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Abstract: PySense aims at bringing wireless sensor (and "internet of things") macroprogramming to the audience of 
Python programmers. WSN macroprogramming is an emerging approach where the network is seen as a 
whole and the programmer focuses only on the application logic. The PySense runtime environment 
partitions the code and transmits code snippets to the right nodes finding a balance between energy 
consumption and computing performances. 

1 INTRODUCTION 

Decentralized computing architectures in wireless 
sensor programming are emerging in contrast with 
mainstream WSNs, characterized by a single 
application gathering and reporting data. One of the 
main reasons to decentralize computation is to 
achieve better energy efficiency and to prolong 
network lifetime. Radio is by far the most energy 
demanding device on wireless sensor boards (Pottie 
& Kaiser 2000), and sending a byte over 1 meter 
long radio channel is much more expensive (in 
joules) that performing an integer computation. 
From this simple assertion descends the choice to 
consider nodes in a WSN not only as simple sensors 
gathering data and transmitting them back to a 
central computer, but rather as elements capable of 
computation in a distributed system. To quantify 
how energy efficiency is achieved lets consider a 
simple example.  

We assume as large as 1 the normalized energy  
needed to compute an integer instruction in a mote, 
and as large as 100 the cost of sending an integer 
over 1 meter long radio channel.  

We can then obtain the energy needed to run a 
distributed program as follows: 

E = O +100 * ∑ Bi * d2
i (1)

where E is total energy consumed by mobile nodes 
during the program execution; Bi is the number of 
integers transmitted in the i-th transmission; di is the 
distance covered by the i-th transmission; O is the 

total number of instructions computed by motes. We 
acknowledge that this model may be considered 
simplistic but this is not the point of this work. In 
(Heinzelman et al. 2002) has been proved that node-
clustering and application specific data processing 
can prolong the network lifetime of one order of 
magnitude. Nevertheless, it shows in Fig. 1 how 
clustering and data processing on cluster heads can 
improve the energy balance.  

If we consider a simple example of three motes 
equipped with thermometer and a program to 
compute the average temperature: in (a) every node 
sends its temperature and the computation is 
performed outside the network; in (b) the 
clusterhead collects data from its nodes and act as a 
router; in (c) the cluster head perform the 
computation and sends a smaller amount of data to 
the central computer. 

According to the energy model seen before the 
energy consumption is 230 in (a), 160 in (b) and 
60.03 in (c).  
No matter the model chosen for E, our work is to 
define a programming tool that supports the 
clustering of motes in order to minimize the energy 
consumption delegating computation to cluster 
heads and to motes depending on computational 
capabilities. In other words, we argue that given an 
energy consumption model E and an application 
code C, there exists a partitioning of code 
C={c1,c2,...,cn} and a set Tx of transmissions 
Tx={tx1,tx2,...,txk} which is optimal for E. In this 
position paper we envision a programming 
environment   called   PySense  which  supports  the  
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Figure 1: In (a) every node sends its temperature and the 
computation is performed outside the network; in (b) the 
cluster head collects data from its nodes and act as a 
router; in (c) the cluster head perform the computation and 
sends a smaller amount of data to the central computer. 
The number over arrows is the distance covered by a 
transmission. 

programmer in partitioning the code among nodes in 
order to find the optimal compromise between 
computation and communications. 

2 THE PYSENSE SYSTEM 

The idea is to base the language on Python because 
is a development language widely adopted in PC 
applications and that have proven to be very 
appreciated for its balance of functional, procedural 
and object oriented constructs.  
The elements of the system are:  

1. The PySense language and API, which is a 
language hosted by Python decorators. 

PySense programs are written in Python and 
the idea is to use the Python decorator to add 
some semantics to classes and functions 
constructs. In this way no new keywords are 
added to the language so existing code is not 
broken. 

2. The Base Runtime Environment (BRE) is a 
computer with unlimited energy and 
unbounded computing capabilities (i.e. 
memory, CPU, storage, threading). 

3. The Remote Runtime Environment (RRE), is 
the execution environment running on board 
of motes and able to receive and deploy 
Python expression or bytecode at runtime.  
 

The code partitioning is the strategy that allows 
the BRE to analyse the code and according to the 
network topology to split the program into pieces to 
be deployed  either on the BRE or on one or more 
RREs. Our approach recalls the aspect-oriented 
programming in which cross-cutting concerns are 
kept aside from business logic. The concerns about 
code partitioning and migration on motes are 
implemented with meta-programming inspecting the 
code and modifying it at runtime. Few classes are 
defined in the API: Cluster,  Region, and the class 
decorator Mote. 

Region describes a region in the space. A Region 
can be defined either from a cartesian/polar 
bounding box or from a graph path. On Region 
instances one can apply the set algebra operations as 
specified in Python. For instance, the expression: 
Region((0,0,100,100)) | 
Region(“/floors/3/312”) 

defines the union ('|') between the bounding box 
(0,0,100,100) and the room 312 on third floor of the 
building root ('/'). While the expression: 
R.items(M) 

returns the set of items (motes) defined by class M 
located in the region R. The details of the location 
mechanism are beyond the scope of this paper. For 
sake of clarity, we assume that the position of motes 
is either known in advance by the BRE or 
dynamically retrieved by some system not covered 
here.  

The Cluster class is the super class for all 
clusters. Given C a subclass of Cluster it is possible 
to create a cluster with the expression: 
C([m1,m2,....,mk]) 
where mi are instances of classes decorated with 
@mote (see later). The expression: 
C(R.items(M))  

is the cluster of motes located inside region R. How 
clusters are composed and which mote is elected as 
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cluster head is beyond the scope of this paper and 
will be investigated in future works. We want just 
point the fact that a cluster may elect both a cluster 
router and a cluster computer which may be running 
on different motes. The former is chosen according 
to the network topology and distribution of motes in 
space, while the latter is chosen according to 
memory and CPU capabilities.  

As previously mentioned, the PySense language 
is hosted in Python decorators. Python decorators 
are special purpose functions that are invoked in the 
code when classes or functions are defined. The 
syntax of decorators is: 
@<func decorator> 
def f(x): 
 <some code here> 
 
@<class decorator> 
class C: 
 <some code here> 

respectively for decorating a function f and for 
decorating a class C. The use of decorators is some 
how similar to aspect programming (Elrad et al. 
2001) and allows to keep aside all the code needed 
to inspect the application logic and to modify it 
according to the partitioning needed for 
macroprogramming.  

The first decorator is @mote and is applied to 
classes. A class M decorated with @mote is 
inspected to find getter and setter methods. We 
adopt the convention that a getter is a “protocol” to 
read from a remote sensor while a setter is a 
“protocol” to write on a remote effector. Thus, the  
class:  
@mote 
class M: 
 def getX(self):pass 
 def setY(self,y):pass 

becomes in the BRE a proxy class to real motes 
equipped with a sensor named X.  
An invocation:  
m.getX() 

will result in a message: 
TO m.addr READ x  

where m.addr is the network address of the mote 
associated to instance m. While the invocation: 
m.setY(2) 

is translated in a message: 
TO m.addr WRITE y 2 

Invoking an action on a mote (e.g. a rotation of 
an engine) may require an unpredictable amount of 
energy. This possibility is given but the programmer 
must carefully consider the power consumption on 
his own.  

Differently from normal Python classes, @mote 
classes are limited in the number of instances that 
they can create.  If we define a class as follows: 
@mote 
class M: 
 def getX(self):pass 
 def getY(self):pass 
 def setZ(self,value):pass 

That means that only motes equipped at least 
with sensors x and y and with actuator z can be 
associated with M. The number of such motes is the 
maximum number of M instances that the BRE can 
create with M(). Any further invocation of M() will 
cause an exception to be thrown. A @mote class can 
have also pure computational methods (to be 
distinguished from getter/setter). Some decorators 
can be used for these methods. In the example 
below: 
@mote 
class M: 
 def getX(self):pass 
 
 @onboard 
 def f(self,args):<some code here> 
 
 @onbase 
 def g(self,args):<some code> 
 
 @auto 
 def h(self,args):<some code> 
 

The method f is expected to run on RREs after a 
lazy deployment: the bytecode of f is sent to a mote 
only when f is called on that mote for the first time. 
Moreover, a mote required to compute f can receive 
the bytecode of f not necessarily from the BRE, but 
if available, from a closer mote or from its cluster 
head. 

The method g is simply executed on the BRE 
and this does not pose any issue. The code of 
method h is treated in a way discussed below. When 
moving code from BRE to RRE three different 
approaches are in principle possible: 

1. The names that cannot be resolved on RRE 
are transmitted to from BRE to RRE. This 
implies the movement of bytecode for each 
unresolved name (e.g. functions, classes, 
globals) and given that each piece of code 
can depend on other pieces this may cause 
the movement of an entire graph of code. 
This approach is highly demanding in terms 
of memory for the recipient RRE and the 
initial deployment is also costly in terms of 
bandwidth. 

2. Another  approach is to not solve locally on  
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the RRE but instead to replace every 
reference to an unknown name with a 
remote call from the RRE to the BRE. This 
approach is lightweight in terms of memory 
but may require a lot of messages from RRE 
back to BRE. 

3. The last approach is to prevent code 
deployment on the RRE if one or more 
names are remotely unknown and in that 
case the BRE launches an exception causing 
the programmer to reconsider the design of 
the code. 

In our design, for @onboard methods the third 
approach is always used, while for @auto the 
system determines automatically which is the best 
strategy according to  network topology and motes 
capabilities. 

When on BRE is invoked a code f(x,y,...) 
deployed  on a RRE, a message: 

TO <addr> CALL f  x,y,... 
 
is produced and sent to the mote with address addr. 
The decorators @onboard, @onbase and @auto can 
be also used to decorate methods of Cluster 
instances. In this case the semantics is the same than 
before, except that an unknown mote (unknown at 
design time) is elected cluster head and delegated to 
perform remote computation. 

As mentioned by (Newton et al. 2007) no paper 
in this area can elude the example of the spatial 
average temperature. 

@mote 
class M: 
 def getTemperature(self):pass 
 
class C(Cluster): 
 @onboard 
 def average(self): 
  return sum( 
[m.getTemperature() for m in 
self.motes]) / len(self.motes)) 
 
C(region.items(M)).average() 
 

The simple program above defines the class M as 
a mote with temperature sensor, then defines a 
cluster C and engages it to compute the average 
method on the cluster head. Every 
m.getTemperature invocation is translated as a 
message:  

TO <m.addr> READ temperature 
 
sent from the cluster head. The variable region is a 
generic Region instance previously created. In the 

following section are described some simple 
programs similar to those described for Regiment 
(Newton et al. 2007).  

3 SAMPLE PROGRAMS 

The first program measures the CO2 concentration 
and sends back data to base runtime. The result 
variable values is scoped in the BRE. 

@mote 
class CO2Sense: 
 def getConc(self):pass 
 
values=[c.getConc() for c in 
region.items(CO2Sense)] 
 

In the example above, all motes are inquired by 
the BRE. In the example that follows a cluster is first 
composed and data are collected by the cluster head 
and then sent to the BRE. 

@mote 
class CO2Sense: 
 def getConc(self):pass 
class CO2Cluster(Cluster) 
 def collect(self): 
  return [m.getConc() for m in 
self.motes] 
 
values=CO2Cluster(region.items(CO2Sense
)).collect() 

 
The next program behaves as the previous one, 

but only values beyond a threshold TH are sent to 
the BRE. 

class CO2(Cluster): 
 @onboard 
 def collect(self): 
  filter(lambda x:x>TH , 
[m.getConc() for m in self.motes]) 
 
values=[CO2Cluster(region.items(CO2Sens
e)).collect()] 

4 RELATED WORKS 

This position paper is located in the field of 
distributed computing and in particular in the field 
of WSN programming. WSNs are distributed 
systems equipped with limited computational 
capabilities, radio communication stack and very 
constrained energy resources. As assumed in the 
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previous sections, the computation is less energy 
demanding than communication and thus 
computation and communication activity must be 
organized together. 
 Many authors have proposed languages and 
middleware for WSN programming, most of them 
use nesC (Gay et al. 2003) as C dialect for node 
level programming with execution of native code in 
the motes, while other systems like Maté (Levis & 
Culler 2002) use a virtual machine approach.  

For the systems cited above high-level, global 
behaviour must be expressed in terms of complex, 
local actions taken at each node. To address this 
issue different network-oriented programming 
models have been proposed. One of the most 
assessed strategies is to consider the whole WSN as 
a distributed database to be queried with SQL 
expressions (Madden et al. 2005) or XML 
expressions. This approaches are not well-suited for 
developers who wish to implement specific 
behaviour at a lower level than the query interface. 
Another promising approach is the so-called macro-
programming. In Regiment (Newton et al. 2007) a 
global defined logic is automatically de-globalized 
into pieces of code at node level. The Regiment 
syntax is inspired by ML(Milner 1997) while 
PySense is based on Python. Another macro-
programming language based on Python is Kairos 
(Gummadi et al. 2005) in which the programmer is 
presented with three constructs: reading and writing 
variables at nodes, iterating through the one-hop 
neighbours of a node, and naming and addressing 
arbitrary nodes. Kairos language is an extension of 
the Python language while PySense is a hosted 
language on top of Python decorators and relies on 
the runtime deployment of code on mobile Python 
interpreters. Kairos authors have apparently 
abandoned the project and have recently proposed 
Pleiades(Kothari et al. 2007) , an extension of C 
language with dynamic code partitioning and 
migration.  

5 CONCLUSIONS AND FUTURE 
WORK 

We consider useful developing a new tool in this 
area given the huge potential of WSNs as 
technology and the easiness to learn Python as 
programming language even for application domain 
experts. 

At the time of writing, PySense is still  
incomplete to be used in real world applications and 
its development is ongoing. The BRE is almost 

completely implemented while the set of RRE is at 
the moment emulated by a network server that 
emulates the reception of requests, the transmissions 
of responses, and the computation of migrated code. 

The real RRE is under development and based 
on the Pymite VM  developed in the Python-on-a-
chip project (python-on-a-chip). Thus, the current 
commitment for the PySense project is now to fulfil 
the design depicted in the paper with a complete 
implementation to be tested with real world 
applications. 

REFERENCES 

python-on-a-chip - Project Hosting on Google Code. 
http://code.google.com/p/python-on-a-chip/ 

Elrad, T., Filman, R.E. & Bader, A., 2001. Aspect-
oriented programming: Introduction. Communications 
of the ACM, 44(10), 29–32. 

Gay, D. et al., 2003. The nesC language: A holistic 
approach to networked embedded systems. In 
Proceedings of the ACM SIGPLAN 2003 conference 
on Programming language design and 
implementation. pag. 11. 

Gummadi, R., Gnawali, O. & Govindan, R., 2005. Macro-
programming wireless sensor networks using kairos. 
Lecture Notes in Computer Science, 3560, 126–140. 

Heinzelman, W.B. et al., 2002. An application-specific 
protocol architecture for wireless microsensor 
networks. IEEE Transactions on wireless 
communications, 1(4), 660–670. 

Kothari, N. et al., 2007. Reliable and efficient 
programming abstractions for wireless sensor 
networks. In Proceedings of the 2007 ACM SIGPLAN 
conference on Programming language design and 
implementation. pag. 210. 

Levis, P. & Culler, D., 2002. Mate: A tiny virtual machine 
for sensor networks. ACM SIGARCH Computer 
Architecture News, 30(5), 95. 

Madden, S.R. et al., 2005. TinyDB: an acquisitional query 
processing system for sensor networks. ACM 
Transactions on Database Systems (TODS), 30(1), 
173. 

Milner, R., 1997. The definition of standard ML, MIT 
Press. 

Newton, R., Morrisett, G. & Welsh, M., 2007. The 
regiment macroprogramming system. In Proceedings 
of the 6th international conference on Information 
processing in sensor networks. pag. 498. 

Pottie, G.J. & Kaiser, W.J., 2000. Wireless integrated 
network sensors. Communications of the ACM, 43(5), 
51–58. 

Younis, O., Krunz, M. & Ramasubramanian, S., 2006. 
Node clustering in wireless sensor networks: Recent 
developments and deployment challenges. IEEE  
Network, 20(3), 20–25.  

PYSENSE: PYTHON DECORATORS FOR WIRELESS SENSOR MACROPROGRAMMING

169


