
CONSTRUCTING EVOLVABLE ENTERPRISE IMPLEMENTATIONS

Philip Huysmans
Department of Management Information Systems, University of Antwerp, Prinsstraat 13, B-2000 Antwerp, Belgium

Keywords: Enterprise ontology, Normalized systems, Enterprise architecture.

Abstract: Contemporary organizations are operating in increasingly volatile environments. Hence, organizations must be
agile in order to be able to quickly adapt to changes in its environment. This may be a complex process, since
a change to one organizational unit may affect other units. Given the increasing complexity of organizations,
it has been argued that organizations should be purposefully designed. Enterprise architecture frameworks
provide guidance for the design of organizational structures. Unfortunately, current enterprise architecture
frameworks have a descriptive, rather than a prescriptive nature and do not seem to have a strong theoretical
foundation. In software engineering literature, the Normalized Systems approach has recently been proposed
to provide such deterministic design principles for the modular structure of software. The Normalized Systems
approach is based on the systems theoretic concept of stability to ensure the evolvability of information sys-
tems. In our PhD research, we explore the feasibility of extending the Normalized Systems design principles
to the field of enterprise architecture. Our results show that such approach is feasible and illustrate how the
systems theoretic concept of stability can be used on the organizational level.

1 INTRODUCTION

In today’s economy, innovation plays an increasingly
important role in the strategy of organizations. Since
organizations nowadays have to compete on a global
level, it is important that organizations are able to gen-
erate and exploit innovations at a steady pace to seek
sustainability of their business (Van de Ven and An-
gle, 2000). There is consensus in literature that in-
formation technology (IT) is an important enabler for
innovation (Brynjolfsson and Saunders, 2010). Given
the importance of innovation to organizations, it is im-
portant that managers understand and are able to ef-
fectively manage the innovation process. It has indeed
been noted that “[a]t a time when so much attention is
given to innovation and entrepreneurship, it is rather
pathetic that a deep understanding of the process is
lacking. It is no wonder that firms and governments
have difficulty trying to stimulate (and manage) inno-
vation when its fundamental processes are so poorly
understood.” (Teece, 1987, p. 3). Although substan-
tial progress has been made in this field, it remains re-
markable that almost 25 years later, much innovation
in organizations is still dependent on heuristic knowl-
edge of employees, and is not based on methods or
theories that explain and provide guidance in this pro-
cess. As a result, the innovation process is frequently
considered a black box in which it remains unclear

how a certain input results in the observed outcome
(Van de Ven and Angle, 2000; Aghion and Tirole,
1994; Fagerberg, 2005).

Innovation can take various forms. In our re-
search, we are concerned with the ability to change or-
ganizational elements (e.g., structures, processes and
people). The recent research efforts in the enter-
prise architecture domain are very relevant in this re-
gard. The goal of the enterprise architecture domain
is to construct organizations that are able to conduct
their business in a more efficient and effective man-
ner. Several enterprise architecture frameworks have
been proposed in literature that try to make the com-
plexity of organizations more manageable by the use
of a systematic approach. Most of these frameworks
acknowledge the importance of aligning the IT infras-
tructure with the enterprise architecture (Zachman,
1987; The Open Group, 2003; Chan et al., 1997). An
IT architecture which is aligned with the enterprise ar-
chitecture contributes to diverse business goals, such
as a reduced time to market, the entering of new mar-
kets, and support for improved business processes
(Kazman and Bass, 2005).

Enterprise architecture frameworks are currently
faced with two important challenges. First, a short-
coming of many enterprise architecture frameworks
is that they have a descriptive, rather than prescriptive
nature (Hoogervorst, 2009). From an innovation man-

521
Huysmans P. (2010).
CONSTRUCTING EVOLVABLE ENTERPRISE IMPLEMENTATIONS.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 521-531
DOI: 10.5220/0003047605210531
Copyright c© SciTePress



agement point-of-view, this means that these frame-
works are unable to open the black box of the innova-
tion process within the organization. Although such
frameworks are able to describe the original and the
revised structure of the organization, it remains un-
clear why the applied changes resulted in a desirable
outcome for the organization. This insight is essential
to be able to repeat the process in the future. Hence,
enterprise architecture frameworks should allow for
repeatability and reproducibility. Repeatability refers
to whether the approach would lead to the same re-
sults if it was repeated in the same context. Repro-
ducibility refers to whether the approach would lead
to the same results if it was repeated in a different con-
text (e.g., in a different organization or with different
people).

A second challenge is that organizations are com-
peting in increasingly volatile environments. In such
environments, it is important that organizations can
quickly adapt to changes in their environment. It has
been noted that in such contexts, no long-term com-
petitive advantages can be obtained, and that organi-
zations need to strive towards realizing a succession
of short-term competitive advantages (Teece et al.,
1997; Eisenhardt and Martin, 2000). Hence, even if
organizations succeed to innovate with IT, they will
need to ensure that the IT and enterprise architecture
is flexible enough to adapt to a changing environment.
This requires that models created by enterprise archi-
tecture frameworks are evolvable. Evolvability is an
important property of an architecture. As mentioned
by Garlan and Perry: “software architecture can ex-
pose the dimensions along which a system is expected
to evolve. By making explicit the load-bearing walls
of a system, system maintainers can better understand
the ramifications of changes, and thereby more accu-
rately estimate the cost of modifications.” (Garlan and
Perry, 1995).

2 RESEARCH GOALS

In our research, we work towards (parts of) a method
to guide the implementation of an organization in an
evolvable structure. Scientific approaches are objec-
tively developed, tested, and verified. Consider for
example the second challenge addressed in the in-
troduction: the volatility of contemporary markets.
Given this volatility, we believe it is better to fo-
cus on the evolvability of organizational structures,
instead of optimizing a given structure against cur-
rent requirements. Therefore, we will select exist-
ing scientific concepts such as systems theoretic sta-
bility to assess the quality of proposed structures.

We will base our method on approaches which share
this perspective. More specifically, our approach will
be based on Normalized Systems, which introduced
systems theoretic evolvability and stability in IT ar-
chitectures. According to the Normalized Systems
approach, IT evolvability is hindered by combina-
torial effects (Mannaert and Verelst, 2009). Com-
binatorial effects occur when implementing changes
require increasing effort as the IT system grows.
Normalized Systems ensures that combinatorial ef-
fects in software systems can be avoided by adher-
ing to its four design principles. Such systems ex-
hibit systems theoretic stability towards a set of an-
ticipated changes. Anticipated changes can be imple-
mented without causing combinatorial effects. How-
ever, these changes are formulated at the software
level. In this research, we argue that combinatorial
effects affect the organizational level as well. When
a change needs to be applied to organizational ele-
ments, such as processes or people, implementation
can be hindered by the dependencies on other orga-
nizational elements. Therefore, in order to attain or-
ganizational evolvability, these combinatorial effects
should be avoided. In order to avoid combinatorial
effects, relevant organizational elements should be
identified. Guidance on how these elements should be
combined in order to implement an evolvable organi-
zation needs to be provided. Ideally, such guidance is
distilled into principles, which need to be adhered to
when implementing an organization. In our research,
we consider these principles as the most important as-
pect of an enterprise architecture. Consequently, the
use of an enterprise architecture aids the white-box
view on organizational change and facilitates the im-
plementation of innovations.

Therefore, our research concerns the design of
(parts of) an enterprise architecture which guides the
implementation of an organization which is stable
against anticipated changes.

3 RELATED WORK

On the practical level, our research topic can be po-
sitioned within the field of enterprise architectures.
On the scientific level, we build upon the Normal-
ized Systems and Enterprise Ontology theories. In
this section, we introduce the relevant aspects of these
approaches for our research.

3.1 Enterprise Architecure

In order to be able to comprehend and manage the
complexity of modern organizations, enterprise ar-

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

522



chitecture frameworks have been introduced. These
frameworks usually distinguish between the business
system and the information system. The business sys-
tem consists of elements such as goals, people, pro-
cesses, data and events. These elements are usually
placed on a horizontal axis. A core model provides
an overview of these elements on an abstract level.
Such a model describes the scope of the enterprise
architecture, while abstracting away the the concrete
organizational elements (Ross et al., 2006).

By specifying conceptual models for the elements,
requirements for the supporting information system
are formed. The integration between the conceptual
models should facilitate the translation of a single
change in the outside world to all the different aspects
of the organization. As such, the models are translated
from abstract business concepts to concrete informa-
tion system artefacts. The vertical axis usually spec-
ifies certain layers or steps in which this translation
occurs. Despite the common goal of enterprise ar-
chitectures, many different frameworks are available.
Various authors (e.g. (Kozina, 2006; Leist and Zell-
ner, 2006; Op t Land, 2008)) have compared these
frameworks and identified differences and similari-
ties. The GERAM framework (Generalized Enter-
prise Reference Architecture and Methodology) was
created to provide a reference framework onto which
the individual frameworks could be mapped. Given
the broad scope covered by these frameworks and
the multitude of frameworks, it is logical that not ev-
ery framework contains all elements present in other
frameworks. Should an enterprise architect require to
use all available elements, several (complementary)
frameworks can concurrently be used, or a particu-
lar framework can be extended (as reported by, e.g.,
(Pereira and Sousa, 2004)).

However, by combining or extending existing
frameworks, the issue of integration becomes even
more complex. While most frameworks reduce the in-
herent complexity of an organization by offering sep-
arate views, it is not always clear how these views
relate to or affect each other. The proposed integra-
tion or mapping methods are mostly based on refine-
ment or reification, and focus on the vertical dimen-
sion. While some frameworks offer dedicated con-
structs for combining models (e.g. the process view
in ARIS), it is not clear how this integration affects
the ability of the models to change independently.
If a change in a certain model affects other models
it is combined with, a combinatorial effect occurs.
While originally used to describe evolvability in soft-
ware, combinatorial effects also seem to affect evolv-
ability on the Enterprise Architecture level. Anal-
ogously with combinatorial effects on the software

level, this implies that organizations would become
less evolvable as they grow. While the issue of inte-
gration has been acknowledged by other authors (e.g.,
(Lankhorst, 2005)), it has, to our knowledge, not yet
been studied based on system theoretic concepts such
as stability.

3.2 Theoretical Foundation

Normalized Systems. The basic assumption of the
Normalized Systems approach is that information
systems should be able to evolve over time, and
should be designed to accommodate change. To gen-
uinely design information systems accommodating
change, they should exhibit stability towards require-
ments changes. In systems theory, stability refers to
the fact that bounded input to a function results in
bounded output values, even as t→ ∞. When applied
to information systems, this implies that no change
propagation effects should be present within the sys-
tem; meaning that a specific change to an informa-
tion system should require the same effort, irrespec-
tive of the information system’s size or the point in
time when being applied. Combinatorial effects occur
when changes require increasing effort as the system
grows. They need to be avoided in stable systems.
Normalized Systems are therefore defined as infor-
mation systems exhibiting stability with respect to a
defined set of changes (Mannaert and Verelst, 2009),
and are as such defying Lehman’s law of increasing
complexity (Lehman, 1980) and avoiding the occur-
rence of combinatorial effects.

The Normalized Systems approach proposes a set
of four design principles that act as design rules to
identify and circumvent most combinatorial effects
(Mannaert and Verelst, 2009). The first principle, sep-
aration of concerns, implies that every change driver
or concern should be separated from other concerns.
This theorem allows for the isolation of the impact of
each change driver. The second principle, data ver-
sion transparency, implies that data should be com-
municated in version transparent ways between com-
ponents. This requires that this data can be changed
(e.g., additional data can be sent between compo-
nents), without having an impact on the components
and their interfaces. The third principle, action ver-
sion transparency, implies that a component can be
upgraded without impacting the calling components.
This principle can be accomplished by appropriate
and systematic use of, for example, polymorphism
or a facade pattern. The fourth principle, separation
of states, implies that actions or steps in a workflow
should be separated from each other in time by keep-
ing state after every action or step. This suggests an

CONSTRUCTING EVOLVABLE ENTERPRISE IMPLEMENTATIONS

523



asynchronous and stateful way of calling other com-
ponents.

The design principles show that software con-
structs, such as functions and classes, by themselves
offer no mechanisms to accommodate anticipated
changes in a stable manner. The Normalized Systems
approach therefore proposes to encapsulate software
constructs in a set of five higher-level software ele-
ments. These elements are modular structures that
adhere to these design principles, in order to provide
the required stability with respect to the anticipated
changes (Mannaert and Verelst, 2009). From the sec-
ond and third principle it can straightforwardly be
deduced that the basic software constructs, i.e., data
and actions, have to be encapsulated in their desig-
nated construct. As such, a data element represents
an encapsulated data construct with its get- and set-
methods to provide access to their information in a
data version transparent way. So-called cross-cutting
concerns, for instance access control and persistency,
should be added to the element in separate constructs.
The second element, action element, contains a core
action representing one and only one functional task.
Four different implementations of an action element
can be distinguished: standard actions, manual ac-
tions, bridge actions and external actions. In a stan-
dard action, the actual task is programmed in the ac-
tion element and performed by the same information
system. In a manual action, a human act is required
to fulfil the task. The user then has to set the state of
the life cycle data element through a user interface,
after the completion of the task. A process step can
also require more complex behaviour. A single task
in a workflow can be required to take care of other
aspects, which are not the concern of that particu-
lar flow. Therefore, a separate workflow will be cre-
ated to handle these concerns. Bridge actions create
these other data elements going through their desig-
nated flow. When an existing, external application is
already in use to perform the required task, the action
element would be implemented as an external action.
These actions call other information systems and set
their end state depending on the external systems’ re-
ported answer. Based upon the first and fourth prin-
ciple, workflow has to be separated from other action
elements. These action elements must be isolated by
intermediate states, and information systems have to
react to states. To enable these prerequisites, three
additional elements are identified. A third element
is thus a workflow element containing the sequence
in which a number of action elements should be exe-
cuted in order to fulfill a flow. A consequence of the
stateful workflow elements is that state is required for
every instance of use of an action element, and that

the state therefore needs to be linked to or be part of
the instance of the data element serving as argument.
A trigger element is a fourth one controlling the states
(both regular and error states) and checking whether
an action element has to be triggered. Finally, the con-
nector element ensures that external systems can in-
teract with data elements without allowing an action
element to be called in a stateless way.

Enterprise Ontology. In Enterprise Ontology, an
organization is modeled to represent the essential or-
ganizational processes. Enterprise Ontology has a
strong theoretical foundation and further builds upon
the results from theories from philosophy, sociology
and language, such as Habermas’ theory of Commu-
nicative Action (Habermas, 1984) and the Language-
Action Perspective (Flores and Ludlow, 1980). Enter-
prise Ontology assumes that communication between
human actors is a necessary and sufficient basis for a
theory of organizations (Dietz, 2006). It aims to de-
velop high-level and abstract models of the construc-
tion and operation of organizations—independent of
the actual implementation—by focusing on the com-
munication patterns between human actors. These
communication patterns are represented in a univer-
sal transaction pattern. Enterprise Ontology considers
two actors in a transaction: an initiator, who requests
the transaction, and an executor, who fulfills the trans-
action. The transaction pattern specifies the essential
actions performed by these actors (essential acts), and
their results (essential facts).

The basic transaction pattern consists of the five
standard acts which occur in a successful scenario
(i.e., request, promise, execute, state and accept) (Di-
etz, 2006, p. 90). These five acts are shown in the cen-
tre of Figure 1. In the order-phase, the initiator actor
first requests the creation of a fact. The executor actor
then promises to fulfil this request. In the execute-
phase, the executor actually performs the necessary
actions to create the fact in the execute act. In the
result phase, the executor first states the successful
completion of the fact. Finally, the initiator accepts
this statement. Consider this transaction in the case
of a simple product delivery process. In a first pro-
cess step, the customer requests the product. Once
this request is adequately specified, the request coor-
dination fact is created. Second, the supplier promises
to deliver the product according to the agreed terms.
This creates the promise coordination fact. The third
process step is the actual delivery. This results in the
production fact “Product X has been delivered”. In
the fourth process step, the supplier states that the de-
livery has been completed. If the customer is satisfied
with the delivery, he will accept the delivery in the
fifth process step. Once the accept coordination fact is

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

524



Figure 1: Graphical representation of the Enterprise Ontology Transaction Pattern.

created, the transaction is considered to be completed.
In the above example, it is not specified how, for

example, the request was made. This could be face-
to-face (in a retail store), or by using an online web
form. The execution of this example could be com-
pleted by manually delivering the product, or by send-
ing it through a complicated logistic chain. Enter-
prise Ontology abstract from these concrete imple-
mentations, and represent only the essential business
actions. Therefore, Enterprise Ontology models are
a good candidate to use as an enterprise architecture
core model.

4 METHODOLOGY

This research uses the design science methodology.
Regarding the research project’s goal to introduce a
prescriptive framework for enterprise architectures,
only a design science research methodology is suited
to provide the required research setting as it is pri-
marily aimed at solving problems by developing and
testing artefacts, rather than explaining them by de-
veloping and testing theoretical hypotheses. The de-
sign science research tradition focuses on tackling ill-

structured problems — in this research the lack of sci-
entific foundations within the engineering of organi-
zational artefacts — in a systematic way (Holmström
et al., 2009). The search for a solution to these prob-
lems using design science is often based on proven
approaches in other related fields. Various authors in-
deed indicate that the use of theories of related fields
should be an essential part of a design science ap-
proach (Klahr and Simon, 1999; Simon, 1996; Peffers
et al., 2007). Moreover, these theories should be ap-
plicable in practice. Both the aspects of practical us-
ability and theoretical foundation are required for an
approach in order to be usable in a design science con-
text. On the one hand, a well-founded theory which
does not offer practical implications for the design of
artefacts is of limited practical use. On the other hand,
design guidelines which are not verifiable do not con-
tribute to the science of design. The Normalized Sys-
tems approach is well suited for this purpose, since it
expresses established design experience through prin-
ciples which are proven to be necessary. Moreover,
the correlation of Normalized Systems design princi-
ples with more general theories such as systems the-
ory and modularity, indicates its aptness for extension
to other research fields.

The research deliverable can unambiguously be

CONSTRUCTING EVOLVABLE ENTERPRISE IMPLEMENTATIONS

525



positioned within the design science classification
scheme suggested by March and Smith (March and
Smith, 1995). March and Smith identify 4 different
research outputs (i.e., construct, model, method and
instantiation) and 4 different research activities (i.e.,
build, evaluate, theorize and justify). This paper fo-
cuses on the build-phase of a method artefact. In ac-
cordance with Simon, building a (part of a) method is
actually studying the artificial as a method is a man
made object designed to meet certain desired goals
(Simon, 1996). This confirms the selection of the
design science methodology over a behavioral sci-
ence methodology. According to Hevner (Hevner
et al., 2004, p.79), a method “can range from for-
mal, mathematical algorithms that explicitly define
the search process to informal, textual descriptions of
“best practice” approaches, or some combination.”.
Winter (Winter, 2008) also mentions the paucity of
design science research aimed at constructing meth-
ods. In this sense, this study is concerned with the
only modestly researched area of Method Engineer-
ing. In summary, this research project’s main deliv-
erable is a method, mainly based on the Normalized
Systems approach, providing guidelines to purpose-
fully design enterprise architectures. We will attempt
to implement an enterprise core model which is evolv-
able. We will use Enterprise Ontology models to de-
fine the core model, and use Normalized Systems as a
basis to guide the implementation process.

The applied research method exhibits a research
trajectory, as illustrated by Figure 2, which mimics
the “Generate/Test cycle” suggested by Simon (Si-
mon, 1996). A similar process is proposed by Peffers
et al. (Peffers et al., 2007). In this research trajec-
tory, we begin by defining and motivating the prob-
lem based on literature or observations. This is the
first step in Figure 2. Therefore, the research entry
point is problem-centered (Peffers et al., 2007). In
this research, we focus on the inhibition of the re-
quired enterprise agility caused by the lack of sci-
entific foundations when constructing organizational
artefacts. This problem is supported by a literature
review which shows lack of attention to combinato-
rial effects. Section 3.1 elaborates on this problem
identification. Next, we identify approaches from re-
lated fields which can aid in constructing a solution
for the identified problem. This is the second step
in Figure 2. In order to introduce more determinism
in the construction of enterprise architecture frame-
works, the Enterprise Ontology and Normalized Sys-
tems approaches provide valuable insights. We intro-
duce these approaches and motivate their selection in
Section 3.2. We can already present some preliminary
results of our approach by showing the implementa-

Figure 2: Research design.

tion of the core model using Normalized Systems el-
ements. The method for the artefact construction is
described using a simple example from an e-business
context in Section 5. This is the third step in Figure 2.
We explain the reasoning behind the different steps in
detail and illustrate the resulting artefact and its use.
This description will focus on the correct construction
of a single construct instance. In subsequent research
steps, we will extend this method to include additional
organizational elements.

Evaluating the proposed guidelines will occur
by applying the guidelines on different problem do-
mains. These problems domains will be purposefully
sampled, controlling for different industries and or-
ganizational dimensions. Different industries will be
included, such as banking, government and manu-
facturing. In addition, the considered organizational
aspects will differ along their administrative dimen-
sion, ranging from operational order and accounting
to management reporting processes. The methods
constructed will be evaluated using two approaches.
First, through the multiple iterations the method will
be tested and altered to better suit the research ob-
jective of enhancing determinism. This approach can
be labeled as case study research. The cases studied
during initial iterations will mainly consist of rather
pedagogical, theoretical cases. Further iterations in-
clude more complex cases, based upon real-life or-
ganizations in order to enhance the generalization of
our results. As mentioned earlier, these cases will be
purposefully sampled to assure validity. Secondly, to
firmly evaluate the proposed methods, they will fi-

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

526



nally be applied to real-life cases to assess their prac-
tical applicability. This kind of evaluation is based
on the action research methodology (Baskerville and
Wood-Harper, 1996) because the researcher actively
cooperates within the case.

5 PRELIMINARY RESULTS

Currently, we can present the implementation of the
Enterprise Ontology transaction pattern according to
our approach. An implementation of a complete
Enterprise Ontology model would provide a basis
for an evolvable implementation of an organization.
Evidently, additional organizational elements (such
as operational aspects, financial aspects, human re-
sources) need to be added. However, once we can
construct an organizational implementation which is
free of combinatorial effects, these elements can be
added analogously to the addition of cross-cutting
concerns in Normalized Systems.

5.1 The Basic Transaction Pattern

We start by mapping the basic transaction pattern.
The basic transaction pattern consists of the process
steps request, promise, execute, state and accept. In
Normalized Systems, this transaction pattern process
is represented by a flow element. A flow element is
driven by precisely one data element, the life cycle
data element. Consider a transaction T01. In order
to define a Normalized Systems flow, we thus need
a T01 data element. The completion of the different
acts in the transaction process is represented by the
creation of ontological facts. In Normalized Systems,
these facts are represented by the states which occur
in the flow element, being the life cycle states of the
corresponding data element. To reach these states, a
state transition is required. A state transition is real-
ized by an action element. The successful completion
of that action element results in the defined life cycle
state. In order to define the control flow of the pro-
cess, we therefore need to specify the trigger states,
state transitions and transaction actions. Regarding
the request coordination fact, this implies that the T01
flow element, and thus also the corresponding T01
data element, should reach the state Requested. This
means that upon initiation of a T01 transaction, a new
T01 data element is instantiated trough its default con-
structor, resulting in the life cycle state Initial. The
genuine act of requesting is encapsulated in the ac-
tion element Request. The concerns of creating the
data element and handling the request are separated
as they can clearly evolve independently from each

other. The request could, for example, contain addi-
tional information that needs to be processed. Since
we are currently only regarding the successful flow
of the transaction, we do not yet need any branching.
The state transition can be expected to always result
in the end state Requested. The resulting Normalized
Systems flow is shown in Figure 3, and schematically
represented in Table 1.

While all state transitions are defined as action el-
ements, their different nature can mean that they need
to be implemented differently. Consider the example
with the product delivery transaction. In the promise
step, the executor needs to communicate whether the
request of the initiator will be handled. If this act re-
quires a human action, e.g., a manager has to decide,
the Promise action element would be implemented as
a manual action. However, the promise process step
can also require more complex behaviour. When for
example the product first needs to be reserved in the
warehouse, the Promise action element would be im-
plemented as a bridge action triggering a flow element
on another data element, e.g., a Part element. When
an existing application is already in use to perform
these reservations, the Promise action element would
be implemented as an external action.

5.2 The Execution Act

Besides the coordination acts, we also need to provide
an implementation for the production act Execute. At
this point, an issue surfaces as the Normalized Sys-
tems theory prescribes that a flow is concerned with
precisely one data element (Mannaert and Verelst,
2009; Van Nuffel et al., 2009a). If the execution of
the production act does not require any actions to be
performed on other data elements, the production act
will be designed as an action element on the same
data element. The implementation of the production
act will then determine whether it is a manual action
or a standard action. Otherwise a second alternative
is appropriate, applying a bridge action. These op-
tions are, however, not interchangeable as only one
option can be chosen depending on the kind of per-
formed business transaction. Some common exam-
ples will exemplify the two scenarios. First, consider
an employee requesting a day off, which in Enter-
prise Ontology terminology is defined as “Grant Ap-
plication for Leave A”. The production act is the de-
cision of the manager to grant the day off. The man-
ager simply verifies the application based on the avail-
able information and takes a decision, thus only con-
sulting data of the underlying life cycle data element
LeaveApplication. This production act is therefore
considered a manual action. The manager probably

CONSTRUCTING EVOLVABLE ENTERPRISE IMPLEMENTATIONS

527



Table 1: Specification of the basic transaction pattern flow element.

Workflow name Basic Transaction Pattern
Data element T01-basic
Start state Action name End state Failed state

Initial Request Requested
Requested Promise Promised
Promised Execute Executed
Executed State Stated

Stated Accept Accepted

Figure 3: Graphical representation of the basic transaction pattern flow.

selects either “Accept” or “Reject” in a GUI, trigger-
ing a state transition of LeaveApplication. It is how-
ever possible that such a decision is automated. Con-
sider for instance the case in which a person wants to
subscribe to a newsletter by initiating the transaction
“Start newsletter subscription N”. Adding the person
to the distribution list does probably not need to be
approved by a manager, and will be automatically ex-
ecuted. In this case, the production act of adding the
person to the distribution list is designed as a standard
action.

Second, if additional actions concerned with other
data elements are required to fulfill the execution of
the transaction, a bridge action has to implemented.
Consider for instance the execution step of our prod-
uct delivery example. When this product has to be
produced before it can be deliverd, additional actions
may be necessary. Producing a particular product im-
plies more than just the assembly: raw materials have
to ordered, received and reserved, the product has to
be scheduled in the production planning, etcetera. It
is clear that these are different concerns, and should
thus be separated. Compliant with the Normalized
Systems theory, this kind of behavior is implemented
by using a bridge action.

5.3 The Cancelation Patterns

Various extensions of the basic transaction pattern
have already been developed. Currently, we will dis-
cuss the addition of cancelation patterns. A cancela-
tion occurs when an actor changes his mind concern-
ing an already completed coordination act. For ex-
ample, the iniator can decide that he no longer wants
a certain product to be delivered, and cancel his or-

der. For the receiving actor, a cancelation consists
of two main issues: deciding whether or not to al-
low a cancel request and handling the cancelation it-
self. The first issue actually consists of initially re-
ceiving the cancel request, then deciding whether or
not to allow the requested cancelation, and third po-
tentially to notify the initiator of the rejected cancel
request. As such, based on separation of states and
separation of concerns, these three concerns will be
separated. First, upon arrival of a cancel request, a
dedicated CancelRequest data element will be cre-
ated. This implies that for every life cycle data ele-
ment that can be cancelled, a related CancelRequest
data element instance will be created if such a request
arrives. For example, for a life-cycle data element
called Order, a corresponding OrderCancelRequest
data element will be created. Second, an action ele-
ment AcceptCancelation will implement the deci-
sion whether or not to accept. Third, in case of an
rejected request, the initiator will probably have to be
notified. This functionality is represented by a bridge
action Refuse executing the notification in the way
as discussed in (Van Nuffel et al., 2009b). In case
of an allowed cancelation, the CancelTransaction
standard action element will initiate the cancelation
handling which will be explained next. The Nor-
malized Systems specification for the workflow rep-
resenting the cancel request issue is shown in Ta-
ble 2 and Figure 4. In case of an allowed cance-
lation, CancelTransaction standard action element
will initiate the handling itself explained hereafter.

If the cancelation is allowed, it may be neces-
sary to partly or completely roll back the transaction.
Given the divergence of business contexts, a roll back
can imply different actions given the state of the trans-

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

528



Table 2: Specification of the cancelation pattern flow element.

Workflow name Transaction Cancelation
Data element T01-CancelRequest

Start state Action element End state Failed state
Initial CheckValidity CancelRequestValid

CancelRequestValid AcceptCancelation Allowed not-Allowed
not-Allowed Refuse Refused

Allowed CancelTransaction Canceled

Figure 4: graphical representation of the cancelation pattern.

actions. Therefore, the cancelation process will be de-
signed using multiple scenarios implemented as sep-
arate action elements on the same life cycle data ele-
ment. Consider in our product delivery example the
scenario where various parts are ordered to complete
the assembly of a product. In case the parts have not
yet been received, an order cancelation can be sub-
mitted to the parts supplier. In case the parts are al-
ready received and reserved, they should be released
and made available for future assemblies. Thus, the
scenario and constituent action elements are depen-
dent on the life cycle data element’s state when the
cancelation request is initiated.

Since a cancelation can occur regardless of the
current state of the transaction, it is modelled in the
Enterprise Ontology transaction pattern as a separate
entry point, as can be seen in Figure 1. However, the
Normalized Systems theorems do not allow that the
state of the main flow is simply altered by any other
flow because a flow element actively interfering with
another flow element is considered a so-called GOTO
statement. In accordance with the seminal work of
Dijkstra (Dijkstra, 1968), Normalized Systems does
not allow this kind of statements, and therefore pro-
hibits such a direct state transition by another flow.

We outline the solution for adding cancelation pat-
terns consistent with Normalized Systems theorems:

• A cancelRequest data attribute is added to the
data element operating the flow.

• A cancel can be initiated in multiple ways. The
particular situation should be assigned to the
value of the cancelRequest data attribute by the

CancelTransaction standard action element.

• The engine operating the respective flow element
checks the cancelRequest data attribute. If this
field is set, the current state of the flow will be
saved in the so-called parking state field. The reg-
ular state field of the workflow will be set to “can-
cel requested”.

• An action element will subsequently be triggered
to decide which cancelation flow—i.e., sequence
of action elements on the corresponding life cycle
data element—has to be triggered as the cancela-
tion scenario will differ according to the life cycle
state as also illustrated by the cancelation patterns
in Enterprise Ontology. Therefore, this action el-
ement will use the value of the so-called parking
state field, uniquely describing the life cycle state
of the corresponding data element when the can-
cel request was communicated.

This implies that a cancelation is handled as a se-
quence of action elements on the same life cycle data
element. This is in line with the observation that re-
questing, promising, executing, stating, declining, or
cancelling a fact addresses the same concern. How-
ever, the sequence of actions about the cancel re-
quest itself are separated in their designated elements.
It should be noted that we present a generic can-
celation pattern. The possibility of triggering dif-
ferent cancelation flows, based on the value of the
cancelRequest data attribute, allows us to imple-
ment the four different Enterprise Ontology cancela-
tion patterns.

CONSTRUCTING EVOLVABLE ENTERPRISE IMPLEMENTATIONS

529



6 DISCUSSION AND
CONCLUSIONS

In this paper, we outlined the approach taken in our
PhD research. We use the design science methodol-
ogy to apply the insights of existing theories, i.e., Nor-
malized Systems and Enterprise Ontology, to the field
of enterprise architecures. We discussed the relevance
of our research problem, our motivation, the related
work, the methodology, and presented some prelim-
inary results. We already have developed an imple-
mentation of the core model of our enterprise archi-
tecture which is free of combinatorial effects, called
the NSBT. Currently, we are working on the evalua-
tion of the NSBT in various case studies. Next, we
will describe the method to add additional concerns
to this core model, in order to be able to implement
other organizational elements.

While we may not be able to implement all en-
terprise architecure aspects, this research project has
significant contributions. A first contribution is that
we introduce the concept of combinatorial effects on
the level of enterprise architectures. We further il-
lustrate how the systems theoretic concept of stabil-
ity can be applied to the design of enterprise archi-
tectures. This requires the elimination of combina-
torial effects, which will lead to more evolvable or-
ganizations. As a result, we offer a view on enter-
prise agility that has a strong theoretical foundation.
A second contribution is that we demonstrate the fea-
sibility of constructing an enterprise architecture core
diagram based on existing scientific approaches. By
expressing the core diagram in Normalized Systems
elements, we extended the Normalized Systems ap-
proach to the organizational level. Using Enterprise
Ontology models as the basis for the core diagram
further demonstrates the feasibility of constructing an
enterprise architecture framework based on scientific
theories. This illustrates how theories from relevant
fields can be applied in a new setting by using a de-
sign science approach.

REFERENCES

Aghion, P. and Tirole, J. (1994). Opening the black
box of innovation. European Economic Review,
38(3/4):701–710.

Baskerville, R. L. and Wood-Harper, A. T. (1996). A criti-
cal perspective on action research as a method for in-
formation systems research. Journal of Information
Technology, 11(3):235–246.

Brynjolfsson, E. and Saunders, A. (2010). Wired for Inno-
vation: How Information Technology is Reshaping the
Economy. The MIT Press, Cambridge, MA.

Chan, Y. E., Huff, S. L., Barclay, D. W., and Copeland,
D. G. (1997). Business strategic orientation, informa-
tion systems strategic orientation, and strategic align-
ment. Information Systems Research, 8(2):125.

Dietz, J. L. (2006). Enterprise Ontology: Theory and
Methodology. Springer, Berlin.

Dijkstra, E. (1968). Go to statement considered harmful.
Communications of the ACM, 11(3):147–148.

Eisenhardt, K. M. and Martin, J. A. (2000). Dynamic capa-
bilities: What are they? Strategic Management Jour-
nal, 21(10/11):1105–1121.

Fagerberg, J. (2005). Innovation: A guide to the literature.
In Fagerberg, J., Mowery, D. C., and Nelson, R. R.,
editors, The Oxford handbook of innovation. Oxford
University Press, New York, NY.

Flores, F. and Ludlow, J. (1980). Doing and speaking in the
office. In Fick, G. and Sprague, R. H., editors, Deci-
sion Support Systems: Issues and Challenges, pages
95–118. Pergamon Press, New York, NY.

Garlan, D. and Perry, D. E. (1995). Introduction to the spe-
cial issue on software architecture. IEEE Transactions
on Software Engineering, 21(4):269–274.

Habermas, J. (1984). The Theory of Communicative Ac-
tion: Reason and Rationalization of Society, vol-
ume 1. Beacon Press, Boston, MA.

Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004).
Design science in information systems research. MIS
Quarterly, 28(1):75–105.

Holmström, J., Ketokivi, M., and Hameri, A.-P. (2009).
Bridging practice and theory: A design science ap-
proach. Decision Sciences, 40(1):65–87.

Hoogervorst, J. A. P. (2009). Enterprise Governance and
Enterprise Engineering (The Enterprise Engineering
Series). Springer, 1st edition.

Kazman, R. and Bass, L. (2005). Categorizing business
goals for software architectures. Technical report,
Software Engineering Institute. CMU/SEI-2005-TR-
021.

Klahr, D. and Simon, H. A. (1999). Studies of scientific dis-
covery: Complementary approaches and convergent
findings. Psychological Bulletin, 125(5):524–543.

Kozina, M. (2006). Evaluation of aris and zachman frame-
works as enterprise architectures. Journal of Informa-
tion and Organization Sciences, 30(1).

Lankhorst, M. M. (2005). Enterprise architecture
modelling–the issue of integration. Advanced En-
gineering Informatics, 18(4):205 – 216. Enterprise
Modelling and System Support.

Lehman, M. (1980). Programs, life cycles, and laws of soft-
ware evolution. Proceedings of the IEEE, 68:1060–
1076.

Leist, S. and Zellner, G. (2006). Evaluation of current archi-
tecture frameworks. In SAC ’06: Proceedings of the
2006 ACM symposium on Applied computing, pages
1546–1553, New York, NY, USA. ACM.

Mannaert, H. and Verelst, J. (2009). Normalized Systems—
Re-creating Information Technology Based on Laws
for Software Evolvability. Koppa, Kermt, Belgium.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

530



March, S. T. and Smith, G. F. (1995). Design and natural
science research on information technology. Decision
Support Systems, 15(4):251–266.

Op t Land, M. (2008). Applying Architecture and Ontology
to the Splitting and Allying of Enterprises. PhD thesis,
TU Delft.

Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chat-
terjee, S. (2007). A design science research method-
ology for information systems research. Journal of
Management Information Systems, 24(3):45–77.

Pereira, C. M. and Sousa, P. (2004). A method to define
an enterprise architecture using the zachman frame-
work. In SAC’04: Proceedings of the 2004 ACM sym-
posium on Applied computing, page 13661371, New
York,NY,USA. ACM.

Ross, J. W., Weill, P., and Robertson., D. C. (2006). Enter-
prise Architecture as Strategy – Creating a Founda-
tion for Business Execution. Harvard Business School
Press, Boston, MA.

Simon, H. A. (1996). The Sciences of the Artificial. MIT
Press, Cambridge, Massachusetts, third edition.

Teece, D. J., editor (1987). The Competitive Challenge:
Strategies for Industrial Innovation and Renewal.
Ballinger Publishing Company, Cambridge, MA.

Teece, D. J., Pisano, G., and Shuen, A. (1997). Dynamic
capabilities and strategic management. Strategic Man-
agement Journal, 18(7):509–533.

The Open Group (2003). The open group architecture
framework (togaf) version 8.1. Technical report.

Van de Ven, A. H. and Angle, H. L. (2000). An Introduc-
tion to the Minnesota Innovation Research Program.
Oxford University Press, New York, NY.

Van Nuffel, D., Mannaert, H., De Backer, C., and Verelst, J.
(2009a). Deriving normalized systems elements from
business process models. In Boness, K., Fernandes,
J. M., Hall, J. G., Machado, R. J., and Oberhauser,
R., editors, Proceedings of the Fourth International
Conference on Software Engineering Advances (IC-
SEA 2009), pages 27–32, Los Alamitos, USA. IEEE
Computer Society.

Van Nuffel, D., Mannaert, H., De Backer, C., and Verelst, J.
(2009b). Deriving normalized systems elements from
business process models. Software Engineering Ad-
vances, International Conference on, 0:27–32.

Winter, R. (2008). Guest editorial - design science research
in europe. European Journal of Information Systems,
17(5):470–475.

Zachman, J. A. (1987). A framework for information sys-
tems architecture. IBM Syst. J., 26(3):276–292.

CONSTRUCTING EVOLVABLE ENTERPRISE IMPLEMENTATIONS

531


