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Abstract: Efficient vehicle routing is critical to the operational profitability and customer satisfaction of vehicle fleet-
related businesses, especially in light of increasing, and highly volatile, fuel prices. Growing pressures to 
reduce negative environmental impacts have suggested that a second metric (vehicle emissions) should also 
be considered in vehicle routing. Currently, the majority of existing tools use distance as a surrogate for 
cost. When considering a mixed fleet of multiple vehicle types, with individual vehicles within a fleet type 
also varying by age and vehicle health, this surrogate becomes significantly less accurate. Furthermore, 
using distance as a surrogate fails to capture the variations between city and highway driving, which are 
particularly striking for hybrid vehicles. We thus propose a new approach to the vehicle routing problem, 
specifically targeting applications with mixed fleets including clean-vehicle technologies, in recognition of 
the limitations of the existing approaches. 

1 INTRODUCTION 

Efficient vehicle routing is critical to the operational 
profitability and customer satisfaction of vehicle 
fleet-related businesses. The rising and highly-
variable cost of fuel, as highlighted by the price 
spike in the summer of 2008, increases the 
importance of efficient vehicle routing. At the same 
time, growing environmental concerns suggest that 
cost is not the only metric of importance and that 
emissions should also be taken into account.  

Currently, the majority of existing methods and 
software packages minimize travel distance as a 
surrogate for cost. Although there is a positive 
correlation between distance traveled and fuel 
consumed, it is not a perfect correlation. In 
particular, both fuel efficiency and emissions vary 
depending upon driving conditions (e.g. city vs. 
highway driving). This variability is even more 
pronounced in a heterogeneous fleet comprised of 
multiple vehicle types with a range of fuel-
consumption and emissions characteristics. 

In recent years, socio-economical pressures to 
reduce their fuel costs and carbon dioxide (CO2) 
footprint have motivated many fleet operators to 
begin upgrading their fleets, focusing on clean-
vehicle technologies and alternative fuels, including 

flex-fuel, hybrid vehicles, and plug-in hybrid electric 
vehicles (PHEV). As a result, many commercial 
fleets are currently composed of a heterogeneous set 
of vehicles, with noticeable variations in fuel 
economy and emissions across vehicle type. 
Furthermore, there are variations across vehicles 
even within a given vehicle type or common set of 
capabilities, because newer vehicles typically exhibit 
better fuel economy and better  emission control 
technologies than older vehicles.  

Consider the following examples of highly 
heterogeneous fleets: Florida Power and Lighting 
(www.fpl.com), the leader in green fleet initiatives, 
has a fleet of approximately 2400 vehicles, with half 
of the fleet powered by biodiesel, 300 hybrids and 
plug-in hybrids now in service, and plans to convert 
one-third of the vehicles to hybrid by the end of 
2010.  

A key issue in incorporating the fuel efficiencies 
and emissions of heterogeneous fleets within the 
vehicle routing problem is this: The differences in 
fuel efficiencies and emissions across vehicle types 
are not exclusively proportional to the distance 
traveled, but are also highly dependant on the 
driving cycle. For instance, a hybrid vehicle takes 
advantage of the regenerative braking that occurs in 
stop-and-go driving environments to charge a 
battery which can then be used to power the vehicle 
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when traveling at slow speeds. On average, fuel 
consumption is reduced about 20% by regenerative 
braking (Chan and Chau, 2001). Conversely, in 
highway driving, hybrids provide minimal, if any, 
improvement in fuel efficiencies over their 
conventional counterparts.  

The introduction of PHEVs, which use 
electrically-charged batteries for the initial portion 
of a trip and revert to gasoline-based power only 
when the battery has been depleted, presents even 
greater variability in terms of the correlations 
between distance and fuel utilization. 

When we move beyond fuel costs to also 
consider the environmental impact of vehicle 
routing, the complexity grows further. Fuel 
consumption is effectively proportional to CO2 
emission, so fuel economy improvements are 
reflected in CO2 reduction. Additionally, there may 
be requirements to minimize or eliminate 
conventional emissions such as volatile organic 
components (VOC) and nitrogen oxides (NOx) 
emissions in highly populated areas, requiring the 
use of electric power or other clean alternative fuel 
options and thus limiting the feasible region of a 
vehicle routing problem.  

In this paper, we consider ways to explicitly 
capture fuel consumption and emissions in a mixed-
fleet vehicle routing program and analyze the 
opportunities for simultaneously reducing costs and 
negative environmental impacts. In Section 2, we 
review factors that influence fuel consumption and 
emissions and consider ways to estimate these 
metrics for a given route. In Section 3, we suggest a 
number of formulations for this new variation of the 
vehicle routing problem. We also outline a solution 
approach based on composite variable modeling. In 
Section 4, we provide a numerical example and 
analysis to highlight the benefits of our proposed 
approach and we then offer conclusions and 
suggested areas for future research in Section 5.  

2 ESTIMATION OF FUEL 
ECONOMY & VEHICLE 
ENVIRONMENTAL IMPACT 

Route planning is done by representing the road 
system as a graph in which intersections are nodes 
and road segments are arcs. To determine the best 
route from an origin node to a destination node, each 
arc is associated with a cost that represents distance, 
travel time, or fuel consumption. Then Dijkstra's 
algorithm (or an equivalent) is used to find the 

lowest cost path which is then inversed mapped to 
the road system for visualization and navigation of 
the preferred route.  

Total fuel cost along a given route is the product 
of the total consumption of each type of fuel and the 
per-unit cost for that fuel. Total fuel consumption 
along an arc is largely dependant on the vehicle 
specific load (VSL) opposing vehicle motion 
multiplied by the distance traveled against the VSL 
to give the total energy required to travel the arc. 
This energy can be readily converted into fuel. For 
example, about 0.003 gallons of gasoline or 0.002 
kWh of electricity are needed to push against a 
pound of force over a one mile stretch of road. These 
factors will vary, however; with the efficiency of the 
energy conversion which depends on many factors.  

The VSL depends largely on external factors that 
include the drive cycle, aerodynamic drag, rolling 
resistance, parasitic drag, and gradient drag. These 
factors in turn are dependant on several external 
factors including weather conditions, road and traffic 
conditions and topography. Most of the external 
factors can be reasonably well estimated using well 
known engineering formulas; however, the VSL also 
depends on the pattern of acceleration/deceleration 
that takes place along the branch. Driving pattern 
effects depend largely on complex interactions 
between the driver, the road, the powertrain, and 
traffic conditions. Thus, these effects are difficult to 
predict. 

One approach to predicting these complex 
factors is by classifying road, traffic, and driver and 
drivetrain combinations into load effects. The US 
Environment Protection Agency (EPA) provides 
miles per gallon estimates for highway and city for 
all vehicles sold in the US in the last 15 years 
currently based on two standard driving cycles. 
Although these estimates may not be adequate to 
accurately forecast the specific fuel consumption, 
they nevertheless can provide a reasonable basis for 
the comparative analysis between different vehicles. 

A more detailed classification is described in 
Brundell-Freij and Ericsson (Brundell-Freij and 
Ericsson, 2005), where a classification system has 
been developed based on extensive data collected 
from instrumented vehicles. Four variables relating 
to the road type were found to be significant: 1) 
occurrence and density of junctions controlled by 
traffic lights, 2) speed limit, 3) function of the street, 
and 4) the type of neighborhood. A large effect was 
attributed to the power-weight ratio of the vehicle, 
which presumably is descriptive of the drivers that 
choose a vehicle with a specific power-weight ratio.  
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A challenge in using instrumented vehicles is in the 
ability to collect adequate data. For example, in the 
Brundell-Freij and Ericsson study much of the data 
was collected in Lund, Sweden. This location has 
limited topography, so road gradient was not 
captured, although it is well known that road 
gradient is an important factor in situations with 
topographic relief. For example, (Tavares et al., 
2009) develops a topography-based routing 
algorithm for waste collection vehicles in a 
mountainous area and demonstrates that the 
proposed approach allows reduction of fuel 
consumption despite increasing in the distance 
traveled. Also road design and traffic control 
policies may vary considerably between political 
jurisdictions, as may the mix of vehicles. One way to 
overcome these difficulties is to use vehicle and 
traffic modeling to determine the significant factors 
for classification. 

Modeling tools such as the Powertrain System 
Analysis Toolkit (PSAT) (PSAT, 2008) or The 
MathWorks Simulink/SimDriveLine (Rose-Hulman, 
2005) can be used to estimate the energy or fuel 
along a route given vehicle design parameters, 
external load factors such as road gradient and the 
driver's torque demand along the route. Vehicle 
design parameters can be obtained from vehicle 
manufacturers and external factors from published 
maps. Driver's torque demand involves the 
psychophysics of driving and has been simulated 
using software such as VISSIM or MISSION (PTV 
AG, 2009), (Wiedemannn et al., 1991), (Busawon et 
al., 2006), (Noland and Quddus, 2006). 

Vehicles in the fleet may be instrumented to 
collect actual fuel economy data along the branches 
they travel. The data may be recovered from the 
vehicle at a download site and stored in a database. 
Periodically the database may be used to 
automatically refine the costs assigned to a class of 
road segments, and to reclassify segments as needed.   

3 VEHICLE ROUTING TO 
MINIMIZE FUEL 
CONSUMPTION  

The Vehicle Routing Problem to Minimize Mixed-
Fleet Fuel Consumption and Environmental Impact 
(VRPMF) belongs to the class of heterogeneous fleet 
vehicle routing problems (HVRP). (Baldacci et al., 
2008) provides a comprehensive classification and 
review of the main approaches proposed for VRP 
with a heterogeneous fleet. Specifically, the problem 

being considered in the paper represents a variant of 
HVRP with Vehicle-Dependent Routing Costs 
(HVRPD). They note that solution approaches to 
this difficult family of problems, both in the 
literature and in commercial applications, have 
predominantly been heuristic in nature. These are 
typically adaptations or extensions of solution 
techniques for traditional VRP and VRP with Time 
Windows. 

In order to capture the complexities (and, in 
particular, the non-linearities) of VRPMF, we 
instead propose to leverage the use of composite 
variable modeling (CVM) to capture the complex 
real-world details associated with accurately 
modeling the fuel cost (and associated emissions) of 
a prescribed route. The idea behind CVM (Cohn, 
2002), (Barlatt, et al., 2009) is to embed modeling 
complexity into the variable definition rather than 
capturing it explicitly in a model which may then 
become intractable. For example, in VRPMF, 
explicitly modeling the cost functions described in 
Section 2 within the framework of a traditional VRP 
would make an already difficult problem unsolvable. 
However, it is far easier to calculate the cost of a 
given route (for a given vehicle) off-line. We can 
then formulate a master problem in which each 
variable represents the assignment of a specific route 
to a specific vehicle. For a given route, we can 
compute the total fuel consumption for a given 
vehicle, and thus the total cost is just the sum of the 
chosen assignments. Similarly, a route pre-specifies 
all the customer demands that it meets, and thus we 
only need two sets of constraints. The first ensures 
that each vehicle is assigned to at most route and the 
second ensures that each customer demand is met 
exactly once.  

The challenge, then, is to address the 
exponentially large number of potential variables. 
Clearly not all of the exponentially-large set of 
feasible routes (and their corresponding costs) can 
be generated. Even if they could, it would not be 
possible to solve the resulting exponentially-large 
set partitioning problem. Instead, column generation 
techniques (Desaulniers et al., 2005) (originally 
developed as part of Dantzig-Wolfe Decomposition) 
can be employed. The idea behind column 
generation for solving a linear program with an 
exponential number of variables is to identify 
candidate pivot variables for the simplex method not 
by pricing each variable’s reduced cost directly, but 
rather by solving a secondary optimization problem 
(often called a sub problem) which seeks the feasible 
variable with the most negative reduced cost. If this 
yields a negative reduced cost variable, then the 
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simplex pivot occurs and the algorithm proceeds. If 
the most negative reduced cost variable is strictly 
non-negative, then a certificate of optimality is 
achieved and the algorithm terminates with a 
provably-optimal solution.  
In Dantzig-Wolfe Decomposition, the inherent 
structure of a problem leads to a sub-problem that is 
pre-defined. Furthermore, it is itself a linear program 
and thus straightforward to solve. In CVM, because 
the variable definition is chosen specifically to 
overcome challenges of a traditional formulation, the 
sub problem reflects these challenges. 

Perhaps the most closely related work to our 
proposed approach is that of Taillard (Taillard, 
2005), who used a heuristic based on column 
generation techniques to solve HVRPD. 
Specifically, a large set of candidate routes were 
generated by solving separate homogeneous VRP 
problems for each fleet type. The final routes were 
then selected using a set partitioning formulation to 
ensure that all demands were met. 

A key difference between our proposed approach 
and typical network-based routing problems is that 
the “cost” of a route cannot be computed simply by 
adding the individual arc costs (if so, the sub-
problem would be a simple minimum cost flow 
problem). At first glance, it seems possible to 
formulate the sub problem as a network flow 
problem, where each node represents a customer or 
depot, each arc represents the driving from one node 
to another, and the cost associated with each arc can 
fully capture (based on off-line calculations) the cost 
of this driving. This is not quite true, however: The 
cost on a given arc is not independent of the other 
arcs that are also chosen for an individual vehicle’s 
route. This is because the fuel consumption on an 
arc depends on the starting conditions of the vehicle 
at the first node. If the battery is fully charged, it 
may be possible to complete most of the driving 
without relying on gasoline, and the resulting cost 
will be lower, whereas if the battery is depleted, the 
cost of the arc will be much higher. 

Therefore, a more sophisticated approach to 
solving the sub-problem must be employed. For 
example, we could take a multi-label shortest path 
approach (Desrochers and Soumis, 1988), which is 
similar to Dijkstra’s shortest path algorithm, but 
with an added layer of complexity. Specifically, 
multiple metrics (not just cost) must be checked to 
determine whether a partial path can be pruned from 
consideration. One partial path dominates another 
only if it is less costly and covers the same amount 
of demand or more and has the same amount of 
remaining battery charge or more. Efficiently 

solving this sub-problem is the key to successfully 
solving the master problem.  

We conclude this section by noting that this 
approach has the added advantage of allowing the 
user to trade off between time and solution quality. 
Specifically, the solution quality continues to 
improve as each new candidate route is added to the 
master problem for consideration, but high-quality 
feasible solutions can nonetheless often be found 
early in the process. Furthermore, this approach 
naturally lends itself to a parallel implementation. At 
the highest level, a separate sub-problem can be 
solved, in parallel, for each vehicle. Furthermore, 
these individual sub-problems themselves can 
leverage a parallel architecture for efficient search. 

4 ILLUSTRATIVE EXAMPLE 

This section provides a simplified illustrative 
example of VRPMF. We consider a fleet of two 
vehicles: the first is a 2009 Ford Taurus front-wheel 
drive gasoline engine vehicle and the second is 2010 
Ford Escape 4-wheel drive hybrid vehicle. Figure 1 
shows estimates of the miles per gallon (MPG) 
values and environmental scores as provided by the 
US Environmental Protection Agency (EPA) at 
www.fueleconomy.gov. Note that the Taurus gets 18 
MPG in city driving and 28 MPG in highway 
driving, while the Escape hybrid gets 27 MPG on 
the highway and 30 MPG in the city. The 
environmental impact of each vehicle can be 
evaluated by its carbon footprint and air pollution 
score. The carbon footprint measures greenhouse gas 
emissions (primarily CO2) that in turn impact 
climate change. CO2 emissions are closely linked to 
fuel consumption, since CO2 is the ultimate end 
product of burning gasoline. The Air Pollution score 
represents the amount of health-damaging and 
smog-forming airborne pollutants (such as carbon 
monoxide, CO, and oxides of nitrogen, NOx) that 
the vehicle emits on a scale from 0 (worst) to 10 
(best). Note that there is little correlation between 
fuel consumption and these emissions; emissions 
primarily depend on the emission control 
technology. Taurus has an Air Pollution score of 6 
and Escape Hybrid has a score of 8. 

Suppose that we have eight customers distributed 
within a given geographical area as shown in Figure 
2. The customers are labeled 1 to 8, while 0 is the 
depot. The driving distance between the depot and 
each of the customer sites is presented in Table 1. 
For this example, we assume that the distance data is 
symmetrical   and   shown   as X+Y,   where X is the  
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Table 1: Distance between depot and between customer's sites. 

 

0 1 2 3 4 5 6 7 8
0  14.5+ .9  19+ 1  23.9+ 2.4  0+ 11.6  0+ 9.8  0+ 13.6  12.5+ 10  15.5+ 1.1

1  14.5+ .9  4.2+ 1.5  10.2+ 1.8  0+ 6.3  0+ 10.3  0+ 12.1  12.2+ 2.6  0+ 17.9

2  19+ 1  4.2+ 1.5  5.7+ 2.2  2.5+ 9.1  4.2+ 11.6  11.4+ 4.7  7.7+ 2.9  20.2+ 2

3  23.9+ 2.4  10.2+ 1.8  5.7+ 2.2  0+ 6.7  0+ 10.6  0+ 6.5  0+ 3.8  14.3+ 1.5

4  0+ 11.6  0+ 6.3  2.5+ 9.1  0+ 6.7  0+ 4  14+ 6  17+ 7.5  0+ 11.6

5  0+ 9.8  0+ 10.3  4.2+  11.6  0+ 10.6  0+ 4  0+ 3.8  0+ 8.6  0+ 7.7

6  0+ 13.6  0+ 12.1  11.4+ 4.7  0+ 6.5  14+ 6  0+ 3.8  0+ 4.7  7.4+ 4.1

7  12.5+ 10  12.2+ 2.6  7.7+ 2.9  0+ 3.8  17+ 7.5  0+ 8.6  0+ 4.7  12.5+ 2.5

8  15.5+ 1.1  0+ 17.9  20.2+ 2  14.3+ 1.5  0+ 11.6  0+ 7.7  7.4+ 4.1  12.5+ 2.5  
 

 
Figure 1: Fleet Composition. 

 
Figure 2: Vehicle Routing Problem. 

 

number of highway miles and Y is the number of 
city miles. 

Further, we assume that each service call 
requiresapproximately 90 minutes and that each 
service agent has to finish his/her route, starting and 
ending at the depot, within 8 hours. 

We ignore breaks, and assume that there is no 
capacity limit on the routes other than the time limit. 
We begin by solving the traditional problem of 
minimizing the total fleet vehicle miles traveled 
(VMT). (In this small problem, this can be done by 
explicit enumeration). The total optimum VMT is 
97.2. One vehicle visits customers 1, 2, 3, and 4 with 
a total travel distance of 47.3 miles, comprised of 
22.9 city miles and 24.4 highway miles. The other 
vehicle visits customers 5, 6, 7, and 8 with a total 
travel distance of 49.9 miles, comprised of 21.9 city 
miles and 28 highway miles. The estimated travel 
time for the first route is 75 minutes and for the 
second route is 78 minutes. Note that in this 
variation of the problem, we do not differentiate 
between vehicles, as we are simply minimizing 
distance traveled. 

For illustrative purposes, to estimate fuel 
consumption of each vehicle along the given routes 
we assume the estimated highway and city MPGs as 
defined in Figure 1. (Of course, real-world 
calculations are more complex as we discussed in 
section 2). As a result, the fuel consumption of the 
Taurus for the first route is 2.14 gallons and for the 
second route is 2.22 gallons. For the Escape Hybrid, 
the first route consumes 1.67 gallons and the second 
route consumes 1.77 gallons.  

The optimal solution is to assign the Taurus to 
the first route, resulting in the consumption of 2.14 
gallons, and to assign the Escape to the second route, 
with an estimated consumption of 1.67 gallons of 
gasoline. The total fleet fuel consumption for the 
given solution is 3.81 gallons of gasoline. The 
results are presented graphically in Figures 3 and 4. 
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We next reformulate the problem to take into 
account fuel economy, i.e. distinguishing in our 
optimization between highway and city driving, and 
treating the two vehicles separately, in recognition 
of their distinct characteristics. The optimal solution 
for this problem is presented in Figures 5 and 6.  

Although the VMT increases (from 97.2 to 
101.7), the fuel consumption decreases from 3.81 to 
3.72 gallons. Note that the optimal routes have 
changed (see Figure 4). The route served by the 
Taurus covers customers 1, 2, 7, and 8 with a total 
length of 63.3 miles, but of this 54.4 miles is 
highway driving and only 8.9 miles is city driving. 
Conversely, the Escape Hybrid is assigned to a route 
that serves customers 5, 6, 3, and 4, using only city 
driving (for a total length of 38.4 miles).   

Table 2 provides a comparative summary of the 
two solutions. In addition to the economical impact, 
this demonstrates how a reduction in fuel 
consumption also leads to a reduction in 
environmental impact from the fleet operations. First 
of all, the reduction of fuel consumption reduces the 
CO2 emissions. In addition, the second solution 
shifts the time the Taurus spends in the city routes to 
the Escape Hybrid. As is shown in Figure 1, the 
Taurus has a lower EPA Air Pollution Score than the 
Escape Hybrid. Consequently the second solution 
also reduces health-damaging and smog-forming 
airborne pollutants along populated areas. We could 
also capture this explicitly in the objective function  
of our formulation, either by specifying constraints  
on the total Air Pollution Score (possibly weighted 
by the location of the route arcs), or by introducing 
weights in the objective function. 

 
Figure 3: Solution 1 Graph. 

 
Figure 4: Solution 1 Map. 

 
Figure 5: Solution 2 Graph. 

 
Figure 6: Solution 2 Map. 
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Table 2: Comparative summary of two VRT solutions. 

 

5 CONCLUSIONS 

In this paper we discuss the importance of the 
heterogeneous fleet vehicle routing problem based 
on fuel consumption rather than just distance 
traveled.  We describe the complex function that 
determines how much fuel a given route consumes, 
and argue that distance is an inadequate surrogate 
when multiple fleet types, especially varying across 
different technologies, are used. We provide a 
simple example to illustrate how minimizing total 
miles traveled can yield a very different solution 
than minimizing fuel consumption. We also discuss 
solution techniques, specifically based on the use of 
composite variable modeling, to solve this 
computationally challenging problem.  

In the future, we propose to consider emissions 
as well as explicit fuel costs (which implicitly 
capture CO2 emissions but not NOx). We also 
suggest extending VRPMF to include variations and 
extensions such as those studied in the basic VRP, 
such as balancing routes, satisfying time windows, 
etc. 
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