
Designing a Map of Mappings
Visualization of QVT Relations using Petri-Nets

Ali Fatolahi, Stéphane S. Somé and Timothy C. Lethbridge

School of Information Technology and Engineering, University of Ottawa, Ottawa, Canada

Abstract. QVT Relations are a popular standard for formalizing model-driven
transformations. For the most part, QVT relations are expressed using the exist-
ing textual standard. A number of graphical approaches have been suggested for
presenting QVT relations. Most of the existing approaches are either concerned
with the graphical presentation of individual relations or deal with validation and
execution. As a result, in many cases the visualization of relations does not lead
to a better understanding of the set of relations as a whole and does not facilitate
the design process of transformations. In this paper, we employ basic Petri-Nets
for presenting a more comprehensible picture of QVT relations and a more flexi-
ble technique for designing such transformations. Our approach is not concerned
with the accuracy or correctness of the graphical representation but with the un-
derstandability of the set of relations as a transformation chain.

1 Introduction

Model-driven development (MDD) suggests a paradigm shift in software engineering,
where the ultimate goal is to remove the coding process. As an alternative to coding,
MDD suggests automated transformations of models and code generation.The devel-
opment of software-intensive systems could be seen as a repetitive process of creating
models and transforming them to other models or code. Writing transformations for a
model-driven method is an evolving field, which could be improved with more formal
techniques and tools. Visualizing model-driven transformations is seen as an interest-
ing part of such efforts that could help the design, verification and understandability of
transformations. In this paper, a visualization technique is proposed for modeling the
chain of transformations expressed using QVT relations [3] based on basic Petri-Nets.

Transformations as the chaining feature of model-driven development [2] play a
pivotal role in implementing model-driven tools and techniques. Several formal lan-
guages for recording transformations exist. The OMG QVT standard is one of the most
common techniques in this area. QVT relations are one of the options for specifying
transformations based on QVT. A number of tools and techniques have been suggested
in recent years addressing model-driven transformations using QVT relations; e.g. Me-
diniQVT [12] and Wimmer et al. [4]. With large sets of QVT relations, however, it
becomes difficult to obtain a high-level understanding of transformation paths without
delving into the details of the relations. This hinders the maintainability and evolution of
QVT relations. We propose a Petri-Net based technique that aims at providing a clearer

Fatolahi A., S. SomÃl’ S. and C. Lethbridge T.
Designing a Map of Mappings Visualization of QVT Relations using Petri-Nets.
DOI: 10.5220/0003025500350045
In Proceedings of the 2nd International Workshop on Future Trends of Model-Driven Development (ICEIS 2010), page
ISBN: 978-989-8425-10-2
Copyright c© 2010 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



view of a set of QVT relations, which would result in more understandable mappings,
with less details required to be considered.

A number of graphical approaches have been proposed to visualize QVT transfor-
mations in the literature such as the ones by Wimmer et al. [6] and Willink [13]. As
expected from a graphical model, such approaches aim to help both users and develop-
ers of QVT relations to comprehend the transformations. However, in most cases the
graphical approaches become as verbose as the textual code because they pay so much
attention to all the details that appear in the textual format. Regardless of the origi-
nal motivations of creating the visualization techniques, the difficulty of understanding
their graphical representation of the transformations counteracts their formal strength.
Our effort is to present a technique for visualizing QVT relations in such way that the
designer can choose which details to hide, leading to greater understandability. Conse-
quently, this would allow the QVT relations developer to be more concerned with the
mappings of the main components instead of the relation details. Also, the user of the
transformation could use our Petri-Nets in order to follow the rules of generating the
target model from the source one and hence to find out the potential source of failures
in the resultant model.

Our goal is to present a map of transformation mappings. As Freeman [19] suggests,
a map serves as a medium of communication and its effectiveness counts on the quality
of the displayed features. Also, Freeman [19] mentions that a map should render the
information of interest clearly, rapidly, and without ambiguity. The incorporation of
many details in a map of QVT relations means that there is less sparse space around
every arbitrary piece of displayed information, which results in maps that are harder to
read and difficulty following specific paths. Also as O’Conner and Robertson [20] put it
when discussing geographical maps, there are choices to be made regarding how a map
is oriented, and whether to include or disregard certain details; these decisions depend
on the maps specific use or target. In the same way, the details to be inserted in a map of
QVT relations and those to be hidden are a matter of the designer’s choice. The benefit
of our approach is that it enables the designer to select features to be shown and those
to be hidden in different layers so that relations could be portrayed in different levels of
detail to serve the variety of purposes for which the designers may need the map.

Petri-Nets are recognized as a formal language for describing discrete systems. They
are well suited for the specification of systems composed of different states and involv-
ing concurrency. A variety of tools, techniques and extensions to Petri-Nets have been
provided in the past. In this paper, basic Petri-Nets are used to model sets of QVT
relations. Considering every relation as a transformation from a source model to a tar-
get model, the semantics of Petri-Nets are well suited to describe sets of QVT rela-
tions. Places carry tokens, which can be understood as pieces of information; in our
approach, elements, domains and variables are represented by places. Transitions are
decision-making points, so are in our approach are used to visualize guards, constrains
and domain patterns. The resultant net will steer the input tokens throughout different
places ending with the desired target elements. Such a net would provide a global map
of the chain of transformations that is suitable for understanding the transformations and
would facilitate the design and maintenance of transformations. Using our mapping of
QVT relations and Petri-Nets, one may design the whole transformation using Petri-

36



Nets from scratch or obtain the equivalent Petri-Net of a pre-written transformation for
comprehension purposes.

The rest of this paper is organized as follows. Section 2 presents an introduction to
QVT relations. Section 3 defines the mapping between Petri-Nets and QVT relations.
Section 4 provides detailed examples of transforming QVT relations to Petri-Nets and
vice versa. Section 5 reviews the related work. Finally, Section 6 concludes this paper.

2 QVT Relations

Relations are one of the languages proposed by the OMG as part of the QVT stan-
dard for model transformations. Code Sample 1 defines the syntax of a relation R that
transforms typed model 1 to typed model 2, referred to as the source and target do-
mains respectively. The when clause indicates a pre-condition that must hold before
the matching of the source and the target. Respectively, the where clause states a post-
condition. The patterns used for defining source and target domains act as preconditions
as well; that is, in order to run a transformation from a to b, a pre-requirement would
be a successful pattern matching of domain a as the source element within the source
domain domain 1.

Code Sample 1 - QVT Relations Syntax [3]

Relation R {
Var <R_variable_set>
[checkonly | enforce] Domain:<typed_model_1>

<domain_1_variable_set> {
<domain_1_pattern> [<domain_1_condition>] }

[checkonly | enforce]
Domain:< typed_model_n><domain_n_variable_set> {

<domain_n_pattern> [<domain_n_condition>] }
[when <when_variable_set> <when_condition>]
[where <where_condition>]

}

A QVT relation may be a top relation; that is a relation that the transformation starts
with. Non-top relations can only be called within other relations as a part of their when
or where sections. Code Sample 2 shows an example of ClassToTable relation from the
QVT official document. Code Sample 2 - Class to Table QVT relation [3]

top relation ClassToTable {
cn, prefix: String;
checkonly domain uml c:Class {namespace=p:Package {},

kind=’Persistent’, name=cn};
enforce domain rdbms t:Table {schema=s:Schema {},

name=cn, column=cl:Column {
name=cn+’_tid’, type=’NUMBER’},

key=k:Key{name=cn+’_pk’,column=cl}
};
when { PackageToSchema(p, s);}
where { prefix = ’’;AttributeToColumn(c, t, prefix);}

}

37



Code Sample 2 describes a relation that maps a UML class to a table of a relational
database. The transformation proceeds from classes to tables . In order for the transfor-
mation to be valid, it is necessary that the PackageToSchema relation hold. This relation
maps a package to a database schema, meaning that the table must belong to the schema
generated as the result of mapping the owning package of the source class; such map-
ping is required to guarantee the uniqueness of the created tables. The object pattern
defined for the domain c indicates that the transformation looks for classes within the
source model that are persistent and have a name. The transformation will then map
every single such class to database tables with the same name as source classes and
a default column as the primary key. Afterwards, the transformation will call another
relation to map the attributes of the class to columns of the table. Figure 1 presents a
subset of a meta-model for QVT relations that are composed of the elements required
to specify QVT relations.

3 Mapping Petri-Nets to QVT Relations

According to Peterson [1], a Petri-Net may be defined as a triple N=(P,T,F) where P is
a set of places, T is a set of transitions, disjoint from P and F is a flow relation F ¡= (P
* T) U (T * P) for the set of arcs. Places may be loaded with tokens that indicate the
inputs through outgoing arcs and outputs from incoming ones. The number of incoming
tokens must equal the number of outgoings tokens for a transition to proceed. Arcs
occur from places to transitions and from transitions to other places. Once the sources
of all incoming arcs to a transition are marked with tokens, the transition may fire,
resulting in the marking of the target places of the outgoing transitions with generated
tokens. In this paper, we use basic Petri-Nets in which, transitions are simple transitions
and arcs are normal, which means they do not perform any special functions.

Figure 2 displays a simple meta-model that specifies basic Petri-Nets. In Figure 2,
arcs can be outgoing or incoming from/to nodes that are either places or transitions.
The constraint attached to the element Arc indicates that an arc may only connect a
place to a transition or vice versa; in other words there would never be an arc from a
place to a place or from a transition to another transition. This is formalized using the
OMG’s Object-Constraint Language (OCL). The attribute tokens of class Arc indicates
the multiplicity of the arc; that is the number of tokens that transit through the arc at
every step of the simulation.

In order to map QVT relations to Petri-Nets, a reformulation of transformations is
made as follows: A transformation is defined as a set of relations. A relation is a tuple
R= (Pre, DP, Post). Pre is a set of constraints when1, when2, ... used in the When section
of the relation. In the same way, Post is a set of conditions where1, where2, ... utilized in
the Where section of the relation. The set DP is composed of two subsets SD :sd1, sd2,
... and TD:td1, td2, ..., with SD a set of source domains and TD a set of target domains.
Elements of Pre and Post can be relations or other well-formed constraints. A relation
validated as a part of the Pre or Post sets, carries a set of parameters P:p1, p2, ..., where
every pi matches a variable of either sdj or tdk. We would refer the matching domain
as dpi.

38



Fig. 1. A Simple Meta-Model for QVT relations obtained from [3].

Fig. 2. Basic Petri-Nets Meta-Model.

Each of the elements of Pre, DP and Post may bind several variable or domains
whose values are either consumed for the purpose of checking a constraint or produced
as a result of an enforced expression. In our basic mapping, each element of Pre, DP
and Post is mapped to a transition while variables/domains are mapped to places. Other
considerations should be taken in order to ensure the set Pre is checked before the
validation of the DP, while the set Post is to be checked after the validation of the DP.
Validating each of those sets is represented by firing all the transitions conforming the
members of the sets in the equivalent Petri-Net. In the rest of this section, we will first
review an example and next we will formalize the mapping rules.

3.1 An Example

Figure 3 shows the class table relation of the Code Sample 2. Places have been assigned
to the domains class and table. Since the relation checks the validity of another relation,
package schema, the model verifies the validation of the relation package schema prior

39



to finalizing the validation of the relation class table. Therefore, two transitions are
defined to transform the domains class and table to their constituent variables; the two
transitions supply the domains package -of the domain pattern class- and schema -of
the domain pattern table- to the relation package schema.

Fig. 3. Modeling the class table Relation of the Code Sample 2.

Transitions with the postfix ’Pattern’ generate output to places with the same name
as the ones that supplied the inputs. For example, the transition classPattern has two
places labeled class as both input and output. The pattern of every domain encompasses
the variable representing the domain itself. Thus, this style of modeling is used, in
order to assert that the class variable validated in the relation class table is the same as
the one of which, the variable package is chosen to be submitted to the when relation
package schema.

Assuming that we are not aware of the structure of other relations, the output from
the transition when package schema is indicated with a question mark; in any case the
model reflects the fact that the relation class table would not run unless both domain
patterns are checked as well as the relation package schema. Once all three conditions
are validated the where section is checked, which requires the validation of the two
domains class and table as well as the variable prefix. Again the output from the rela-
tion attribute column is only provided anonymously assuming we are not aware of its
content. Figure 3 shows that our approach can model every relation individually.

3.2 Mapping Pre-conditions

Consider the relation rel1. Mapping every instance of a when relation wheni that con-
sumes the parameter pi of the domain pattern dpi would be as follows: Two places are
added to fulfill two instances of dpi. One is required to supply the required parameter
submitted to wheni; the second instance is eventually used to validate the relation. A
place is added to represent an instance of pi to be sent to wheni . A fourth place is re-
quired to indicate the result of the validation of wheni; this place is an arbitrary place,
which is only added to indicate that the relation is successfully added.

Three transitions are added. The first transition dp Pattern is added to represent the
checking of the domain pattern dpi, this transition accepts an input from the first place
of dpi and fires two outputs ending at the second instance of the dpi as well as the
place of the parameter pi.The second transition simply supports the validation of wheni
accepting an input from pi and firing an output to the arbitrarily added place, which will
in turn be used by the third transition. The third transition represents the relation rel1.

40



Besides the arbitrarily added place, this last transition requires its own domain patterns
as well, which is in this case dpi .

The above mechanism ensures that the relation runs only if the when relation is
satisfied, otherwise the required input from the transition representing wheni would not
be supplied. Consequently, the validation of the domain pattern dpi fails as expected.

3.3 Mapping the Domain Patterns

Mapping of the domain patterns is a straight forward process, which maps every sdi and
tdj to a place in the equivalent Petri-Net. There should also be a transition representing
the relation. The net is complete with two sets of arcs. In the first set, one arc carries
input from one of the sdis to the transition. In the second set, outputs are carried from
the transition to every tdjs across an arc.

3.4 Mapping Post-conditions

In order to simulate the post-conditions wherei that consume the parameter pi of the
domain pattern dpi, a transition representing wherei, is added. Also, a transition that
represents the pattern of dpi is added. A place representing dpi would supply the input
to this transition. The output would end at the places that represent any pi, which are in
turn fed into the transition of wherei.

4 An Example

In this section, we review the usage of our Petri-Net based approach in the well-known
example of uml rdbms relations from [3]. Figure 4 presents a Petri-Net that is equiv-
alent to the uml rdbms transformations of the [3]. There are two start points in Fig-
ure 4, which relate to two top relations class table and association foriegnKey. The
simulation process may start at either of the two relations. The arcs incoming to the
transition class table are assigned with the multiplicity of 2. This is an alternative way
of applying a precondition. The relation package schema is a precondition to the re-
lation class table. Both relations, however, carry the source and target domains, class
and table. Thus, two tokens at both places must be present in order for the transition
class table to fire. The allocation of multiplicity is automatically specified when the
mappings are performed from QVT relations to Petri-Nets. This becomes a designer’s
decision when the mappings are performed from Petri-Nets to QVT relations.

The transition attribute column is followed by three transitions representing three
postconditions in the relation attribute column. These are ComplexAttribute Column,
SuperAttribute Column and PrimitiveAttribute Column. The reader will notice that at
any time only one of these may fire. A random choice is assumed. A more precise
design may impose conditions that decide exactly which transition is chosen based on
the provided models so that the simulation of the net using the same input model would
always trace through the same path. Our approach, is however, concerned with the path
of the transformation and the understandability of the map of mappings.

41



Fig. 4. The equivalent Petri Net of uml rdbmstransformation of the [3].

42



The transition primitiveAttribute Column is followed by the transition PrimitiveType-
ToSQLType, which is the only transition with a single place as input in the net. This
transition is a simulation of a function carrying the same name in the original transfor-
mation. This function accepts one input and results in one output as any other function.
A higher-level net could be created by avoiding certain details of the transformations
such as the package schema, which is only used for uniqueness purposes and does not
play a key role in understanding the general path of the mappings.

5 Related Work

Several existing graphical approaches for the specification of QVT relations are based
on Petri-Nets. These approaches often use Petri-Nets as a technique for validation, de-
bugging and simulation of QVT relations. Wimmer et al. [4],[5],[6],[11] have presented
one of the most comprehensive works in this area in a series of consistently related ef-
forts for the formalization of colored Petri-Nets mainly for debugging and validation of
the QVT relations. Wimmer et al.’s work in [4] and [5] present and develop a debugging
environment for QVT relations using Petri-Nets. Wimmer et al.’s work in [11] is rather
focused on the formalisms of the tokens amongst the Petri-Nets as a representation of
modeling elements and instances. Wimmer et al.’s work in [6] targets the same objective
as our approach. The idea is for the colored Petri-Nets to act as a map amongst the set
of transformations but the output is once again very close to the authors’ other works,
which tends to generate very rich models that are suitable for validation/verification
purposes but too illustrative for a high-level understanding of the transformations. A
successor in the series by Kusel et al. [9] is an effort to bridge QVT relations to a model
transformation language based on Petri-Nets named TROPIC introduced by Reiter et
al. [10].

Other work in this area shares similar objectives. De Lara and Guerra [7] present
a framework for formalization of QVT relations using colored Petri-Nets. The objec-
tive of this work is to alleviate the process of running QVT relations as well as their
debug and analysis. The approach provides the capability of generating a high-level
view of the transformations in which, every relation is shown using a single transition
only. Kappel et al. [8] present an effort for modeling the atomic mapping operators us-
ing a universal definition to be used in multiple tools and environments. The approach
is based on Petri-Nets. Reiter et al. [10] suggest a Petri-Nets based approach towards
executing QVT relations. The approach explores different aspects of bridging QVT re-
lations, a declarative language, as well as imperative languages concepts that are easier
for execution and tracing.

Other work exists that is not based on Petri-Nets. Such approaches are usually ded-
icated to presenting a visualization of the QVT relations without any specific concern.
Thus the idea is to present a graphical equivalent of the QVT relations. However, the
result does often suggest a clearer or even smaller version of the transformations com-
pared to the textual format, hence they remain as just another way of presenting QVT
relations and yet as verbose as the textual format. A good example is UMLX [13], a
graphical transformation language concerned with the presentation of transformations.
This notation, which is partly used in the official QVT document is also accepted and

43



used by other researchers such as Mazn et al. [14] and Blanco et al. [15]. However,
the size and complexity of the generated graphs using this notation is not smaller or
clearer than the textual format. Another example of such approaches is the graphical
presentation framework QVT VMTS built using the eclipse plugin VMTS [16] . These
approaches are mostly suitable for the visualization of individual relations and do not
scale up for presenting a global picture of transformations as a set of relations.

In summary, the two distinctive features of our work are: 1) Providing an all-in-
one picture of all the transformations in one frame i.e. a map of mappings and 2) The
capability of the models to be expressed at different levels of details.

Amongst the related work, Wimmer et al.’s [6] approaches the same goal as our
first point above. Thus, the ultimate model, being originally rich, does not serve the
purpose of understandability. The reason seems to be that our technique is concerned
with comprehensibility while their work is rather focused on the formall correctness.
De Lara and Guerra [7] approach point 2 above. One important difference is that our
technique allows the designer to build upon as many levels of details as equired while
De Lara and Guerra’s work restricts the high-level view to only one predefined level.

6 Conclusions

We have presented a technique for using basic Petri-Nets as a visualization technique
for QVT relations. The technique is focused on providing a comprehensible picture of
the transformations as a map of mappings. We presented the rules for mapping QVT
relations to Petri-Nets such that the resultant Petri-Net projects a traceable path of the
QVT relations. Our nets may not qualify for formal validation and execution of the
relations but prepare a venue for design and understanding of the relations so that they
can be easily traced in order to verify if the expected mappings occur.

The mappings presented in this paper have been successfully implemented in Me-
diniQVT, which accepts Eclipse-based meta-models of both QVT relations and Petri-
Nets generated using GMF [17]. Both the meta-models and the transformations have
been tested upon different sets of transformations from different sources. Certain exam-
ples are the uml rdbms transformations of the OMG’s QVT document, three different
sets of transformations of a model-driven web development method [18] and the set of
transformations designed for mapping QVT relations to Petri-Nets as prescribed in this
paper.

Future work will examine and formalize several patterns that may occur in QVT
relations in order to present a more complete coverage of the automated transformations
that map QVT relations to Petri-Nets and vice versa. Also, as presented in Section 5,
it is possible to obtain different nets equivalent to a set of QVT relations based on the
designer’s viewpoint as well as the level of required abstraction. This feature needs
to be formally defined in the future and to be formally related to the elements of the
Petri-Nets that are placed in different layers.

References

1. James L. Peterson. Theory and the Modeling of Systems. Prentice-Hall, N.J., 1981.

44



2. Pierantonio, A. Vallecillo, A. Selic, B. and Gray, J.: Special Issue on Model Transformation.
Sci. Comput. Program. 68(3): 111-113 (2007)

3. OMG, MOF QVT Final Adopted Specification, November 2005
4. Wimmer, M. Kappel, G. Schönböck, J. Kusel, A. Retschitzegger, W. and Schwinger, W. A

Petri Net based Debugging Environment for QVT Relations Proceedings of the 24th Interna-
tional Conference on Automated Software Engineering (ASE 2009), IEEE, pp. 1-12, 2009

5. Wimmer, M. Kusel, A. Schoenboeck, J. Kappel, G. Retschitzegger, W. and Schwinger, W.
Reviving QVT Relations: Model-Based Debugging Using Colored Petri Nets. In MoDELS
’09: Proceedings of the 12th international conference on Model Driven Engineering Lan-
guages and Systems (2009) Pages 727-732.

6. Wimmer, M. Kusel, A. Reiter, T. Retschitzegger, W. Schwinger, W. Kappel, G. Lost in Trans-
lation? Transformation Nets to the Rescue! Information Systems: Modeling, Development,
and Integration (2009), pp. 315-327.

7. Juan de Lara, Esther Guerra, Formal Support for QVT-Relations with Coloured Petri Nets.
In Model Driven Engineering Languages and Systems (2009), pp. 256-270.

8. Kappel, G. Kargl, H. Reiter, T. Retschitzegger, W. Schwinger, W. Strommer, M. and
Wimmer, M. A Framework for Building Mapping Operators Resolving Structural Hetero-
geneities, in Information Systems and e-Business Technologies (UNISCON’2008), Springer,
pp. 158-174, 2008

9. Kusel, A. Schwinger, W. Wimmer, M. Retschitzegger, W. Common Pitfalls of Using QVT
Relations - Graphical Debugging as Remedy. In: Proceedings of the 2009 14th IEEE Inter-
national Conference on Engineering of Complex Computer Systems. Pages 329-334

10. Reiter, T. Wimmer, M. and Kargl, H. Towards a runtime model based on Colored Petri Nets
for the execution of model transformations. In Proc. of 3rd Workshop on Models and Aspects
@ ECOOP’07, Berlin, 2007.

11. Wimmer, M. Kusel, A. Schönböck, J. Reiter, T. Retschitzegger and W. Schwinger, W. Lets’s
Play the Token Game – Model Transformations Powered By Transformation Nets; Vortrag:
International Workshop on Petri Nets and Software Engineering, Paris, France; 22.06.2009 -
23.06.2009; in: Proc. of the International Workshop on Petri Nets and Software Engineering
PNSE’09, Universit Paris 13, (2009), S. 35 - 50.

12. mediniQVT Trac, projects.ikv.de/qvt, 3 May 2008
13. Willink, E. D. UMLX: A graphical transformation language for MDA (2003) In Proc. of

OOPSLA 2003.
14. Mazón, J.-N. Trujillo, J. and Lechtenbörger, J. A Set of QVT Relations to Assure the Correct-

ness of Data Warehouses by Using Multidimensional Normal Forms. Conceptual Modeling
- ER 2006. Pages 385-398.

15. Blanco, C. De Guzmán, I. G.-R. Medina, E. F. Trujillo, J. and Piattini, M. Automatic Gener-
ation of Secure Multidimensional Code for Data Warehouses: An MDA Approach. Lecture
Notes In Computer Science; Vol. 5332 Proceedings of the OTM 2008 Confederated Interna-
tional Conferences, CoopIS, DOA, GADA, IS, and ODBASE 2008.Pages: 1052 - 1068

16. VMTS QVT, avalon.aut.bme.hu/ tihamer/research/vmts/qvt/vmts qvt.html, December 2009
17. GMF - Graphical Modeling Framework, www.eclipse.org/modeling/gmf, April 2009
18. A. Fatolahi, S. S. Somé , T. C. Lethbridge. TR-2008-02 Automated Generation

of Abstract Web Applications using QVT Relations August 2008. Available from
www.site.uottawa.ca/eng/school/publications/techrep/2008/FatohaliSomeLethbridge.pdf

19. Freeman, Herbert, Automated Cartographic Text Placement. White paper. Available from
www.maptext.com/ProductLiterature/Freeman-White-Paper-041027.pdf

20. O’Connor, J.J. and E.F. Robertson, The History of Cartography. Scotland: St. Andrews Uni-
versity, 2002.

45


