
Model Checking Verification of Web Services
Composition

Abdallah Missaoui1, Zohra Sbaı̈1 and Kamel Barkaoui2

1 Ecole Nationale d’Ingénieurs de Tunis, BP. 37 Le Belvédère, 1002 Tunis, Tunisia

2 Conservatoire National des Arts et Métiers, Rue Saint Martin, 75141 Paris, France

Abstract. Web services composition is becoming very important in today’s ser-
vice oriented business environment. Different services frequently have semantic
inconsistencies which may lead to the failure of the services composition. In order
to verify the correctness of the Web Services composition, we present a method
for analyzing and verifying interactions among web services. We model web ser-
vice composition based on special class of Petri nets: open workflow nets. We
translate this composition to Promela, a source language of SPIN model checker,
designed to describe communicating distributed services. At the requirements
level, model checking is used to validate the specification against a set of formu-
lae specified into LTL which are used to verify constraints satisfaction of web
services composition.

1 Introduction

Founded on standard protocols, Web service is a kind of software interface and plat-
form, which is described, published and invoked through the Internet. Web services
have the capability of implementing distributed applications. Recently, integrating var-
ious services distributed becomes a valuable issue in current research on Web services.

The behaviour of a service composite may become very complex due to the com-
plex of the communication between partners. The tasks that are performed within a
service generally depend strongly on the interaction that has taken place. Thus, it is
very important to decide whether all services interact properly. At present, many indus-
try and academia researchers are paying attention to find some methods to detect these
behaviour problems such deadlock.

Model checking is a verification technique that explores all possible system states
in a brute-force manner. A model checker, the software tool that performs the model
checking, examines all possible system scenarios in a systematic manner. In this way,
it can be shown that a given system model truly satisfies a certain property. There are
many powerful model checkers such as NuSMV [4], BLAST [5] and SPIN [6, 7].

This paper proposes to use the software model checking techniques for the verifica-
tion of web services composition. We adapt Petri nets to describe services interaction
and use SPIN model checker as a verification engine. First, a composed system model
is written in Promela (PROcess MEta LAnguage) that describes the behaviour of the
web services composition. Then, correctness properties that express requirements on

Missaoui A., Sbaï Z. and Barkaoui K. (2010).
Model Checking Verification of Web Services Composition.
In Proceedings of the 4th International Workshop on Architectures, Concepts and Technologies for Service Oriented Computing, pages 114-126
DOI: 10.5220/0003051501140126
Copyright c© SciTePress

the system’s behaviour are specified in Linear Temporal Logic (LTL). By efficient ex-
ploration of the complete set of states generated from the Promela specification, SPIN
verify LTL formulae corresponding to properties of web service composition.

The rest of this paper is organized as follows. Section 2 presents preliminaries.
Section 3 focuses on Petri net model of web service composition as well as our Promela
implementation of this composition. In section 4, We formulate in LTL some soundness
properties to be verified by SPIN. In section 5, we study an example of web service
composition. We discuss in section 6 some related work. Section 7 concludes the paper.

2 Preliminaries

2.1 Workflow Process Modelling

Petri nets are a well founded process modeling technique that have formal semantics.
They are one of the best known techniques for specifying business processes in a formal
and abstract way. The semantics of process instances ensuing from process models
described in Petri nets are well defined and not ambiguous.

We choose to adopt open workflow nets [17] for web service modelling. Open work-
flow nets result from the application of Petri nets to workflow management. In fact,
Petri nets have been used for their formal semantics, graphical nature, expressiveness,
analysis techniques and tools.

In the rest of this section, we present first the basic definitions and notations of Petri
nets [2] used in this work. Then we highlight the notion of open workflow nets.

Petri Nets
A Petri net is a 4-tuple N = (P, T, F,W) where P and T are two finite non-empty sets
of places and transitions respectively, P ∩ T = ∅ , F ⊆ (P × T) ∪ (T × P) is the
flow relation, and W : (P × T) ∪ (T × P)→ N is the weight function of N satisfying
W (x, y) = 0⇔ (x, y) /∈ F .
If W (u) = 1 ∀u ∈ F then N is said to be ordinary net and it is denoted by N =
(P, T, F).
For all x ∈ P ∪ T , the preset of x is •x = {y|(y, x) ∈ F} and the postset of x is
x• = {y|(x, y) ∈ F}.
A marking of a Petri net N is a function M : P → N. The initial marking of N is
denoted by M0.
A transition t ∈ T is enabled in a marking M (denoted by M [t〉) if and only if ∀p ∈
•t : M(p) ≥W (p, t). If transition t is enabled in marking M , it can be fired, leading to
a new marking M ′ such that: ∀p ∈ P : M ′(p) = M(p)−W (p, t) +W (t, p).
The firing is denoted by M [t〉M ′. The set of all markings reachable from a marking M
is denoted by [M〉.
For a place p of P, we denote by Mp the marking given by Mp(p) = 1 and Mp(p

′) = 0
∀p′ 6= p.
Petri nets are represented as follows: places are represented by circles, transitions by
boxes, the flow relation is represented by drawing an arc between x and y whenever
(x, y) is in the relation, and the weight function labels the arcs whenever their weights

81

are greater than 1. A marking M of a Petri net is represented by drawing M(p) black
tokens into the circle representing the place p.

Open Workflow Nets (oWF-nets)
In this paper, we choose to adopt a special class of Petri-nets which is open workflow-
nets (oWF-net), for web service modeling. It generalized the classical workflow nets
[1] by introducing an interface for asynchronous messages with partners. A petri net
N = (P, T, F) is called an oWF-net, if:

i. P is composed from disjoint sets: internal places PN , input places PI and output
places PO;

ii. For all transition t ∈ T : p ∈ PI (resp. p ∈ PO) implies (t, p) 6∈ F (resp. (p, t) 6∈
F);

iii. F does not contain cycles.

In all examples in this paper, an oWF-net are initially one token in start place (no
tokens in other places including the interface places).

Open workflow nets allow diverse analysis methods of business process. Moreover,
the explicit modeling of interface allows the verification and behaviour analysis of web
service composition.

2.2 Model Checking Techniques

Model checking is a verification technique that explores all possible system states in a
brute-force manner. Similar to a computer chess program that checks possible moves,
a model checker, the software tool that performs the model checking, examines all
possible system scenarios in a systematic manner. In this way, it can be shown that a
given system model truly satisfies a certain property. It is a real challenge to examine
the largest possible state spaces that can be treated with current means, i.e., processors
and memories.

There are many powerful model checkers such as NuSMV, BLAST and SPIN.
The SPIN model checker is a system that can verify models of computerized sys-

tems. The name SPIN was originally chosen as an acronym for Simple Promela INter-
preter. It can be used in two basic modes: as a simulator and as a verifier. In simulation
mode, SPIN can be used to get a quick impression of the types of behavior that are cap-
tured by a system model, as it is being built. Some optimization techniques, e.g., partial
order reduction and graph encoding, are available to help reduce the usage of CPU time
or memory space.

2.3 Linear Temporal Logic

SPIN checks properties formulated with Liner Temporal Logic. An LTL formula f
may contain any lowercase propositional symbol p, combined with unary or binary,
Boolean and/or temporal operators. Propositional and temporal operators are presented
in figure 1.

The semantics of a formula is given in terms of computations and the states of a
computation. The atomic propositions of temporal logic can be evaluated in a single
state independently of a computation.

82

Propositional Operators
&& conjunction ‖ disjunction
− > implication ! Negation
Temporal Operators
[] always � eventually

⊔
until

Fig. 1. Propositional and Temporal Operators.

3 Web Services Composition

In this section, we begin with a specification of services in terms of open Workflow net
and Promela language. Then, we model the composition of web services and we give a
verification method by means of model checking techniques.

The formalism of open Workflow net is meant to model complex, distributed com-
puting systems with well defined semantics. Web services composition can be checked
against requirements such as the mentioned above. The properties that are to be checked
need to be formulated based on temporal logic, relate to the Promela specification of
workflow representation of web service composition. SPIN Model checker will evaluate
these LTL formulae.

3.1 Modeling Web Service Composition

Using oWF-nets, we can model business process. We can furthermore compose two or
many oWF-nets and describe the web services interaction with partners.

The communication between two oWF-nets is based on interface places (unidirec-
tional). Given two oWF-nets N1 and N2, their composition is the result of merging one
or many input places of one oWF-net with suitable output net of the other place and
vice versa. Each oWF-net shares only interface places with other oWF-nets.

Fig 2.a shows the composition of two oWF-nets: Producer and Consumer. Each
of which has one input place and one output place. Shared places which model the
interfaces are represented by dashed lines. The consumer of the left side sends an order
message to the producer in order to execute its task. In the right side, the producer
executes the task and then sends a response to consumer.

3.2 Promela Implementation

Like structured programming languages, in Promela we can use variables and subrou-
tines such as proctype. The proctype construct is used for the declaration. It can be
used to declare process behavior is to be executed completely deterministically. Each
process behavior must be declared before process instantiation. This instantiation can
be done either with the run operator, or with the prefix active that can be used at
the time of declaration. The types of variables are sets of integer in order to guarantee
that the program has finite state space. This section presents a method to use the SPIN
model checker for the representation of the web services composition and analysis. The
basic idea is just to translate a composition of oWF-nets into Promela source program.
web services models communicate through interface places modeled by variables. We

83

adopt an approach of oWF-net introduced by [17] to model web services composition.
Workflow module defines its internal behaviour without interface places that are used
to represent message flow between partners.

Based on the definition of workflow module, we present a web service specification
in Promela language. This specification is described in terms of the marking of places
and the firing count of transitions. Hence, we use the following conventions:

– Places are represented by an array PL of integers with length equal to the number
of places. This array contains initially zero in each element.

– Transitions are modelled by an array TR of integers (initialized to zero) with length
equal to the number of transitions.

The behaviour of a web service can be described in terms of system states and their
changes. A marking is initialized to Mi and it is changed according to the following
transition rule: A transition t is enabled if each input place p of t is marked. Moreover,
an enabled transition t may or may not fire, and a firing of t removes one token from
all p ∈ •t and adds one token to each output place of t. These concepts are translated
in the corresponding Promela description of a workflow module as follows: The firing
of a transition consists on decreasing by 1 the integer corresponding to each place p ∈
•t in the array PL and increasing by 1 the elements of PL corresponding to the output
places (p ∈ t•). Although, we increase by 1 the element of TR corresponding to the
transition t to mark that t is fired once.

These modifications are made by the macro add1, add2, ..,addS, remove1, remove2,
.., and removeK where S is the maximum number of possible input places and K is
the maximum number of possible output places.

To fire a transition t which has I input places and J output places, we call these
macros with the appropriate arguments in order to achieve the following actions:

1. removeI(p1, p2, .., pI) destructs one token from each input place. It tests if these
input places are marked (PL[index of pj] > 0, 1 ≤ j ≤ I) and if this condition is
satisfied, it removes one token from each of its parameters.

2. We increase the element corresponding to t in TR.
3. And finally addJ(p1, p2, .., pJ) creates one token in each output place.

Complex inter-organizational business processes are structured as a set of commu-
nicating elementary services. A service represents a self contained software unit that
offers an encapsulated functionality over a well defined interface.
Several languages, such as BPEL [3], are used to describe the composition of services.
The behaviour of a service composite may become very complex due to the nature of
the communication between partners. The tasks that are performed within a service
generally depend strongly on the interaction that has taken place. Thus, analyzing the
behaviour of a service on the one hand and the verification of its interaction with part-
ners on the other hand are very important to perform and improve inter-organizational
business processes.
Web services composition is modeled based on oWF-nets. Interface places are repre-
sented, in our specification, by an array I of integers with length equal to the number
of places in web services composite. Each element of this array, that initialized to zero,

84

perform the communication between services partners, and for each place, when one
service increment element of I (add token in interface place), another partner consume
a token and decrement this element by 1. Figure 2.a shows an example of web service

d e f i n e PLACEC 3
d e f i n e TRANSITIONC 2
d e f i n e PLACEP 3
d e f i n e TRANSITIONP 2
d e f i n e INTERFACE 2
d e f i n e remove1 (x1) (x1>0)−>x1−−
d e f i n e remove2 (x1 , x2)
(x1>0 && x2>0)−>x1−−; x2−−
d e f i n e add1 (x1) x1++
d e f i n e add2 (x1 , x2) x1 ++; x2++
i n t M2[PLACEC] ; i n t X2 [TRANSITIONC] ;
i n t M1[PLACEP] ; i n t X1 [TRANSITIONP] ;
i n t I [INTERFACE]
proctype Consumer ()
{M2[0] = 1 ;
do
: : atomic{remove1 (M2[0])−>X2 [0] + + ;

add2 (M2[1] , I [0]) }
: : atomic{remove2 (M2[1] , I [1])−> X2 [1] + + ;

add1 (M2[2]) }
od
}

proctype P r o d u c e r ()
{M1[0] = 1 ;
do
: : atomic{remove2 (M1[0] , I [0])−>X1 [0] + + ;

add1 (M1[1]) }

: : atomic{remove1 (M1[1])−>X1 [1] + + ;
add2 (M1[2] , I [1]) }

od
}

i n i t
{
atomic{

run Consumer () ;
run P r o d u c e r () ;
}

}

.

(a) (b)

Fig. 2. The process with two services.

composition based on two oWF-nets. The consumer communicates with producer by
means of two interface places. The figure 2.b represents the Promela description of this
composed system.

4 Verification

SPIN allows Promela systems to be simulated, either step-by-step or randomly. Addi-
tionally, it is possible to execute an exhaustive simulation by generating the complete
state-space of the system. This allows us to verify if the system requirements are satis-
fied.

In web service architecture, by composing various services, complex activities (e.
g., inter-organizational business processes) can be realized. Hence, the correct interplay
of distributed services is crucial to accomplish a common goal. The flow should have
safety properties such as deadlock freedom. At the same time, the flow should satisfy
some properties since it is executed in an environment.

In this section, we discuss how to verify a given composed oWF-net specification
using the SPIN model checher. The input language of SPIN is Promela, which is a lan-
guage for modeling web services composition. SPIN verify LTL properties of Promela
specification. We implement the verification process in three steps : (1)we model the
composed web services based on oWF-net; (2)we translate this composed system to
Promela processes with communication based on an interface array; (3)we define prop-
erties in LTL and we check if the system satisfies or not these properties.

The requierement needs to be formulated as LTL formulas. All logical variables
used in the formula must be defined by define macro. Using logical variables inte-
grated in TLT formulae, all properties are verified on the fly. It is not necessary to
generate the whole state space to detect errors. However, to verify that properties are
satisfied, the whole state space may be generated.

85

4.1 Termination

Several Technologies [9–11] have been proposed in order to automatically compose
Web services to perform some desired task. Regardless of how the compositions orig-
inated, we are interested here in describing and verifying properties of these services
by simulating their executions under different input conditions. Deadlock is a condition
which states that the composed system is deadlocked, i.e. it is neither terminated nor
more activities could be executed.

The language source used by SPIN (Promela) describe the behaviour of a web ser-
vices composition based on interactions between the service and its partners. SPIN can
simulate and validate a model in Promela language and it can accept constraints de-
scribed in LTL formulae.

Never−c l a i m :
n e v e r { /∗ !(<>p) ∗ /
a c c e p t i n i t :
T 0 i n i t :

i f
: : (! ((p))) −> go to T 0 i n i t
f i ;

}

Fig. 3. Never-claim corresponding to F .

The formula F : ♦p (p is declared in Promela source as (M1[index of f1] ≥ 1
&& M2[index of f2] ≥ 1)) allows us to check if the process, given in figure 2,
completes successfully. First, SPIN translates a negative form of formula into a never-
claim statement. Second, SPIN validates the model S with this statement. The never-
claim (generated by SPIN) corresponding to formula F is given in figure 3.

Never claim is the Promela model of the Büchi automaton(figure 4) corresponding
to the LTL formula F . It is used to represent a property that should never be satisfied
during the execution of a model. Then, if S contains an acceptance cycle then a counter-
example to F exists and this proves that the model does not satisfy the property.

4.2 Soundness

Composing web services and guarantying the correctness of the design is an important
and challenging problem in web services.

An oWF-net is a more suitable model for analysis and verification of web services
composition. Several Correctness criteria, like liveness and termination, should be valid
for single process and for the combined model. In this section, we give a method to
verify some properties of web services composition. For each of them, we define the
property of the composed oWF-nets. We also give an LTL formula that allows to verify
it based on corresponding Promela specification of web services composition.

A workflow process is sound if, for any case, termination is guaranteed, there are
no dangling references, and deadlocks and livelocks are absent. This dynamic property
is decidable and it can be checked in polynomial time. Soundness property is proved
in [18] equivalent to liveness and boundedness, thus it can be verified by standard Petri
net methods.

86

Fig. 4. A büchi automata.

The extension of this soundness definition in the context of web service composi-
tion via oWF-nets is given in the following definition 1. The overall net describing the
composition can be seen as a classical petri net with a specific initial marking and its
soundness is given in terms of states evolution and transitions firing. Thus the verifica-
tion of this property is decidable.

Definition 1. (Soundness)
Let N1 = (P1, T1, F1), N2 = (P2, T2, F2),..., and Nx = (Px, Tx, Fx) be x oWF-net.
The composed oWF-nets WC = (P, T, F) from N1, N2 and Nx, is called sound if
and only if the following three requirements are satisfied:

i Termination: For each reachable marking (reachable from M0 = [i1, i2, .., ix],)
the final marking Mf = [f1, f2, .., fx] is reachable;

ii Proper completion: For each reachable marking, if M ≥Mf holds then M = Mf ;
iii No dead transition: It makes certain that starting from the initial state (just one

token in every initial place), it is always possible to reach the state with one token
in every final place.

We can define LTL formulae based soundness of web service composition by study-
ing the three sub-properties: Completion, Proper Completion and Deadlock-freedom:

i ♦(
i=x
&&
i=1

M [index of fi] ≥ 1)

ii �(
i=x
&&
i=1

M [index of fi] ≥ 1)⇒ (M = [f1, f2, .., fx])

iii ¬(�(‖
t∈T

X[index of t] == 0))

To verify soundness of web service composition, we have to check the three preceding
formulae.

87

Weak soundness properties are introduced by Martens [8] in the context of web
service composition. We can allow service that exhibits a proper behaviour but not
all tasks. The overall Composed system is weak sound, because the final state can be
reached from each state reachable from the initial state, and when the final state Mf is
reached, no other token remains in the net.

Using Petri nets notation, we give the following definition of weak soundness.

Definition 2. (weak soundness)
a composed system N = (P, T, F) is called weak sound if and only if:

i. For each reachable marking (reachable from M0) the final marking f is reachable.
ii. For each reachable marking, if M ≥Mf holds then M = Mf .

Based on LTL formulae, corresponding to Termination and Proper Completion, de-
fined in this section, we can verify weak soundness properties of the web service com-
position.

5 Case Study

Figure 5 presents an example of web service composition. The overall flow of this ex-
ample is as follows: A traveler will plan her trip. When the traveler is finished with
specifying the details of the trip plan, she sends this information together with the pre-
pared details (example of details concern the list of participants) to the travel agent.
Next, the traveler will await the submission of the electronic tickets as well as the final
itinerary for the trip. When the agent receives the traveler’s trip order, he will determine
the legs for each of the stages, which includes an initial seat reservation for each of the
participants as well as the rate chosen. To actually make the corresponding ticket orders
the agent submits these legs together with the information about the credit card to be
charged to the airline company.

Then, the agent will wait for the confirmation of the flights, which especially in-
cludes the actual seats reserved for each of the participants. This information is com-
pleted into an itinerary, which is then sent to the traveler.

When the airline receives the ticket order submitted by the agent, the requested
seats will be checked. After that, the credit card will be charged, and the updated leg
information is sent back to the agent as confirmation of the flights. After that, the airline
sends the electronic tickets (by e-mail) to the traveler. Information about the recipient
of the tickets is passed to the agent as well as to the airline.

In this example, we propose to draw its Promela model as follows: we begin with
specifying each process as a single process defined by proctype construct. The pro-
cesses describing the work of the traveler, the agent and the airline are given respec-
tively in the following source code.

88

Fig. 5. Travel Plan Example.

proctype T r a v e l e r ()
{PL1 [0] = 1 ;
do
: : atomic{i np1 (PL1 [0]) −> TR1 [0] + + ; ou t1 (PL1 [1]) }
: : atomic{i np1 (PL1 [1]) −> TR1 [1] + + ; ou t3 (PL1 [2] , PL1 [3] , I [0])}
: : atomic{i np2 (PL1 [2] , I [4]) −> TR1 [2] + + ; ou t1 (PL1 [4]) }
: : atomic{i np2 (PL1 [3] , I [1]) −> TR1 [3] + + ; ou t1 (PL1 [5]) }
: : atomic{i np2 (PL1 [4] , PL1 [5]) −> TR1 [4] + + ; ou t1 (PL1 [6]) }
od }
proctype Agent ()
{PL2 [0] = 1 ;
do
: : atomic{i np2 (PL2 [0] , I [0]) −> TR2 [0] + + ; ou t1 (PL2 [1]) }
: : atomic{i np1 (PL2 [1]) −> TR2 [1] + + ; ou t1 (PL2 [2]) }
: : atomic{i np1 (PL2 [2]) −> TR2 [2] + + ; ou t2 (PL2 [3] , I [2]) }
: : atomic{i np2 (PL2 [3] , I [3]) −> TR2 [3] + + ; ou t1 (PL2 [4]) }
: : atomic{i np1 (PL2 [4]) −> TR2 [4] + + ; ou t1 (PL2 [5]) }
: : atomic{i np1 (PL2 [5]) −> TR2 [5] + + ; ou t2 (PL2 [6] , I [1]) }
od }
proctype A i r l i n e ()
{PL3 [0] = 1 ;
do
: : atomic{i np2 (PL3 [0] , I [2]) −> TR3 [0] + + ; ou t1 (PL3 [1]) }
: : atomic{i np1 (PL3 [1]) −> TR3 [1] + + ; ou t1 (PL3 [2]) }
: : atomic{i np1 (PL3 [2]) −> TR3 [2] + + ; ou t1 (PL3 [3]) }
: : atomic{i np1 (PL3 [3]) −> TR3 [3] + + ; ou t2 (PL3 [4] , I [3]) }
: : atomic{i np1 (PL3 [4]) −> TR3 [4] + + ; ou t2 (PL3 [5] , I [4]) }
od }

Note that in each process, the firing of a transition leads to add tokens not only in
its own places but also in interface ones. The interface places are modelled by an ar-
ray called I of ni elements with ni is the number of these places. The initial process,
declared by init, initializes global variables, and instantiates processes via the run
statement. This statement is used as a unary operator that takes the name of a process
type. An executing process disappears again when it terminates (i.e., reaches the end
of the body of its process type declaration), but not before all processes that it started
have terminated. The sequence of composed processes has to be executed as one indi-
visible unit, non-interleaved with any other processes. Hence, we prefix the sequence
of processes instantiations by atomic.

89

i n i t
{
atomic{

run T r a v e l e r () ;
run Agent () ;
run A i r l i n e ()
}

}

To verify soundness of web services composition, three requirements need to be for-
mulated as LTL formula. We introduce logical variables that take part from the LTL
formula in the source code. Using the Promela source and the logical variable defini-
tions, SPIN evaluates the LTL formula. The web service composition presented in fig
5 is sound because it satisfies the three formulae (termination, proper completion and
deadlock-freedom).

For example, the evaluation of a formula F (<> p) of termination (p: PL1[6] >
0&&PL2[6] > 0&&PL3[5] > 0) have resulted in positive answers given that the
number of errors returned by SPIN is 0. This positive result guarantees that the Promela
model meets this requirement. All states have been explored by SPIN and the result
generated shows that the number of states explored is 24.

6 Related Works

Many works such as [8, 16, 15] introduce formal method based on Petri nets for describ-
ing and verifying web service composition. In [15], semantics of Petri nets is defined by
mapping BPEL process to a Petri net. A formal model of BPEL can be generated and
allows the verification techniques developed for Petri nets to be exploited in the context
of BPEL processes. Lohmann [16] focuses on the problem of analyzing the interaction
between WS-BPEL processes. A BPEL process is seen as an open workflow net by an
interface specifying the interactional behaviour of this process with its partners. The
framework developed in this context allows the generation of compact Petri net models
and gives a formal analysis of processes behaviour and a verification of controllability.

Some research efforts have already been proposed to use model-checking tech-
niques for web service verification. Nakajima [12] describes a method based on model
checking to verify web service flow description. The language adopted to describe web
service composition is Web Services Flow Language (WSFL). The model checker used
in their verification engine is SPIN. This paper presents means to translate WSFL prim-
itives into PROMELA. In [13], Nakajima proposed to extract behaviour specification
from BPEL processes to a variant of Extended Finite-state Automaton. Then, Automa-
ton model is translated to PROMELA and is analyzed by SPIN model checker. Never-
theless, not all BPEL processes can be analyzed i.e. it does not deal with the semantics
of handlers such as exception or compensation.

Bao [14] provides a model checking method to Verify BPEL4People processes that
can detect deadlocks and validate constraints based on LTL. A tool is developed to
translate BPEL4People process to promela automatically but it didn’t support all feature
activities.

90

7 Conclusions

In this paper, we have presented a specification and verification method of web services
composition based on model checking. The interactions among the partners participat-
ing to a web services composition are modeled by Open WorkFlow nets (OWF-nets),
where the communication is ensured by interface places. Hence, we begun with convert-
ing OWF-nets to Promela: the model specification language used to define the relevant
aspects of the system needed to verify it.

The formal model presented in this paper captures and checks the control flow and
the dynamic behaviour based on Promela specification that describes the behaviour
of the web services composition. After this step, we have specified in Linear Temporal
Logic (LTL) correctness properties that express requirements on the system’s behaviour.
Especially, we have defined the soundness properties of the web service composition in
terms of LTL formulae.

Once the formal model and the correctness properties are defined, SPIN model
checker verifies LTL formulae corresponding to properties of web service composition,
by efficient exploration of the set of states generated from the Promela specification.

We propose to extend this work by defining additional verification criteria which
are suitable for the composition of web services such as controllability.

References

1. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management. The Journal
of Circuits, Systems and Computers, vol. 8, (1998) 21-66

2. Barkaoui, K., Ben Ayed, R., Sbaı̈, Z.: Workflow Soundness Verification based on Structure
Theory of Petri Nets. International Journal of Computing and Information Sciences (IJCIS),
Vol. 5(1), (2007) 51–61

3. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting WSBPEL pro-
cesses using flexible model generation. DKE 64(1), (2008) 3854

4. Cimatti, A., Clarke, E. M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebas-
tiani, R. and Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model Checking.
In Proceeding of International Conference on Computer-Aided Verification, (2002)

5. Henzinger, T. A., Jhala, R., Majumdar, R. and Sutre, G.: Software Verification with Blast.
In Proceedings of the 10th SPIN Workshop on Model Checking Software (SPIN), Lecture
Notes in Computer Science 2648, Springer-Verlag, (2003) 235-239

6. Holzmann, G. J.: The SPIN Model Checker, Primer and Reference Manual. Addison-Wesley,
(2003)

7. Holzmann, G. J.: The Model Checker SPIN. IEEE Transactions on software engineering,
vol.23, no.5, (1997)

8. Martens, A.: Analyzing web service based business processes. In Proceeding of International
Conference on Fundamental Approaches to Software Engineering, Part of the European Joint
Conferences on Theory and Practice of Software, Lecture Notes in Computer Science vol.
3442, Springer-Verlag, (2005)

9. Leymann, F.: Web Services Flow Language (WSFL 1.0). IBM Corporation, May 2001.
10. Business Process Execution Language for Web Services (BPEL), Version 1.1, http://www-

128.ibm.com/developerworks/library/ specification/ws-bpel. (2002)
11. Thatte, S.: XLANG: Web Services For Business Process Design, Microsoft Corporation,

(2001), (http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm)

91

12. Nakajima, S.: Verification of Web service flows with model-checking techniques, presented
at First International Symposium on Cyber Worlds, (2002)

13. Nakajima, S.: Model-Checking Behavioral Specification of BPEL Applications. Electronic
Notes in Theoretical Computer Science 151 (2006) 89105

14. Bao, F., Zhang, L.: A Model Checking Method to Verify BPEL4People Processes. on The
IEEE Symposium Advanced Management of Information for Globalized Enterprises. (2008)

15. Hinz, S., Schmidt, K., Stahl, C.: Transforming BPEL to Petri nets. Business Process Man-
agement, LNCS, vol. 3649, (2005) 220235.

16. Lohmann, N., Massuthe, P., Stahl, C. and Weinberg, D.: Analyzing interacting WS-BPEL
processes using flexible model generation, Data and Knowledge Engineering 64 (2008) 3854

17. Massuthe, P., Reisig, W., Schmidt, K.: An operating guideline approach to the SOA, Annals
of Mathematics, Computing and Teleinformatics 1 (3) (2005) 3543

18. van der Aalst, V.M.P.: Structural characterization of sound workflow nets, Computing Sci-
ence Report 96/23, Eindhoven University of Technology, (1996)

92

