
Semi-automatic Dependency Model Creation based on
Process Descriptions and SLAs

Matthias Winkler1, Thomas Springer2, Edmundo David Trigos1 and Alexander Schill2

1 SAP Research CEC Dresden, SAP AG, Chemnitzer Str. 48, 01187 Dresden, Germany

2 TU Dresden, Faculty of Computer Science, Institute for Systems Architecture
Computer Networks Group, Nthnitzer Str. 46, 01187 Dresden, Germany

Abstract. In complex service-oriented business processes the composed ser-
vices depend on other services to contribute to the common goal. These depen-
dencies have to be considered when service compositions should be changed.
Information about dependencies is only implicitly available from service level
agreements and process descriptions. In this paper we present a semi-automatic
approach to analyze service dependencies and capture information about them
explicitly in a dependency model. Furthermore, we describe a system architec-
ture which covers the whole process of dependency analysis, dependency model
creation and provisioning. It has been implemented based on a healthcare sce-
nario.

1 Introduction

According to the Internet of Services vision services traded via open marketplaces are
composed to business processes. Services are provided fully automatically (credit card
check) or involve manual steps (healthcare services). The composed services have to
collaborate to achieve a common goal. Thus, the composition creates different types of
dependencies between involved services, e.g. with respect to produced and consumed
resources, timing, quality of service (QoS), and pricing. Dependencies occur between
atomic services (horizontal dependency) or between atomic services and the composi-
tion (vertical dependency).

Explicit knowledge about dependencies is needed for the management of service
level agreements (SLA) in service compositions. SLAs are negotiated between the ser-
vice provider and consumer to regulate service provisioning. During the negotiation
process it is necessary to ensure that all SLAs of the composition enable the proper col-
laboration between the different services and the fulfillment of all SLAs. Furthermore,
dependency information is also needed for the handling of SLA violations or explicit
SLA renegotiation requests by the different stakeholders. SLA violations as well as the
renegotiation of SLAs may affect other services and lead to the violation of other SLAs.
Thus, information about service dependencies is needed for SLA management by com-
posite service providers. Required information about service dependencies is usually
not explicitly available but is implicitly contained in SLAs and process descriptions.
From these sources it has to be extracted to be available at runtime.

Winkler M., Springer T., David Trigos E. and Schill A. (2010).
Semi-automatic Dependency Model Creation based on Process Descriptions and SLAs.
In Proceedings of the 4th International Workshop on Architectures, Concepts and Technologies for Service Oriented Computing, pages 16-28
DOI: 10.5220/0003042900160028
Copyright c© SciTePress



In previous work we presented an approach to managing dependencies in service
compositions [1], where dependencies are analyzed at design time, dependency infor-
mation is captured in a dependency model [2], and dependencyinformation is used at
runtime to evaluate effects of SLO violations and SLA renegotiation requests on other
services. This paper extends our work by two major contributions. Firstly, we detail
our work on dependency model creation by a process description. Secondly, we present
an architecture for managing dependencies. The remainder of this paper is structured
as follows: In Chapter 2 we describe the dependency model creation process followed
by the presentation of the architecture of the approach in Chapter 3. We evaluate our
work in Chapter 4 and discuss it with respect to related work in Chapter 5. Finally, we
conclude this paper with a discussion and outlook on future work in Chapter 6.

2 Dependency Model Creation

In order to manage the dependencies between services throughout the lifecycle of a
composite service, we developed an approach which capturesdependencies in a depen-
dency model at design time and which uses this information toevaluate effects of SLO
violations as well as SLA renegotiation requests at runtime. We developed a lifecycle
for managing and using dependency information. This lifecycle consists of four phases:
creation and recalculation, validation, usage, and retirement. In this chapter we will de-
tail the first lifecycle phase focusing on the model creationand its integration into the
development process of the composite service. In Fig. 1 the dependency model creation
process is depicted. This semi-automatic process is initiated by the composite service
modeler. As pre-requisite for executing the process two aspects have to be fulfilled:

1. The composite service workflow has been modeled (e.g. BPMNprocess). It pro-
vides information on temporal relationships between services.

2. SLA offers for all services are available specifying information regarding execu-
tion time and location, handled resources, supported QoS, and service price. This
information is needed for dependency model creation.

As a result a dependency model is created, which still needs to be validated with re-
spect to the negotiated SLAs. This is necessary in order to avoid conflicts between the
proposed SLAs (e.g. with respect to time and QoS attributes).

The creation process of a dependency model was realized as a semi-automatic ap-
proach consisting of automatic dependency discovery and the explicit modeling of de-
pendencies. The discovery of dependencies automates part of the dependency model
creation process. It also helps to reduce the chance of errors such as false or missing
dependencies introduced by manual modeling. The manual extension and modification
of the generated dependency model enables the expression ofdependencies which can-
not be discovered automatically. However, it also introduces the chance of errors being
added to the dependency model. In the following sections thedependency discovery
and dependency modeling are explained in more detail.

94



Create
service pairs

Create
workflow paths

Create 
calculation 
formulas

Create horizontal 
time 

dependencies

Create vertical 
time 

dependencies

Create horizontal 
resource 

dependencies

Create vertical 
resource 

dependencies

Create 
dependency 

model

Create QoS /
price 

dependencies

END

START

Refine
dependency 

model manually

Dependency 
Model exists?

No

Yes

Analyze input 
and output 
parameters

Load composite 
service workflow

Fig. 1. Dependency model creation process.

2.1 Dependency Model Creation Process

As a first step in the process of creating a dependency model a new model instance is
created if it does not already exist. After that two paralleltasks are started for the dis-
covery of dependencies. This includes the creation of time and resource dependencies
on the one hand and the creation of aggregation formulas for QoS attributes and price
information on the other hand. For the creation of time and resource dependencies the
first step is the creation of linear paths reaching from the start node to the end node of the
composite service workflow. For each path pairs of services are created. The selection
of the relevant services for pair creation is dependent on the type of dependency which
is analyzed (see section 2.2). Based on the created pairs theanalysis of dependencies
is done. The creation of time dependencies is directly basedon the different pairs. No
further analysis is necessary, since time dependency creation is based on the process
structure only, i.e. if a serviceS2 follows serviceS1 in the process, this implies thatS1

is executed beforeS2. For the creation of resource dependencies the input and output
parameters of two services are compared. If a match is found,a resource dependency
is created. The different dependencies are then added to thedependency model. The
analysis for QoS and price dependencies is based on [3]. It starts with a reduction of the
service workflow based on workflow patterns. Formulas for calculating composite QoS
and price values for the respective workflow patterns are selected and an aggregation

95



formula is created. Finally, a dependency is created for each composite QoS and price
value. Following the discovery of dependencies the createddependency model can be
refined in a manual modeling step.

2.2 Dependency Discovery

The goal of our work is to provide composite service providers with information about
service dependencies in a composition. This information should facilitate the manage-
ment of SLAs. A SLA contains a list of parameters such as time,price, location, and
quality of service provisioning. Dependencies occur with regard to these parameters:
e.g. the composite service price depends on the atomic service prices; provisioning of
the first atomic services in the composition can be started assoon as the provisioning
of the composite service is initiated; provisioning of two atomic services needs to be
started or finished at the same time. These brief examples show that different types of
dependencies exists and that fine grained dependency information is required.

The discovery of dependencies is specific for each dependency type. We will now
describe the discovery of time and resource dependencies inmore detail including the
selection of services for service pair creation as well as the type of dependency being
created. Time dependencies are expressed based on time relations as used in project
management [4] or as defined by Allen [5]. For resource dependencies the different re-
sources are listed. An overview of the mappings for creatingdependencies is presented
in Table 1. The creation of aggregation formulas for composite QoS and price values is
achieved as described by [3]. Due to space limitations we would like to point the reader
to the respective work for further information.

Horizontal Time Dependencies are created between each pair of services, where one
service is directly connected to another service in a path. For each pair afinish-to-start
time dependency is created between the earlier and the laterservice.

Vertical Time Dependencies are created between the composite service and the first
and last atomic service within a path. Between the compositeservice and the first atomic
service astart-to-starttime dependency is created. Between the last atomic serviceand
the composite service afinish-to-finishtime dependency is created.

Horizontal Resource Dependencies are created between atomic services, which are
directly or indirectly connected within a path. To check whether two services have a de-
pendency the output of the preceding service is compared to the input of the succeeding
service. If a match is found a resource dependency is created. Information on input and
output of services is available from their SLAs.

Vertical Resource Dependencies are created between the composite service and an
atomic service. For each path the composite service input and output is compared to the
atomic services input and output. A resource dependency is created with all atomic ser-
vices along a path, which have a matching input with the composite service input and
which do not have a horizontal dependency regarding the matching resources. A fur-
ther resource dependency is created with the last atomic service, which has a matching
output with the composite service.

96



Table 1. Comparison of dependency model approaches.

Composite service
construct

Description
Dependency model
construct

AS2AS1
Two atomic services directly connected via
control flow

Time dependency:
finish-to-start

CS

AS2AS1

Composite service and first atomic service in
a path

Time dependency:
start-to-start

CS

AS2AS1

Last atomic service and composite service in
a path

Time dependency:
finish-to-finish

SLA
Par:out

SLA
Par:in

AS2AS1

Output of preceding atomic service matches
input of succeeding service

Resource depen-
dency: AS2.paramIn
resourceDependent
AS1.paramOut

CS

SLA
Par:in

SLA
Par:in

AS2AS1

Input of composite service matches input of
atomic service

Resource depen-
dency: AS1.paramIn
resourceDependent
CS.paramIn

CS

SLA
Par:out

SLA
Par:out

AS2AS1

Output of composite service matches output
of atomic service

Resource depen-
dency: CS.paramOut
resourceDependent
AS2.paramOut

2.3 Dependency Modeling

The dependency discovery algorithm produces a valid dependency model. However,
there are several types of dependencies which cannot be discovered. This includes de-
pendencies regarding the location for executing a service or QoS dependencies where
no aggregation formula can be created automatically. Furthermore, time dependencies
may exist between services which are not connected by the process flow. A concrete
use case may have time constraints, which have to be modeled explicitly, i.e. the cre-
ated dependency model is extended manually.

3 Architecture and Integration

In this chapter the architecture of the dependency management components as well as
their integration into a service engineering toolchain aredescribed. The components
provide functionality for the creation, validation, and storage of dependency models
(Dependency Model Management), the analysis and modeling of dependencies (Depen-
dency Analysis), and the evaluation of the dependency model with respect todifferent
events at runtime (Runtime Dependency Evaluation). An overview of the components
is presented in Fig. 2. Details about their functionality are described below.

97



ISE Development Environment

Dependency Model Management
Tradable Service 
Runtime Runtime Dependency

Evaluation

Service 
Management 
Platform

Dependency Analysis

ISE SLA
Management

Analysis
Manager

SLA Manager

Dependency
Evaluation

Dependency 
Model Store

Process
Analysis

Dependency
Discovery

R

R

Dependency
Modeler

Dependency
Model Manager

R

Dependency
Model 

ValidationR

R

Cockpit

Service 
Monitoring

R

Service
Model

Repository

Message-
oriented

Middleware

R

R

R

Fig. 2. Architecture Dependency Handling.

3.1 Dependency Model Management

The approach for managing service dependencies has at its core the dependency model,
which is used to capture information about services and the dependencies that occur
between them. The components, which are part of the dependency model management,
are responsible for the creation, validation, and storage of dependency models and for
making these models available to other components.

TheDependency Model Manageris the central component. It creates new depen-
dency model instances for each new SLA negotiated for a composite service. It is also
responsible for adding information to dependency models and making model infor-
mation available to other components such asDependency ModelerandDependency
Evaluation. TheDependency Model Validationcomponent is responsible for validating
the dependency model with respect to the defined constraintsand the respective SLAs.
An example is the validation of negotiated times which are discovered based on the
workflow structure or modeled manually. Furthermore, validation regarding more gen-
eral aspects is realized (e.g. each consumed resource needsto be provided by an entity).
The final dependency model instances are stored in theDependency Model Store.

3.2 Service Dependency Analysis

The analysis of dependencies is executed after creating theservice composition and
during the process of negotiating SLAs for the different services. It requires a process
description and SLAs in the offer state (i.e. containing offered SLO values) as input.
Our implementation is based on BPMN (Business Process Modeling Notation) process
descriptions. BPMN represents a suitable means for modeling business processes from a
business perspective at an abstract level. An alternative approach would be the usage of
a BPEL (Business Process Execution Language) process notation. BPEL is, however,
targeted at processes that are executed automatically and which are realized by web

98



services. Processes involving mainly human or machine tasks are typically not modeled
using BPEL. The dependency analysis functionality is distributed between components
supporting the automatic dependency discovery as well as dependency modeling. The
analysis process and the involved components are presentedin Fig. 3.

TheAnalysis Managerhandles the process of dependency discovery. It is initiated
by the composite service creator during the negotiation of SLAs with the consumer of
the composite service as well as the atomic service providers. It retrieves the workflow
description and SLA documents for the analysis and initiates the different steps of the
discovery. TheProcess Analysiscomponent is responsible for decomposing the process
into linear paths leading from the start node all the way to the end node. These paths
are used for the discovery of dependencies. TheDependency Discoverycomponent re-
alizes the different dependency discovery mechanisms. They include all horizontal and
vertical dependency evaluation tasks as described in section 2.2. The implementation is
based on the generated paths and SLA information. When it discovers a dependency it
requests theDependency Model Managerto add the respective information to the de-
pendency model. Once the information has been added to the model, it is stored in the
Dependency Model Store. From there it can be accessed for further handling.

Dependency 
Model Store

Dependency
Model

Manager
Composite 

Service 
Creator

Service 
Model 

Repository

Process
Analysis

Analysis
Manager

Dependency
Discovery

result

analyzeDependencies(process)

pathList

getPaths(process)

result

analyzeDependencies(pathList)

slaInfo

getSLAInformation()

result

addDependencies(dep)
storeDependencyInfo(dep)

Fig. 3. Process and components for analysis of dependencies.

TheDependency Modelerprovides dependency modeling functionality for the com-
posite service creator. It enables the creation of new as well as the adaptation of existing
dependency models. It was realized as a graphical model editor. The modeling process
is initiated by the composite service creator. As a first stepthe Dependency Modeler
requests a dependency model from theDependency Model Manager. Once the model
is available, the composite service creator uses the editing functionality to add, remove,
or modify dependency and service information in the dependency model.

99



3.3 Runtime Dependency Evaluation

The Runtime Dependency Evaluationcomponent is responsible for the evaluation of
dependency information at runtime. The occurrence of SLO violation information re-
quires the determination of effects of this violation on other services (atomic or com-
posite service). Requests for renegotiating an SLA need to be evaluated with regard to
effects on other services before accepting them.

The runtime evaluation of dependencies is initiated by theISE SLA Management
component calling theDependency Evaluationcomponent which executes the evalu-
ation process. It requests the relevant dependency model from theDependency Model
Managerand evaluates it. Since the runtime dependency evaluation is not in the focus
of this paper we do not present more details about this.

3.4 Integration with Service Engineering Toolchain

The different dependency management components are integrated into the ISE devel-
opment environment, a tool created for the modeling of services. This enables proper
handling of dependencies for composite service providers while modeling their ser-
vices. Within the ISE development environment the dependency analysis components
also have access to the necessary information for executingthe analysis (i.e. the BPMN
process description and SLA information). TheDependency Modelertool is also in-
tegrated into the ISE development environment. TheRuntime Dependency Evaluation
component is integrated with theISE SLA Managementcomponents, which handle the
integration with theService Monitoringon theTradable Service Runtime(TSR) and
theSLA Manageron theService Management Platform(SMP) respectively. The TSR
provides the service runtime infrastructure while the SMP offers service marketplace
functionality.

4 Evaluation

In the first part of the evaluation we discuss the performanceof the algorithms used
for the automatic discovery of dependencies. In the second part we present a set of
test cases to better illustrate the different steps of the dependency analysis process. The
results of both parts are discussed in a third section.

The performance measurements and test case handling were executed using the
workflow of a composite healthcare service (see Fig. 4). The scenario is based on a
healthcare workflow presented in [6]. In this scenario a patient undergoes several ex-
aminations at a healthcare center. The different examinations are executed by different
medical service providers. Further services include the analysis of blood samples, cre-
ation of documentation, and transport of the patient.

4.1 Performance Considerations

As a first step we measured the times taken for the different tasks of the dependency
discovery approach for the healthcare service: path creation (5 ms), horizontal (7 ms)

100



Patient
Examination

Medical
Record
Creation

Determine
Medication

Patient 
Transport

Check 
Examination 

Results

Follow-up 
Treatment 

Determination

Patient
Admission

Patient Data 
Collection

Examine
Blood

Patient 
Transport

Expert 
Examination

Procurement 
of Medication

Discharge 
Patient

Give 
Medication

Create 
Report

Fig. 4. Workflow of composite service - Stationary Patient Check-up.

and vertical (2 ms) time dependencies, horizontal (3 ms) andvertical (25 ms) resource
dependencies. The results show that all tasks are executed within a few milliseconds.

Furthermore, a number of measurements were made to test the scalability of the
approach. We modeled 5 business process workflows (P1..P5) of different complexity
(number of nodes, number of splits and joins). We counted thenumber of artifacts
created during dependency analysis and measured the times for creating relevant service
pairs. The results presented in Table 2 show that with increasing workflow complexity
the number of paths as well as duplicate time and resource pairs increases strongly.
Thus it is necessary to ensure that the further analysis of pairs is only executed for
pairs which have not been handled before. The results also show that the discovery of
dependencies in relatively complex services is executed inless than a second.

Table 2. Measurement results.

P1 P2 P3 P4 P5
Nodes 12 31 36 55 87

Split/join 1/5 13/12 28/9 17/32 94/44
Created paths 21 60 952 1933 908

Duplicate time pairs 76 102 7387 14554 5535
Non-duplicate time pairs 14 32 45 74 91
Duplicate resource pairs 222 139 336866556920951

Non-duplicate resource pairs57 103 422 679 916
Time to get time pairs (ms) 1.7 2.0 78.7 289.7 293.8

Time to get resource pairs (ms)0.9 2.1 188.7 554.0 153.5

4.2 Test Case based Evaluation

A number of test cases serve as the base for validating the different steps of the de-
pendency analysis process. Each test case is illustrated with a brief example. For the
analysis of dependencies the service workflow (see Fig. 4) and SLA descriptions are
needed. Due to space limitations only excerpts of SLAs of services relevant for the
presented examples are listed in Table 3.

TC1 - Path Creation: The composite service workflow is decomposed into linear
paths.Results:List of 10 paths reaching from the start to the end of the process. One

101



example path is the following:Patient Admission - Patient Data Collection - Exam-
ine Blood - Check Examination Results - Follow-up TreatmentDetermination - Create
Report

Table 3. Sample SLA information.

Service Input resources Output resources
Patient Admission - patient ID
Examine Blood patient ID, blood samplelaboratory test result
Create Report medical record examination report

Stationary Patient Check-up - examination report

TC2 - Horizontal Time Dependencies: Pairs of directly connected services are created
along the paths. Duplicate pairs (e.g. pairFollow-up Treatment Determination - Create
Reportoccurs in 5 paths) are removed. Time dependencies of typefinish-to-startare
created for each pair.Results:List of horizontal time dependencies. One horizontal time
dependency betweenPatient Data CollectionandExamine Bloodis shown in Table 4.

TC3 - Horizontal Resource Dependencies: All pairs of different services along the
paths are created. Duplicate pairs are removed. All pairs are analyzed with regard to
matching input and output resources. Information about input and output resources
is taken from the negotiated SLAs (see Table 3). Resource dependencies are created
when matching resources are found.Results:List of horizontal resource dependencies.
One resource dependency between the servicePatient AdmissionandExamine Bloodis
shown in Table 4.

TC4 - Vertical Time Dependencies: Creation of vertical time dependencies between
the composite service and the first (start-to-start) and last (finish-to-finish) atomic ser-
vices in the paths.Results:List of vertical time dependencies. One vertical time depen-
dency betweenStationary Patient Check-upandPatient Admissionis shown in Table
4.

TC5 - Vertical Resource Dependencies: All atomic services along the paths are ana-
lyzed with regard to matching input and output resources with the composite service.
Dependencies are created for matching resources if no horizontal dependency exists
regarding the matching resources.Results:List of vertical resource dependencies. One
vertical resource dependency betweenCreate ReportandStationary Patient Check-up
is shown in Table 4.

TC6 - Dependency Model Extension: Manual creation of a location dependency be-
tween thePatient Transportservice and theExpert Examinationservice.Results:One
location dependency betweenPatient TransportandExpert Examination(see Table 4).

4.3 Discussion

In this chapter we demonstrated the general feasibility of the approach to create depen-
dency models. We first presented an overview about performance measurements. One
result of the measurements was that with increasing complexity of the workflows not

102



Table 4. Dependencies of healthcare process.

Antecedent - Dependant Dependency Description
Patient Data Collection - Examine
Blood

time endTimefinish-to-startstartTime

Patient Admission - Examine Bloodresource patient ID

Stationary Patient Check-up - Pa-
tient Admission

time startTimestart-to-startstartTime

Create Report - Stationary Patient
Check-up

resource examination report

Patient Transport - Expert Examina-
tion

location endLocationequalsstartLocation

only the number of paths and relevant service pairs increased, but that a proportionally
large amount of time would be necessary for handling duplicate services. Thus, they
need to be removed. However, we also showed that the time needed to analyze rela-
tively complex processes is still less than a second, which allows to use the approach at
design time.

As a second part of the evaluation we applied different test cases which demon-
strated the functioning of our approach. We showed a sample path created during the
execution of the dependency discovery as well as a number of different dependencies.
In total this scenario produces 40 time and resource dependencies, which are discovered
automatically. Two more location dependencies can be modeled. A manual handling of
all these dependencies would be very time consuming and error prone. In more complex
processes the number of dependencies will be much higher, which renders a manual
handling of dependencies even more difficult. Our semi-automatic process facilitates
this.

5 Related Work

The handling of dependencies between services has been addressed for a variety of
purposes including the automatic composition of services [7], the optimization of se-
quencing constraints of composite services ([8, 9]), root cause and impact analysis ([10,
11]), and SLA management ([3, 12]).

Wu et al. [8] present an approach for modeling and optimizingthe synchroniza-
tion dependencies of activities in business processes. A synchronization model, which
contains dependency information, is used to support activity scheduling in business
processes. In contrast to our approach automatic discoveryof dependencies is not sup-
ported. In [9] the authors discuss control and data dependencies in business processes
and argue that they form the base for sequencing constraintsin business processes.
They present an approach for deriving control dependenciesfrom semantically anno-
tated business activities by evaluating their pre-conditions and effects. Input and output
parameters of business activities form the base for data dependencies. This approach
differs from our approach in several ways: While our resource dependencies are similar
to the data dependencies of their work, we also support dependencies regarding time,
location, QoS, and pricing information. Furthermore, their approach is limited to depen-

103



dencies between atomic services while our work also supports dependencies between
atomic and composite services.

Ensel and Keller [10] introduce an approach to handle dependencies between man-
aged resources (e.g. web application server, database, operating system) in a distributed
system. The goal is to support root cause as well as impact analysis for service failure
situations. Dependencies are represented in a distributeddependency model which cap-
tures the dependencies and attributes of these managed resources. However, no work is
presented with regard to the discovery of service dependencies. The MoDe4SLA [11]
approach supports the handling of response time and price dependencies of composite
services on its atomic services. The goal of the system is to support root-cause analysis
for problems caused by atomic services. The dependency information is captured by a
modeling approach. The discovery of dependencies is not supported.

The COSMA approach [3] supports the providers of composite services to man-
age their SLAs. Dependencies between composite QoS values and atomic ones are
expressed using aggregation formulas. The aggregation formulas for the different QoS
values are automatically derived from the process description. Further constraints need
to be added manually or from configuration files. In contrast to our work, COSMA
focuses only on the relationship between composite services and atomic services, but
dependencies between atomic services are not handled . Dependency types such as re-
source, location, and time are not covered. However, our approach to QoS and price
dependency discovery is based on COSMA. Karnke et al. describe an agent-based ap-
proach to managing SLAs in value chains [12]. The focus is on SLA based resource
management in hierarchies of service level agreements. As part of the agent-driven ne-
gotiation process, dependencies between services are considered. However, no work
has been presented regarding the discovery of dependencies.

6 Conclusions

The approach presented in this paper enables management of service dependencies. We
have shown that different types of dependencies can occur inparallel within complex
service compositions representing business processes. Ithas been demonstrated that a
significant subset of these dependency types can be automatically extracted from in-
formation provided by the process description and the SLAs negotiated between the
involved service providers and consumers. Based on the different characteristics of ser-
vice dependencies specific algorithms have been identified for automatic dependency
discovery. These algorithms are embedded into the process of dependency manage-
ment implemented by the presented architecture for dependency handling, particularly
in the dependency analysis component. In the process the evaluation of service depen-
dencies at runtime is foreseen. The automatically discovered dependencies are stored
in a dependency model and are made available for runtime dependency evaluation. The
presented performance measurements prove the applicability of our algorithms for de-
pendency discovery at runtime, since the processing time isin the range of few sec-
onds even for complex processes of up to 100 services. The test case based evaluation
demonstrated the feasibility of our approach, illustrating the complexity of the depen-
dency discovery and showing created artifacts.

104



In the future we will consider additional types of dependencies with respect to char-
acteristics, detection algorithms and modeling. Further use case studies will be carried
out to prove the applicability and practical relevance of our approach. Finally, the run-
time dependency evaluation will be implemented.

Acknowledgements

The project was funded by means of the German Federal Ministry of Economy and
Technology under the promotional reference “01MQ07012”. The authors take the re-
sponsibility for the contents.

References

1. Winkler, M., Schill, A.: Towards dependency management in service compositions. In
Filipe, J., Marca, D.A., Shishkov, B., van Sinderen, M., eds.: ICE-B 2009 - Proceedings of
the International Conference on e-Business, Milan, Italy.(2009)

2. Sell, C., Winkler, M., Springer, T., Schill, A.: Two dependency modeling approaches for
business process adaptation. In Karagiannis, D., Jin, Z., eds.: Knowledge Science, Engineer-
ing and Management, Springer (11 2009)

3. Ludwig, A., Franczyk, B.: Cosma–an approach for managingslas in composite services. In
Bouguettaya, A., Krueger, I., Margaria, T., eds.: ICSOC 2008. (2008)

4. PMI: A Guide to the Project Management Body of Knowledge (PMBOK Guide). 4 edn.
Project Management Institute (2008)

5. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11) (1983)
832–843

6. Reichert, M., Bauer, T., Fries, T., Dadam, P.: Realisierung flexibler, unternehmensweiter
workflow-anwendungen mit adept. In Horster, P., ed.: Proc. Elektronische Geschftsprozesse–
Grundlagen, Sicherheitsaspekte, Realisierungen, Anwendungen. (2001) 217–228

7. Zhou, J., Pakkala, D., Perala, J., Niemela, E.: Dependency-aware service oriented architec-
ture and service composition. In: IEEE International Conference on Web Services. (2007)
1146–1149

8. Wu, Q., Pu, C., Sahai, A., Barga, R.: Categorization and optimization of synchronization
dependencies in business processes. In: Proceedings of IEEE 23rd International Conference
on Data Engineering (ICDE’07). (2007) 306–315

9. Zhou, Z., Bhiri, S., Hauswirth, M.: Control and Data Dependencies in Business Processes
Based on Semantic Business Activities. In: Proceedings of iiWAS2008, ACM (2008)

10. Ensel, C., Keller, A.: An approach for managing service dependencies with xml and the
resource description framework. Journal of Network and Systems Management 10 (2002)
147–170

11. Bodenstaff, L., Wombacher, A., Reichert, M., Jaeger, M.C.: Monitoring Dependencies for
SLAs: The MoDe4SLA Approach. In: IEEE SCC (1). (2008) 21–29

12. Karaenke, P., Micsik, A., Kirn, S.: Adaptive sla management along value chains for ser-
vice individualization. In: Proceedings First International Symposium on Services Science
(ISSS’2009). (2009)

105


