our CNET version follows FIPA specifications (see sequence diagram from [13]) up
to the point when interaction for service provision starts (see Section 2). In our model,
service provision is handled separately in the system framework and it is not considered
part of negotiation. Negotiation is used only to create connections between agents [1].
In other words, messages with information about the progress of the task are not sent.

Before proceeding, we first introduce some notation. Let A be the set of agents in
the system. Let Aj be the set of agents involved in negotiation j. We denote the task that
is currently negotiated by T . Let us assume that Tc is the set of currently active tasks of
the contractor and Tpos the set of tasks that are currently being negotiated (except for

22

T) and that might be awarded to the contractor if T is also awarded. The subset of Tpos

that will be actually awarded to the contractor is denoted as Tf (future tasks).

4.1 Computation Complexity

There are 3 important decision points in our negotiation process: (i) when the manager
creates task announcements; (ii) when a contractor creates proposals; and (iii) when the
manager awards a task to the winning contractor.

Service announcements are created whenever an agent (the manager agent) requires
a service. This may happen when an agent starts a new workflow instance by invoking
a top level service or when an agent starts a service that is required by another service
[1]. Top level services are normally started by human agents, i.e. human experts. They
choose what service to start based on the context of their work.

Services are created offline (at design time), resulting a set of service descriptions
[1] that are stored into a service repository. Human experts initially define the service
concept (usually represented by the service name) and the system framework automati-
cally searches the service repository for a suitable service to help a human to configure
the proper service description. Task announcements for required services are created by
humans in a similar way. The system framework automatically determines the services
required by a certain service and creates task announcements. As services are defined
offline and stored in a data structure for fast retrieval (e.g. hash table), we can assume
that task announcements are created in constant time, thus having constant complexity.

The next decision point of the protocol is part of the contractor role. As soon as the
contractor receives a task announcement, he must determine: (i) if he should respond
with a proposal; (ii) if he decides to submit a proposal then he must determine suitable
values for the parameters of the proposal. The contractor will decide about and com-
pute proposals by taking into consideration the effort that he will have to deploy for
providing the service in order to meet the conditions specified in the proposal.

Contractors compute marginal efforts [10] and then decide whether to provide the
service or not. Marginal efforts represent the lower and higher boundaries of the effort
the contractor will have to deploy in order to provide the task.

The boundaries for additional effort that contractor has to deploy for a task T are:

effort
−
add(T) = min

Tf⊂Tpos
[efforttotal(T ∪ Tc ∪ Tf)− efforttotal(Tc ∪ Tf)] (1)

effort
+
add(T) = max

Tf⊂Tpos
[efforttotal(T ∪ Tc ∪ Tf)− efforttotal(Tc ∪ Tf)] (2)

Note that these formulas are very similar to cost computation in [10]. The additional
effort contractor will have to deploy if he adds task T to its set of tasks represents the
difference between the total effort deployed to execute the active tasks, future tasks and
task T and the total effort deployed to execute only the active tasks and the future tasks.
How exactly this difference is computed depends on the task T and the sets Tc and Tf

and it is described in what follows.
As we presented in Section 2, we deal with multi-issue service negotiation. We

consider that issues are independent (a change in the value of one issue does not affect
the values of the other issues). The issues represent conditions under which the service

23

is provided and a change in the value of one issue involves a change in the amount of
effort an agent will have to deploy in order to provide the service. Therefore it seems
logical to split the effort for one task into multiple parts, one for each issue. We must
also consider the effort required to compute the task after all the conditions have been
met (perform calculations, measurements etc). Thus, the general formula for computing
the additional effort for task T is:

effortadd(T) =
∑

xi∈input(T)

effort(xi) + comp(T) (3)

where input(T) is the set of input parameters/negotiation issues of task T and comp(T)
is the additional computation effort required to perform the task.

As previously discussed, tasks can be performed manually by human experts or
automatically by software agents. Performing a task may involve either a simple or a
more complex operation, but analyzing this complexity will depend on the task in hand
so it is outside the scope of this paper. Here we analyze only the complexity of the
decision processes during negotiations. Therefore, for simplicity we shall consider here
that comp(T) has constant complexity (O(1)).

The complexity of effort(xi) depends on the type of negotiation issue xi. Two
issues that are typically being negotiated in our problem are location (i.e. geographical
location) and time. Location is important because it might require physical mobility,
i.e. agents might have to physically move from one location to another. Time is very
important in complex situations in order to specify deadlines for achievement of various
tasks. So agents will often have to reserve a time period required to perform a service.

Location. Regarding the requirement of performing a task related to a given location,
there are two types of agents: (i) agents that have to move to the required location in
order to perform the task (e.g. measure gas concentration at a certain location) and (ii)
agents that do not have to move, but that still have to perform some reasoning about a
certain remote location (e.g. human experts in control centers that must decide whether
to evacuate residents of a certain city region). Agents that do not have to move do not
need to deploy additional effort for task execution, so in this case effort(location) =
0. For agents that do have to move there is an effort associated to agent migration
between physical locations. The minimum additional effort is computed as:

effort
−
add(locT) = min

c∈Tc
(|locc − locT |) + min

f∈Tf , Tf⊂Tpos
(|locT − locf |)

= min
c∈Tc

(|locc − locT |) + min
f∈Tpos

(|locT − locf |)
(4)

while the maximum additional effort is computed as:

effort
+
add(locT) = max

c∈Tc
(|locc − locT |) + max

f∈Tf , Tf⊂Tpos
(|locT − locf |)

= max
c∈Tc

(|locc − locT |) + max
f∈Tpos

(|locT − locf |)
(5)

Here locc is location required by a currently active task, locT is location required by
the negotiated task and locf is location required by a possible future task, currently in
negotiation. The minimum additional effort corresponding to the location of task T is
the effort deployed to move from a location required by one of the current tasks (locc) to
locT and then to the closest location required by one of the future tasks. The minimum

24

effort corresponds to the optimal ordering of the current and future tasks with respect
to the location. The maximum effort corresponds to the worst ordering of the tasks.

It can easily be observed that computation of the location effort depends on the
current location and the locations required by the current and future tasks. The rea-
son for the simplification in (4) and (5) is that the minimum and maximum distances
can be computed without the need to generate all the possible subsets Tf of Tpos. As
Tf ⊆ Tpos, we only have to consider tasks f ∈ Tpos and thus the complexity of the
computation of the location effort is O(|Tc|+ |Tpos|).
Time. Time is usually represented either as deadlines or as time durations. A deadline
represents the latest moment in time when the results of the service execution must be
provided or the associated physical activities must terminate. A time duration repre-
sents the amount of time taken by service execution. When they are projected onto the
provider agent timeline (i.e. attached to a certain moment of time), time durations be-
come equivalent to deadlines, so in what follows we shall only consider time modeled
as deadlines. If time represents the deadline of providing results of service execution,
the associated agent effort to meet the deadline is:

effort
−
add(timeT) = effort

+
add(timeT) = comptime(T) (6)

The explanation is that independently of how tasks are arranged or how many future
tasks are considered, the agent will spend the same amount of time with the execution
of task T . As the computation of time effort does not depend on the current tasks and
on the future tasks, the resulting complexity is O(1).

Note that while computation of time effort is very simple, computation of the loca-
tion effort takes more steps. Overall, the step of creating proposals has O(lj × (|Tc| +
|Tpos|)) complexity, where lj is the number of location issues of negotiation j. Typically
in a system like ours there is one time issue and one location issue, so we can consider
lj = 1 and state that computation complexity is O(|Tc| + |Tpos|) for negotiations that
involve one issue time and one issue location. In Section 4.3 when we deal with scala-
bility, we consider that a significant percent of the total number of negotiations involve
time and location issues.

Awarding phase is available only to manager agent. He uses a weighted sum utility
function to select the best contractor. Utility computation takes O(mj × (|Aj | − 1))
steps, where mj is the total number of issues of negotiation j.

4.2 Communication Complexity

Because our version of CNET omits service provision messages and uses only call for
proposal, propose, reject, accept and refuse messages (see Section 4), a negotiation
instance j brings an overhead to the system consisting of maximum 3 × (|Aj | − 1)
messages, where A is the set of agents in the system and Aj ⊂ A is the set of agents
involved in negotiation j. First, manager sends a call for proposal to the rest of agents in
Aj , then these agents reply either with a proposal or a reject message and finally man-
ager sends acceptance or refusal messages to the participants. The number of messages
may be smaller because the manager might not wait for all the replies (when the dead-
line occurs) and it does not send final messages to agents that did not send proposals.

25

4.3 Scalability

Scalability measures system adaptability to a large number of agents, services and ne-
gotiations. We denote with: (i) SA (services per agent) the average number of services
an agent is able to provide, (ii) RS the average number of services a certain service
requires, (iii) I the total number of incidents the system is able to handle concurrently,
and (iv) SI (service invocations) the average number of times a service of an agent can
be negotiated per incident. As previously mentioned, the total number of agents in the
system is |A| and the number of participants in negotiation j is |Aj |.

An agent can act simultaneously both as manager and contractor. The average num-
ber of times an agent is manager during all incidents is nman = SI × RS × SA × I
and the average number of times an agent is contractor is ncon = SI × SA× I . Then,
the total number of negotiations an agent is involved in is nagent = nman + ncon =
SI ×SA× I × (1+RS). Additionally, the total number of current and possibly future
tasks of an agent is less than or equal to the total number of tasks an agent is capable
of simultaneously handling for all the incidents, i.e. |Tc|+ |Tpos| ≤ SA× SI × I . We
conclude that computation complexity of an agent for all negotiations about time and
location for all incidents is:

ccagent = ncon × cccon + nman × ccman =

(SI × SA× I)× (|Tc|+ |Tpos|) + (SI × RS × SA× I)×mj × (|Aj | − 1) ≤
(SI × SA× I)× [(SI × SA× I) + RS ×mj × (|A| − 1)]

(7)

Note that we have omitted the steps requiring constant time (e.g. the task announce-
ment). The resulting computation complexity (which is an upper bound) is linear with
respect to the number of agents (|A|), but quadratic with respect to the number of ser-
vices per agent (SA), number of incidents (I) and the number of times the same service
of an agent can be negotiated during an incident (SI). There is no general relation be-
tween the total number of agents and the rest of the parameters. Moreover, there is no
general relation between the total number of agents and the agents involved in a nego-
tiation. The actual performance can only be evaluated through experiments by varying
values of SA, I , SI , RS, |Aj | and mj .

However, based on this worst case analysis, we can get a glimpse at the perfor-
mance by looking into the project’s requirements. The DIADEM User Requirements
Document [14] states that the system should support the collaboration of 100 individ-
ual stakeholders (|A| = 100), handling at least 3 simultaneous chemical incidents (I =
3). We assume that each agent is capable of providing 5 services (SA = 5) and that
no service requires more than 3 other services (RS = 3). We consider that an agent
can supply a service for at most 2 times during an incident (SI = 2). Under these
conditions, the number of computation steps of one agent for all the incidents (all ne-
gotiations) is:

ccagent = 900 + 8910×mj (8)

It is important to note that the agent will not handle all the negotiations at once.
This number of steps is computed for all the negotiations, but there are delays between
negotiations and the agent does not have to execute all the steps at once. We conclude
that this complexity does not overwhelm the agent, as the number of steps is not large.

26

According to results of Section 4.2, communication complexity of a negotiation
is 3 × (|Aj | − 1) . The traffic for one agent for all the incidents (all negotiations) is
therefore:

trafficagent = nagent × 3× (|Aj | − 1) = SI × SA× I × (1 + RS)× 3× (|Aj | − 1) ≤
SI × SA× I × (1 + RS)× 3× (|A| − 1)

(9)

Under the conditions described above (|A| = 100, I = 3, SA = 5, RS = 3,
SI = 2), the traffic for one agent is:

trafficagent ≤ 36000 messages (10)

This number of messages is quite large, even if in realistic scenarios it will be
slightly lower, as not all negotiations involve all the agents. But as there is no gen-
eral relation between |A| and |Aj |, we can only compute an upper bound of the com-
munication complexity (just like we did for the computation complexity). The actual
performance will be evaluated through experiments, by varying the parameters.

5 Related Work

There is little literature on the evaluation of the impact of service negotiation mech-
anisms on large scale distributed systems. The few papers that exist deal with CNET
protocol. In [5] the authors evaluate through experiments different types of contracts
introduced in [4]. Our study is different because our problem deals with service nego-
tiation between collaborative agents that do not accept payments. Agents are able to
provide only certain sets of services (depending on their capabilities) and tasks can-
not be exchanged between agents. As a result we cannot use such contracts and study
concepts such as social welfare and avoiding local optima.

[3] theoretically evaluates various extensions of CNET according to a set of criteria,
but without a specific problem in mind. On the other hand we focus on performance of
negotiations in the context of service negotiation in agent-based disaster management
systems. Moreover, our analysis considers specific features of disaster management
problems that demand agents’ physical mobility and working under time constraints.

A scalability analysis of CNET has been done in [2]. The authors draw the con-
clusion that CNET cannot be used without deadlines and that negotiations have to be
repeated under heavy load. In this paper we evaluate CNET not only with respect to
scalability, but complexity also. We consider scalability to depend on the results of the
evaluation with respect to the other performance measures.

6 Conclusions

Negotiation components that have a large impact in the system are the decision steps and
the communication. In this paper we have proposed a framework for the performance
evaluation of service negotiation mechanisms and we have analyzed the computation
complexity and the communication complexity of service negotiation in disaster man-
agement situations. We have used per-issue computation in order to compute the effort
of one agent to provide a service. In particular, we have given examples of how the

27

agent computes the effort for issues location and time. Then we scaled up the analysis
for one negotiation to many negotiations involving location and time in order to analyze
scalability. We conclude that our service negotiation mechanism has a fair computa-
tion complexity, that the system should be capable of handling, but the communication
complexity is large. As there is no general relation between the parameters introduced
in Section 4.3, an experimental evaluation of the actual performance is still needed.

The analysis in this paper is preliminary. We have derived the maximum complexity
of computation and communication, but it would be interesting to observe how does
the system perform during realistic incidents. We plan to experimentally evaluate the
performance of the negotiations by taking into consideration the average number of
agents participating in a negotiation (Aj), the delay between negotiations, the average
number of issues per negotiation (mj), the average number of services an agent is able
to provide (SA), the average number of services a certain service requires (RS), the
total number of incidents the system handles (I) and the average number of times a
service of an agent can be negotiated per incident (SI).

References

1. Pavlin, G., Kamermans, M., Scafeş, M.: Dynamic process integration framework: Toward
efficient information processing in complex distributed systems. In: Intelligent Distributed
Computing III, Proc.3rd International Symposium on Intelligent Distributed Computing,
IDC’2009. Number 237 in Studies in Computational Intelligence, Springer Verlag (2009)
161–174

2. Juhasz, Z., Paul, P.: Scalability analysis of the contract net protocol. In: CCGRID ’02:
Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the
Grid, Washington, DC, USA, IEEE Computer Society (2002) 346

3. Bozdag, E.: A survey of extensions to the contract net protocol. Technical report, CiteSeerX
- Scientific Literature Digital Library and Search Engine, http://citeseerx.ist.psu.edu/oai2
(United States) (2008)

4. Sandholm, T.: Contract types for satisficing task allocation: I theoretical results. In: AAAI
Spring Symposium: Satisficing Models. (1998)

5. Andersson, M.R., Sandholm, T.: Contract types for satisficing task allocation: Ii experimental
results. In: AAAI Spring Symposium: Satisficing Models. (1998)

6. Scafeş, M., Bădică, C.: Conceptual framework for design of service negotiation in disaster
management applications. In: To appear in Proc. of 2nd International Workshop on Agent
Technology for Disaster Management (ATDM09). Studies in Computational Intelligence,
Springer Verlag (2010)

7. Smith, R.G.: The contract net protocol: High-level communication and control in a dis-
tributed problem solver. IEEE Trans. Comput. 29 (1980) 1104–1113

8. Santoro, N.: Design and Analysis of Distributed Algorithms. John Wiley & Sons (2007)
9. Jennings, N. R., Faratin, P., Lomuscio, A.R., Parsons, S., Sierra, C., Wooldridge, M.: Au-

tomated negotiation: Prospects, methods and challenges. International Journal of Group
Decision and Negotiation 10 (2001) 199–215

10. Sandholm, T. W.: An implementation of the contract net protocol based on marginal cost
calculations. In: Proceedings of the 12th International Workshop on Distributed Artificial
Intelligence, Hidden Valley, Pennsylvania (1993) 295–308

11. Scafeş, M., Bădică, C.: Service negotiation mechanisms in collaborative processes for
disaster management. In Eleftherakis, G., Hannam, S., Kalyva, E., Psychogios, A., eds.:

28

Proceedings of the 4th South East European Doctoral Student Conference (DSC 2009),
Research Track 2: Information and Communication Technologies, Thessaloniki, Greece,
SEERC (2009) 407–417

12. Bădică, C., Scafeş, M.: One-to-many monotonic concession negotiation protocol. In: Proc.of
the 4th Balkan Conference in Informatics, BCI’2009, IEEE Computer Society (2009) 8–13

13. FIPA: Fipa contract net interaction protocol specification, identifier sc00029 (2002)
14. Damen, D., Pavlin, G., Van Der Kooij, C., Bădică, C., Comes, T., Lilienthal, A., Fontaine, B.,

Schou-Jensen, L., Jensen, J.S.: Diadem environmental management requirements document,
issue 1.14.0. work-in-progress (2010)

29

