
PYSENSE: PYTHON DECORATORS FOR WIRELESS SENSOR
MACROPROGRAMMING

Davide Carboni
CRS4, Parco Tecnologico, Pula, Italy

Keywords: WSN, Macroprogramming, Python, Distributed systems.

Abstract: PySense aims at bringing wireless sensor (and "internet of things") macroprogramming to the audience of
Python programmers. WSN macroprogramming is an emerging approach where the network is seen as a
whole and the programmer focuses only on the application logic. The PySense runtime environment
partitions the code and transmits code snippets to the right nodes finding a balance between energy
consumption and computing performances.

1 INTRODUCTION

Decentralized computing architectures in wireless
sensor programming are emerging in contrast with
mainstream WSNs, characterized by a single
application gathering and reporting data. One of the
main reasons to decentralize computation is to
achieve better energy efficiency and to prolong
network lifetime. Radio is by far the most energy
demanding device on wireless sensor boards (Pottie
& Kaiser 2000), and sending a byte over 1 meter
long radio channel is much more expensive (in
joules) that performing an integer computation.
From this simple assertion descends the choice to
consider nodes in a WSN not only as simple sensors
gathering data and transmitting them back to a
central computer, but rather as elements capable of
computation in a distributed system. To quantify
how energy efficiency is achieved lets consider a
simple example.

We assume as large as 1 the normalized energy
needed to compute an integer instruction in a mote,
and as large as 100 the cost of sending an integer
over 1 meter long radio channel.

We can then obtain the energy needed to run a
distributed program as follows:

E = O +100 * ∑ Bi * d2
i (1)

where E is total energy consumed by mobile nodes
during the program execution; Bi is the number of
integers transmitted in the i-th transmission; di is the
distance covered by the i-th transmission; O is the

total number of instructions computed by motes. We
acknowledge that this model may be considered
simplistic but this is not the point of this work. In
(Heinzelman et al. 2002) has been proved that node-
clustering and application specific data processing
can prolong the network lifetime of one order of
magnitude. Nevertheless, it shows in Fig. 1 how
clustering and data processing on cluster heads can
improve the energy balance.

If we consider a simple example of three motes
equipped with thermometer and a program to
compute the average temperature: in (a) every node
sends its temperature and the computation is
performed outside the network; in (b) the
clusterhead collects data from its nodes and act as a
router; in (c) the cluster head perform the
computation and sends a smaller amount of data to
the central computer.

According to the energy model seen before the
energy consumption is 230 in (a), 160 in (b) and
60.03 in (c).
No matter the model chosen for E, our work is to
define a programming tool that supports the
clustering of motes in order to minimize the energy
consumption delegating computation to cluster
heads and to motes depending on computational
capabilities. In other words, we argue that given an
energy consumption model E and an application
code C, there exists a partitioning of code
C={c1,c2,...,cn} and a set Tx of transmissions
Tx={tx1,tx2,...,txk} which is optimal for E. In this
position paper we envision a programming
environment called PySense which supports the

165
Carboni D. (2010).
PYSENSE: PYTHON DECORATORS FOR WIRELESS SENSOR MACROPROGRAMMING.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 165-169
DOI: 10.5220/0003038801650169
Copyright c© SciTePress

Figure 1: In (a) every node sends its temperature and the
computation is performed outside the network; in (b) the
cluster head collects data from its nodes and act as a
router; in (c) the cluster head perform the computation and
sends a smaller amount of data to the central computer.
The number over arrows is the distance covered by a
transmission.

programmer in partitioning the code among nodes in
order to find the optimal compromise between
computation and communications.

2 THE PYSENSE SYSTEM

The idea is to base the language on Python because
is a development language widely adopted in PC
applications and that have proven to be very
appreciated for its balance of functional, procedural
and object oriented constructs.
The elements of the system are:

1. The PySense language and API, which is a
language hosted by Python decorators.

PySense programs are written in Python and
the idea is to use the Python decorator to add
some semantics to classes and functions
constructs. In this way no new keywords are
added to the language so existing code is not
broken.

2. The Base Runtime Environment (BRE) is a
computer with unlimited energy and
unbounded computing capabilities (i.e.
memory, CPU, storage, threading).

3. The Remote Runtime Environment (RRE), is
the execution environment running on board
of motes and able to receive and deploy
Python expression or bytecode at runtime.

The code partitioning is the strategy that allows
the BRE to analyse the code and according to the
network topology to split the program into pieces to
be deployed either on the BRE or on one or more
RREs. Our approach recalls the aspect-oriented
programming in which cross-cutting concerns are
kept aside from business logic. The concerns about
code partitioning and migration on motes are
implemented with meta-programming inspecting the
code and modifying it at runtime. Few classes are
defined in the API: Cluster, Region, and the class
decorator Mote.

Region describes a region in the space. A Region
can be defined either from a cartesian/polar
bounding box or from a graph path. On Region
instances one can apply the set algebra operations as
specified in Python. For instance, the expression:
Region((0,0,100,100)) |
Region(“/floors/3/312”)

defines the union ('|') between the bounding box
(0,0,100,100) and the room 312 on third floor of the
building root ('/'). While the expression:
R.items(M)

returns the set of items (motes) defined by class M
located in the region R. The details of the location
mechanism are beyond the scope of this paper. For
sake of clarity, we assume that the position of motes
is either known in advance by the BRE or
dynamically retrieved by some system not covered
here.

The Cluster class is the super class for all
clusters. Given C a subclass of Cluster it is possible
to create a cluster with the expression:
C([m1,m2,....,mk])
where mi are instances of classes decorated with
@mote (see later). The expression:
C(R.items(M))

is the cluster of motes located inside region R. How
clusters are composed and which mote is elected as

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

166

cluster head is beyond the scope of this paper and
will be investigated in future works. We want just
point the fact that a cluster may elect both a cluster
router and a cluster computer which may be running
on different motes. The former is chosen according
to the network topology and distribution of motes in
space, while the latter is chosen according to
memory and CPU capabilities.

As previously mentioned, the PySense language
is hosted in Python decorators. Python decorators
are special purpose functions that are invoked in the
code when classes or functions are defined. The
syntax of decorators is:
@<func decorator>
def f(x):
 <some code here>

@<class decorator>
class C:
 <some code here>

respectively for decorating a function f and for
decorating a class C. The use of decorators is some
how similar to aspect programming (Elrad et al.
2001) and allows to keep aside all the code needed
to inspect the application logic and to modify it
according to the partitioning needed for
macroprogramming.

The first decorator is @mote and is applied to
classes. A class M decorated with @mote is
inspected to find getter and setter methods. We
adopt the convention that a getter is a “protocol” to
read from a remote sensor while a setter is a
“protocol” to write on a remote effector. Thus, the
class:
@mote
class M:
 def getX(self):pass
 def setY(self,y):pass

becomes in the BRE a proxy class to real motes
equipped with a sensor named X.
An invocation:
m.getX()

will result in a message:
TO m.addr READ x

where m.addr is the network address of the mote
associated to instance m. While the invocation:
m.setY(2)

is translated in a message:
TO m.addr WRITE y 2

Invoking an action on a mote (e.g. a rotation of
an engine) may require an unpredictable amount of
energy. This possibility is given but the programmer
must carefully consider the power consumption on
his own.

Differently from normal Python classes, @mote
classes are limited in the number of instances that
they can create. If we define a class as follows:
@mote
class M:
 def getX(self):pass
 def getY(self):pass
 def setZ(self,value):pass

That means that only motes equipped at least
with sensors x and y and with actuator z can be
associated with M. The number of such motes is the
maximum number of M instances that the BRE can
create with M(). Any further invocation of M() will
cause an exception to be thrown. A @mote class can
have also pure computational methods (to be
distinguished from getter/setter). Some decorators
can be used for these methods. In the example
below:
@mote
class M:
 def getX(self):pass

 @onboard
 def f(self,args):<some code here>

 @onbase
 def g(self,args):<some code>

 @auto
 def h(self,args):<some code>

The method f is expected to run on RREs after a
lazy deployment: the bytecode of f is sent to a mote
only when f is called on that mote for the first time.
Moreover, a mote required to compute f can receive
the bytecode of f not necessarily from the BRE, but
if available, from a closer mote or from its cluster
head.

The method g is simply executed on the BRE
and this does not pose any issue. The code of
method h is treated in a way discussed below. When
moving code from BRE to RRE three different
approaches are in principle possible:

1. The names that cannot be resolved on RRE
are transmitted to from BRE to RRE. This
implies the movement of bytecode for each
unresolved name (e.g. functions, classes,
globals) and given that each piece of code
can depend on other pieces this may cause
the movement of an entire graph of code.
This approach is highly demanding in terms
of memory for the recipient RRE and the
initial deployment is also costly in terms of
bandwidth.

2. Another approach is to not solve locally on

PYSENSE: PYTHON DECORATORS FOR WIRELESS SENSOR MACROPROGRAMMING

167

the RRE but instead to replace every
reference to an unknown name with a
remote call from the RRE to the BRE. This
approach is lightweight in terms of memory
but may require a lot of messages from RRE
back to BRE.

3. The last approach is to prevent code
deployment on the RRE if one or more
names are remotely unknown and in that
case the BRE launches an exception causing
the programmer to reconsider the design of
the code.

In our design, for @onboard methods the third
approach is always used, while for @auto the
system determines automatically which is the best
strategy according to network topology and motes
capabilities.

When on BRE is invoked a code f(x,y,...)
deployed on a RRE, a message:

TO <addr> CALL f x,y,...

is produced and sent to the mote with address addr.
The decorators @onboard, @onbase and @auto can
be also used to decorate methods of Cluster
instances. In this case the semantics is the same than
before, except that an unknown mote (unknown at
design time) is elected cluster head and delegated to
perform remote computation.

As mentioned by (Newton et al. 2007) no paper
in this area can elude the example of the spatial
average temperature.

@mote
class M:
 def getTemperature(self):pass

class C(Cluster):
 @onboard
 def average(self):
 return sum(
[m.getTemperature() for m in
self.motes]) / len(self.motes))

C(region.items(M)).average()

The simple program above defines the class M as
a mote with temperature sensor, then defines a
cluster C and engages it to compute the average
method on the cluster head. Every
m.getTemperature invocation is translated as a
message:

TO <m.addr> READ temperature

sent from the cluster head. The variable region is a
generic Region instance previously created. In the

following section are described some simple
programs similar to those described for Regiment
(Newton et al. 2007).

3 SAMPLE PROGRAMS

The first program measures the CO2 concentration
and sends back data to base runtime. The result
variable values is scoped in the BRE.

@mote
class CO2Sense:
 def getConc(self):pass

values=[c.getConc() for c in
region.items(CO2Sense)]

In the example above, all motes are inquired by
the BRE. In the example that follows a cluster is first
composed and data are collected by the cluster head
and then sent to the BRE.

@mote
class CO2Sense:
 def getConc(self):pass
class CO2Cluster(Cluster)
 def collect(self):
 return [m.getConc() for m in
self.motes]

values=CO2Cluster(region.items(CO2Sense
)).collect()

The next program behaves as the previous one,

but only values beyond a threshold TH are sent to
the BRE.

class CO2(Cluster):
 @onboard
 def collect(self):
 filter(lambda x:x>TH ,
[m.getConc() for m in self.motes])

values=[CO2Cluster(region.items(CO2Sens
e)).collect()]

4 RELATED WORKS

This position paper is located in the field of
distributed computing and in particular in the field
of WSN programming. WSNs are distributed
systems equipped with limited computational
capabilities, radio communication stack and very
constrained energy resources. As assumed in the

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

168

previous sections, the computation is less energy
demanding than communication and thus
computation and communication activity must be
organized together.
 Many authors have proposed languages and
middleware for WSN programming, most of them
use nesC (Gay et al. 2003) as C dialect for node
level programming with execution of native code in
the motes, while other systems like Maté (Levis &
Culler 2002) use a virtual machine approach.

For the systems cited above high-level, global
behaviour must be expressed in terms of complex,
local actions taken at each node. To address this
issue different network-oriented programming
models have been proposed. One of the most
assessed strategies is to consider the whole WSN as
a distributed database to be queried with SQL
expressions (Madden et al. 2005) or XML
expressions. This approaches are not well-suited for
developers who wish to implement specific
behaviour at a lower level than the query interface.
Another promising approach is the so-called macro-
programming. In Regiment (Newton et al. 2007) a
global defined logic is automatically de-globalized
into pieces of code at node level. The Regiment
syntax is inspired by ML(Milner 1997) while
PySense is based on Python. Another macro-
programming language based on Python is Kairos
(Gummadi et al. 2005) in which the programmer is
presented with three constructs: reading and writing
variables at nodes, iterating through the one-hop
neighbours of a node, and naming and addressing
arbitrary nodes. Kairos language is an extension of
the Python language while PySense is a hosted
language on top of Python decorators and relies on
the runtime deployment of code on mobile Python
interpreters. Kairos authors have apparently
abandoned the project and have recently proposed
Pleiades(Kothari et al. 2007) , an extension of C
language with dynamic code partitioning and
migration.

5 CONCLUSIONS AND FUTURE
WORK

We consider useful developing a new tool in this
area given the huge potential of WSNs as
technology and the easiness to learn Python as
programming language even for application domain
experts.

At the time of writing, PySense is still
incomplete to be used in real world applications and
its development is ongoing. The BRE is almost

completely implemented while the set of RRE is at
the moment emulated by a network server that
emulates the reception of requests, the transmissions
of responses, and the computation of migrated code.

The real RRE is under development and based
on the Pymite VM developed in the Python-on-a-
chip project (python-on-a-chip). Thus, the current
commitment for the PySense project is now to fulfil
the design depicted in the paper with a complete
implementation to be tested with real world
applications.

REFERENCES

python-on-a-chip - Project Hosting on Google Code.
http://code.google.com/p/python-on-a-chip/

Elrad, T., Filman, R.E. & Bader, A., 2001. Aspect-
oriented programming: Introduction. Communications
of the ACM, 44(10), 29–32.

Gay, D. et al., 2003. The nesC language: A holistic
approach to networked embedded systems. In
Proceedings of the ACM SIGPLAN 2003 conference
on Programming language design and
implementation. pag. 11.

Gummadi, R., Gnawali, O. & Govindan, R., 2005. Macro-
programming wireless sensor networks using kairos.
Lecture Notes in Computer Science, 3560, 126–140.

Heinzelman, W.B. et al., 2002. An application-specific
protocol architecture for wireless microsensor
networks. IEEE Transactions on wireless
communications, 1(4), 660–670.

Kothari, N. et al., 2007. Reliable and efficient
programming abstractions for wireless sensor
networks. In Proceedings of the 2007 ACM SIGPLAN
conference on Programming language design and
implementation. pag. 210.

Levis, P. & Culler, D., 2002. Mate: A tiny virtual machine
for sensor networks. ACM SIGARCH Computer
Architecture News, 30(5), 95.

Madden, S.R. et al., 2005. TinyDB: an acquisitional query
processing system for sensor networks. ACM
Transactions on Database Systems (TODS), 30(1),
173.

Milner, R., 1997. The definition of standard ML, MIT
Press.

Newton, R., Morrisett, G. & Welsh, M., 2007. The
regiment macroprogramming system. In Proceedings
of the 6th international conference on Information
processing in sensor networks. pag. 498.

Pottie, G.J. & Kaiser, W.J., 2000. Wireless integrated
network sensors. Communications of the ACM, 43(5),
51–58.

Younis, O., Krunz, M. & Ramasubramanian, S., 2006.
Node clustering in wireless sensor networks: Recent
developments and deployment challenges. IEEE
Network, 20(3), 20–25.

PYSENSE: PYTHON DECORATORS FOR WIRELESS SENSOR MACROPROGRAMMING

169

