
PIECEWISE CLASSIFICATION OF ATTACK PATTERNS FOR
EFFICIENT NETWORK INTRUSION DETECTION

Abdelhalim Zaidi, Nazim Agoulmine
LRSM Group, CNRS IBISC Lab, Evry Val d’Essonne University, Evry, France

Tayeb Kenaza
CRIL, Atrois University, Atrois, France

Keywords: Intrusion Detection, String matching, String classification, Common substrings.

Abstract: This paper presents a new scheme to improve the efficiency of pattern matching algorithms. The proposed
approach is based on a piecewise classification of patterns using the common substrings. The main idea is to
split the whole set of patterns into small subsets in accordance to the common substrings and treat the
subsets independently. To reduce the number of patterns to match, we use the common substrings as an
index for the search. We show that are our algorihtm is capable to outcome in term of performance other
reference algorithms, such as Aho-Corasick.

1 INTRODUCTION

With the increase of networks capacities and
bandwidth, the problem of security is becoming
even harder. Indeed, at this speed it is necessary to
have very efficient mechanisms to detect attacks,
virus and worms. During last years, Network based
Intrusion Detection Systems (NIDS) have attracted
significant interest as key enablers of network
security. These systems present powerful tools used
to guaranty high-level security to protect corporate
networks.

A NIDS is a mechanism that tries to detect
unauthorized access to a secure zone. This kind of
access is usually an attempt to compromise the
network and servers activities (Beale, 2007). The
signature based NIDS engine that is used by these
NIDS aims to verify if a set of known malicious
patterns are contained in the inbound stream. Each
pattern describes the signature of known attack that
has been analysed previously. The matching process
executed by the engine, also known as detection
engine, is based on multi-string matching
algorithms. The performance of this type of NIDSs
is therefore highly determined by the performance of
these algorithms. To deal with high throughput and
increasing number of attacks, detection engines have
to improve in performance to be able to verify all

elements of the monitored streams. For that multi-
pattern matching algorithms are required.

In the multi-pattern matching problem, the
objective is to find all occurrences of all the patterns
in the target text. Let P = {p1, p2, ... , pm} be the set of
patterns and T = t1, t2, ..., tN be a large text. Both pi and
T are strings of characters from a fixed alphabet Σ.
Given P and T, the algorithm must locate the
positions of all occurrences of any pattern pi in T.

In this paper, we present a new design for the
attack-pattern classification that is based on the
common substrings principle. This approach aims to
reduce the number of investigated patterns and to
choose the best search method regarding the length
of common substrings as well as the size of the
pattern’s subset.

The remaining of the paper is as follows, after
this introduction to the paper, the Section 2 presents
a state of art in the area of pattern matching. In
Section 3, we present the problems related to the so
called common substring problem. In the Section 4,
we present our solution whereas Section 5
introduces the experimental results and discuss
them. Finally, we conclude our work and give some
future directions in section 6.

100
Zaidi A., Agoulmine N. and Kenaza T. (2010).
PIECEWISE CLASSIFICATION OF ATTACK PATTERNS FOR EFFICIENT NETWORK INTRUSION DETECTION.
In Proceedings of the International Conference on Security and Cryptography, pages 100-104
DOI: 10.5220/0003033101000104
Copyright c© SciTePress

2 RELATED WORK

The most well known algorithms for string matching
are those proposed in 1977 by R. Boyer and J.
Moore (BM) (Boyer, 1977) for single matching and
in 1975 by Aho and Corasick (AC) (Aho, 1975) for
multiple matching. The BM algorithm uses two
heuristics: bad characters and good suffix that
reduce the number of comparisons relatively to the
naïve algorithm. BM is not efficient in multiple
strings matching, because it has to perform iterative
search for each pattern. In (Horspool, 1980),
Horspool improved the BM algorithm by proposing
a simpler and more efficient implementation that
uses only the bad-character heuristic.

In contrast to BM, the AC algorithm is an
efficient multi-pattern matching algorithm. Based on
the finite-state automata constructed from the set of
patterns, the AC algorithm can search for all the
patterns in one pass. Flurry of works and
enhancements related to the AC algorithm have been
presented and are widely used in current information
and communication technology.

In 2002 Fisk and Varghese (Fisk, 2002) designed
the Set-wise Boyer-Moore-Horspool algorithm. It is
an adaptation of BM to concurrently match a set of
rules. This algorithm is shown to be faster than both
AC and BM for medium-size pattern sets. Their
experiments suggest triggering a different algorithm
depending on the number of rules: Boyer-Moore-
Horspool if there is only one rule; Set-wise Boyer-
Moore-Horspool if there are between 2 and 100
rules, and AC for more than 100 rules. C. J. Coit, S.
Staniford, and J. McAlerney proposed the AC_BM
algorithm (Coit, 2002), which is similar to the Set-
wise Boyer-Moore-Horspool algorithm.

Using the bad-character heuristic introduced in
the BM algorithm, S. Wu and U. Manber designed
in 1994 the WM multi-pattern matching algorithm
(Wu, 1994). WM uses two or three suffix characters
to generate shift table constructed by preprocessing
all patterns. The algorithm uses a hash table on two
characters prefix to index a group of patterns, used
when the shift is zero. Finally, naïve comparison is
applied to confirm if the pattern exist in the text.
WM deals efficiently with large pattern set size, but
its performance depends on the shortest pattern.
Therefore, the maximum shift is equal to the length
of the shortest pattern minus one.

G. Anagnostakis, E. P. Markatos, S. Antonatos,
and M. Polychronakis proposed the E2XB
algorithm. It is an exclusion-based pattern matching
algorithm (Anagnostakis, 2003) based on the fact
that mismatches are, by far, more common than

matches. This algorithm was designed for providing
quick negatives.

3 COMMON SUBSTRINGS
PROBLEM

This section reviews the main ideas and definitions
underlying the Common Substrings Problem (CSP)
and the string classification problem. CSP is a very
wide known problem in string set theory. Indeed, the
most asked question about a set of string is: what
substrings are common to a large number of strings?
This problem is related to the problem of finding
substrings that appear (occur) repeatedly in a large
text (Gusfield, 1997). In this case, the large text
represents the concatenation of all the strings in the
CSP problem, so the common substrings represent
the substrings that occur repeatedly in the
concatenated text with a distance condition. The
CSP can be used in file comparison, approximate
string matching biological application such as
similarity detection in DNA sequences.

3.1 Formal Definition

The common substring problem can be derived from
the k-common substring problem, which can be
defined as follows:

Let S = {s1, s2, …, sK} be the set of K strings. For
2 ≤ k ≤ K, we have to find the length and the longest
common substring to k strings, at least. When k = K,
we have the longest common substring for all the
strings.
Example:

S = {athe, heat, athire, athis, wiathis}; K=5

Table 1: K-common substring solution.

k Length substrings
2 5 athis
3 4 athi
4 3 ath
5 2 at

The common substring is “at” (k = 5 = K).

3.2 Problem Solution

We can locate the length and position of the longest
common substrings either by using the generalized
suffix tree or by dynamic programming (Gusfield,
1997). The running time is, respectively, O(n) and
O(p), where n=Σ|si| and p=∏|si|. We can note that the

PIECEWISE CLASSIFICATION OF ATTACK PATTERNS FOR EFFICIENT NETWORK INTRUSION DETECTION

101

suffix-tree approach provides a linear-time solution
for the CSP. For that raison, we focus our work on it.

An efficient algorithm was proposed in (Gusfield,
1997) with a running time of O(n). The main idea is
to build a generalized suffix tree, to concatenate all
the strings with special separators that represent
terminators, then to find the deepest internal nodes
with a subtree that contains leaves from all the
strings. The longest common substrings are the
strings from the root to the deepest nodes.

The scheme figure 1 present a part of the
generalized suffix tree for the set S = {athe, heat,
athire, athis, viathis}; we use the separator $i for each
string si in S: athe$1, heat$2, athire$3, athis$4,
viathis$5.

0

at

t

h

$2
$2

h

e$1

i

i

e$1

re$3

s$

s$

re$3

4

5

4

5

1

2

3

4

Figure1: Generalized suffix tree.

In this example, the subtree of the node 1
contains the terminators of all the strings, so the
substring “at” is the longest common substring.
Whereas, the node 2 gives the common substring of 4
strings (1, 3, 4 and 5), the nodes 3 and 4 give the
substrings of 3 and 2 strings, respectively.

The result of the algorithm is a table that gives all
the longest common substrings sorted by the number
of strings covered. In our case, as we will explain in
the next section, we change the algorithm output to
give only the result for the maximum covered strings
with a minimum length condition. In the previous
example, if we take 3 as a minimum length so the
maximum strings covered is 4.

4 PROPOSED APPROACH

The main idea of our proposal is that we will use the
fact that many attacks patterns share generally
common substrings, due to the similarities between
attacks and their execution scenarios. For example,
in the four SNORT rules with the SIDs: 6141, 6334,

6291 and 6304 (SNORT, 2009), we have the
common substring “Server” for the four rules
patterns: "R|00|SoftWAR Server",
"R_Server", "BackLash Server" and "from
= JJB + Server" respectively.

So if we find “Server”, we can activate the
subsequent four different rules. Otherwise, we can
eliminate them. This example shows the efficient of
the exclusion method which the main driver of our
proposal. We propose to use the common substring
technique to generate a cover set of the whole
known attack set.

Our approach includes two phases: a
preprocessing phase, where pattern subset classes are
generated, and a searching phase, in which we apply
an adequate pattern-matching algorithm to detect
patterns. The second phase consists of two separate
researching methods: one on the common substrings
set and the other on one of the sub-set of the pattern.

4.1 Preprocessing Phase

The first phase of the approach includes two main
functions. The first generates the common substrings
set of the patterns, and the second splits the whole set
of patterns on small groups based on common
substrings. As illustrated in figure 2, the result of this
phase is a subset partition of the pattern set. Each of
the subset is indexed by a common substring. This
phase is an off-line process, so it does not affect the
detection speed.

Figure 2: Common substrings based classification.

The common substring set is generated using the
Algorithm 1.

SECRYPT 2010 - International Conference on Security and Cryptography

102

4.2 Searching Phase

The searching phase consists of two phases also. The
first one is the detection of common substring in the
text and the second is the matching of patterns
indexed by common substrings detected in the first
step. For the matching process, we propose to use
existing algorithms. Depending on the size of sets
and the mean length of either the common substrings
or the subsets of patterns, we can choose the
adequate pattern matching algorithm.

We propose to use three different algorithms:
BM, AC and WM. The first algorithm (BM), can be
used when we have only one pattern. It is the case
generated by the steps 14, 15 and 16 in Algorithm 1.
The two other algorithms (AC and WM) can be used
when we have more than one pattern to search. AC
can be used when the shortest pattern length in the
subset is less than 5, otherwise we use WM. This

choice is due to the fact that WM is based on the
BM technique (bad-character shift), where the
shortest pattern bounds the shift distance.

The searching method is specified using the
pseudo-code in the algorithm 3.

5 EXPERIMENTAL RESULTS

In order to verify the effectiveness of our approach,
we have conducted a set of experiments to compare
the performance of our solution against the WM
algorithm for several patterns sets. Both algorithms
have been implemented in C++.

The main goal of our experiments is the
comparison of the algorithms performances against
the pattern set size as well as the size of the files that
contain the target text. Because of the system
environment limitation, we have only used only six
common substrings set. In our experiments, we
considered detection time or scanning speed as
performance indicators to compare the algorithms.
Experiments were performed with a randomly
generated text files where specific patterns have
been randomly added in the text file.

In the experiments we use three sets of 1000,
2000 and 3000 patterns and six common substrings
that generate six pattern subsets. We compare the
results of our approach with those of the Wu-
Manber algorithm; we show the results in figures 3,
4 and 5.

Input: a text T of n characters, S the common

substrings, ST the subset of the patterns.
Output: The set of the patterns found in T.

01 Let m be the length of the shortest element in S;
02 If m ≤ 5
03 Aho-Corasick(T, S); //search using AC
04 Else Wu-Manber (T, S); //search using WM
05 For all Si matched

 {
06 Let STi be the subset indexed by Si;
07 If size(STi) = 1 Boyer-Moore(T, Si);

 //search for one pattern
08 Else {
09 Let d be the length of the shortest

 pattern in STi;
10 If d ≤ 5 aho-Corasick(T, STi);
11 Else Wu-Manber(T, STi);

 }
 }

Algorithm 2: Searching method.

Input: P a set of n patterns; K the sum of the patterns

lengths; L the maximum length; min the minimum
length

Output: S a set of m common substrings;

01 While P is not empty and L ≥ min
 {

02 Use the generalized suffix tree algorithm to generate
T(1..K – 1) the table of the k-common substrings;

03 Find i where the length of the maximum common
substring C in T(i) is L;

04 If i exist
 {
05 add C to S;
06 Remove all the patterns concerned from P and add

them to the Subsetj;
07 Index the Subsetj by C;
08 Let v be the sum of lengths of all patterns removed;
09 K = K – v;
10 j = j +1;
 }
11 L = L – 1; // we have to change the maximum length

whether we find i or not
}

12 If L < min // P is not empty
{

13 For each patterns in P
 {
14 Let C be the string composed by the L+1 first chars of

the current pattern;
 // we suppose that the minimum length in P is greater

than min
15 Add C to S;
16 Index the Subsetj by C; // only one element
17 j = j + 1
 }

Algorithm 1: Patterns Classification.

PIECEWISE CLASSIFICATION OF ATTACK PATTERNS FOR EFFICIENT NETWORK INTRUSION DETECTION

103

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

2347 1059 549 299 154

File size (KB)

Ti
m

e
(s

)

Classification

Wu Manber

Figure 3: Performances against 1000 patterns.

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

2347 1059 549 299 154

File size (KB)

Ti
m

e
(s

)

Classification

W u Manber

Figure 4: Performances against 2000 patterns.

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

2347 1059 549 299 154

File size (KB)

Ti
m

e
(s

)

Classification

Wu Manber

Figure 5: Performances against 3000 patterns.

These results show that the classification
approach yields a better performance and gives good
results. Our approach decreases the running time by
36%, 43% and 62% for the three cases, respectively
1000, 2000 and 3000 patterns.

6 CONCLUSIONS AND FUTURE
WORK

In this paper, we proposed a scheme to improve the
performance of the pattern matching algorithms. We

introduced a new classification method of the pattern
set based on the common substrings. In our
approach, we split the pattern set into small subsets
according to the common substrings, where each of
them will serve as an index to subset, so every
subset represents a group of patterns with the same
common substring.

Tested against several pattern sets, the results of
the proposed approach are very promising, the
performances are proportional to the size of the
patterns file what represents a good alternative in the
case of the attack data bases of the IDS which are
very increasing. For a robust system evaluation and
as a future work our architecture should be operated
in a real system like the Snort detection engine.

The next step of our work is to implement the
algorithm in an Xilinx Virtex T -5 LXT FPGA
Gigabit Ethernet and test it with high speed access
using the optical interfaces.

REFERENCES

Beale, J et al., 2007. “Snort IDS and IPS Toolkit”.
Syngress, ISBN 1-59749-099-7.

Gusfield, D., 1997. “Algorithms on strings, trees, and
sequences: Computer Science and Computational
Biology”. CAMBRIDGE University Press, ISBN 0-
521-58519-8.

Anagnostakis, K. G, Markatos, E. P, Antonatos, S,
Polychronakis, M., 2003. “E2XB: A domainspecific
string matching algorithm for intrusion detection”. In
Proceedings of the 18th IFIP International
Information SecurityConference (SEC2003).

Wu, S, Manber, Udi., 1994. “A Fast Algorithm For Multi-
Pattern Searching”. Technical Report TR 94-17,
University of Arizona at Tuscon.

Boyer, R. S, Moore, J. S., 1977. “A fast string searching
algorithm”. Communications of the ACM20.

Aho, A. V, Corasick, M. J., 1975, “Efficient string
matching: an aid to bibliographic search”.
Communications of the ACM18.

Horspool, R. N., 1980. “Practical fast searching in
strings”. Software Practice and Experience, vol. 10,
no. 6.

Fisk, M, Varghese, G., 2002. “An analysis of fast string
matching applied to content-based forwarding and
intrusion detection”. Technical Report CS2001-0670
(updated version), University of California - San
Diego.

Coit, C. J, Staniford, S, McAlerney, J., 2002. “Towards
faster pattern matching for intrusion detection, or
exceeding the speed of snort”. In Proceedings of the
2nd DARPA Information Survivability Conference and
Exposition (DISCEX II).

SNORT web site, 2009. www.snort.org

SECRYPT 2010 - International Conference on Security and Cryptography

104

