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Abstract: This paper introduces the Chemnitz Hybrid Evolutionary Optimization System to the scientific community. 
CHEOPS is a non-standard, high-performance genetic algorithm framework allowing simple as well as 
advanced modes of operation. Universal genetic algorithms well-suited for solving both single- and multi-
objective optimization problems are still a matter of serious research. The Omni Optimizer was a milestone 
in that research topic, but now it is dramatically outperformed by CHEOPS in single-objective optimization. 
The comparison should soon continue, because CHEOPS will be straightforwardly enhanced to solve multi-
objective problems as well. 

1 INTRODUCTION 

This paper introduces the Chemnitz Hybrid Evolu-
tionary Optimization System to the scientific com-
munity. Being developed as an Eng. D. project, it is 
described in full detail by Nieländer (2009). Basical-
ly, CHEOPS is a non-standard, high-performance 
genetic algorithm framework. However, CHEOPS is 
still under construction. That is why the author 
presents only single-objective optimization results 
in the present paper, whereas CHEOPS will be 
straightforwardly enhanced to solve multi-objective 
problems as well. Omni Optimization, i. e. using a 
single algorithm for successfully and efficiently 
solving different kinds of optimization problems 
often encountered in practice, is a relevant research 
topic. It has been coined by Deb and Tiwari (2005, 
2008) in their pioneering papers. Therein they have 
proposed the (extended) Omni Optimizer. However, 
its single-objective optimization performance does 
indeed cause serious doubts. 

After this introduction, Section 2 presents and 
discusses the basic features of CHEOPS. These 
include representational issues, genetic operators, 
selection methods, the cyclic mode of operation, and 
the generational concept. Section 3 gives a brief out-
line of the opponent for the following comparison, 
i. e. the Omni Optimizer proposed by Deb and Tiwa-
ri (2005, 2008). Afterwards, the comparison between 

the two GA is executed and assessed in Section 4. 
Re-running the original benchmark tests now, CHE-
OPS outperforms the Omni Optimizer dramatically. 
Section 5 discusses advanced modes of operation of 
CHEOPS, whereas Section 6 points out to future 
work of straightforwardly enhancing CHEOPS to 
solve multi-objective problems as well. Finally, 
Section 7 concludes the paper with a short summary. 

2 THE BASIC FEATURES  
OF CHEOPS 

When developing and implementing an evolutionary 
algorithm, the programmer has to think about five 
major subjects: 

How to represent candidate solutions and how to 
arrange them in a population? How to produce new 
candidate solutions from existing ones? How to 
select preferably good and / or rather bad candidate 
solutions from the population? How does it work 
altogether in some optimization cycle? How to pro-
ceed to the next generation? 

All these issues will be discussed in the follow-
ing subsections. 
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2.1 Representation of Candidate 
Solutions 

Originally, genetic algorithms have just used binary 
chromosomes especially with Gray coding of all the 
variables of the current optimization problem. Such 
binary chromosomes can be used in CHEOPS that 
are built-up from a sequence of bits. Evolution 
strategies, however, have always used floating-point 
chromosomes (i. e. vectors of real numbers) being 
much more suitable for real-parameter optimization. 
Likewise, integer chromosomes are appropriate for 
integer-parameter optimization. Moreover, CHEOPS 
handles permutation chromosomes for combinatorial 
optimization solving e. g. the famous traveling sales-
man problem. 

For all the chromosome types there is an initiali-
zation procedure (random uniform sampling within 
the search space) built into CHEOPS. A population 
is just a large, panmictic set containing such indi-
viduals as current candidate solutions. 

2.2 Genetic Operators 

Remember the default mode of operation of genetic 
algorithms: Two previously selected parent indi-
viduals are recombined with the offspring being 
slightly modified afterwards to obtain some child 
individuals. Thus, recombination / crossover is pri-
mary, whereas modification / mutation is secondary. 
Quite the contrary applies to evolution strategies. 

In nature, however, some species alternate the 
way they reproduce themselves from one generation 
to the next (agamogenesis vs. sexual reproduction), 
whereas other creatures perform metagenesis to 
survive the struggle for life. CHEOPS adapts this by 
implementing a variety of genetic reproduction 
operators for each chromosome type. In the context 
of the present paper, only genetic operators for 
floating-point chromosomes are relevant: 

 one-point crossover (biased / shuffled); 
 two-points crossover; 
 uniform crossover; 
 generalized linear crossover (standard / mixed); 
 BLX crossover; 
 intermediate crossover (standard / arithmetical / 

mixed); 
 shifting mutation (standard / reversed); 
 universal mutation (just copy, or uniform 

mutation, or boundary mutation, or average 
mutation, or Gaussian mutation, or Breeder-GA 
mutation as well as mixed). 

All these genetic operators implemented in CHE-
OPS are well-known from GA literature. That is 
why the author does not go into detail here but refers  

to Nieländer (2009) for further explanations. 
Unlike the default mode of operation of genetic 

algorithms and evolution strategies, CHEOPS does 
not distinguish between primary and secondary 
operators. Consequently, each such genetic operator 
is just a procedure that takes some parent indi-
vidual(s) and produces some child individual(s). 
How it actually does its job - by a mutation of one 
parent individual or by crossover from two parent 
individuals, and in doing so directly inspired by 
genetics or otherwise by some heuristics or even 
with another local or global optimization procedure 
built into (i. e. hybrid optimization) - is completely 
irrelevant. Please note that arbitrary such genetic 
operators can be implemented in CHEOPS by the 
user as desired and / or required. 

2.3 Selection Methods 

The following selection methods are implemented in 
CHEOPS for single-objective optimization: 

 unbiased roulette selection; 
 ranking selection (linear / exponential); 
 threshold uniform selection; 
 tournament selection (first-better / all-best). 
Again, these selection methods are very common 

in genetic algorithms and do not need further ex-
planations here (see Nieländer, 2009, again). They 
are implemented in CHEOPS both ways, selecting 
preferably good candidate solutions to reproduce 
and rather bad ones to die. Moreover, CHEOPS 
handles maximization as well as minimization prob-
lems without requiring the user to re-formulate them 
prior to optimization. Thus, selecting a candidate 
solution directly depends on how good or bad it 
solves the current optimization problem compared to 
all other individuals within the current population. 
Please note that CHEOPS does not restrict selection. 
Thus, at least in principle, each candidate solution 
within the population may have a chance to repro-
duce and / or to die. That is why elitism is separately 
keeping track of the best candidate solution(s) found 
so far while the genetic algorithm is running. 

2.4 Cyclic Mode of Operation 

The successive sequence of what genetic operator 
when produces new children is not predetermined. 
This is due to chance in the randomized evolution 
process. Of course, each genetic operator knows 
how many parent individuals it needs to do its job. 
Thus, so many candidate solutions will be selected 
from the current population each by one of the 
several selection methods implemented in CHEOPS. 
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What follows is the CHEOPS optimization cycle 
pseudo-code: 

Generate the initial population 
using random uniform sampling 
Repeat 
   Randomly choose one of the  
   genetic operators to apply next 
   Repeat 
      Randomly choose one of the  
      selection methods and select  
      (according to the current  
      optimization direction) an  
      individual from the population  
      to reproduce 

   Until all necessary parent indi- 
      viduals have been selected 

   Apply that genetic operator  
   producing child(ren) from the  
   parent(s) 

   Repeat 

      Randomly choose one of the  
      selection methods and select  
      (contrary to the current  
      optimization direction) an  
      individual from the population  
      to die 

      Replace that individual by  
      a child just produced 

   Until all the child individuals  
         have been assimilated into  
         the population 

Until some stopping criterion is met 

Someone might argue that this is too simple to 
work well. Note, however, that CHEOPS does also 
allow advanced and elaborated modes of operation 
(see Section 5 for details). In the context of the 
present paper, due to the reminder of De Jong (2006, 
p. 3), we intentionally “‘Keep it simple, stupid!’ 
which turns out to be a surprisingly useful heuristic 
for building evolutionary systems that we have some 
hope of understanding!” 

2.5 Steady State Concept 

Resulting from the aside pseudo-code, good candi-
date solutions must first be selected as parents for 
reproduction, and their children then replace bad 
candidate solutions within the population (not allow-
ing a duplicate solution to be inserted). That is the 
concept of a steady state genetic algorithm. 

The main advantage of steady state genetic algo-
rithms is, that any good candidate solution produced 
in the evolution process can immediately be selected 
as parent individual for reproducing and hopefully 
breeding still better child individual(s). Usually, this 
speeds up the evolution process enormously com-

pared to generational genetic algorithms. Those fill 
up some intermediate population and / or the next 
generation with child individuals all of them being 
produced from old parent individuals. 

However, there is a drawback with steady state 
genetic algorithms: inbreeding. Any especially good, 
but maybe just locally optimal candidate solution 
might be selected as parent again and again, thus 
forcing too much exploitation over exploration and 
continuously producing children related and possibly 
similar to each other. Thus, it is essential for a 
steady state genetic algorithm to implement some 
counter-forces against inbreeding. That is why 
CHEOPS simultaneously uses many different se-
lection methods as well as genetic operators. Hence, 
the selective pressure varies and the genetic diversity 
within the population is long-term maintained: Even 
if the same parent individuals are being selected, 
different child individuals will usually be produced 
from them. 

CHEOPS’ main control parameter setting a good 
balance between exploitation and exploration is the 
population size counting the number of candidate 
solutions therein. Of course, a smaller population 
favors exploitation over exploration - vice versa for 
a larger population. Thus, optimization performance 
depends on the population size as Section 4 reveals. 

3 THE OMNI OPTIMIZER 

Prior to 2005, single- and multi-objective problems 
as well as uni-optimal or multi-optima problems 
have usually been dealt with different optimization 
algorithms. Then, in their pioneering paper, Deb and 
Tiwari (2005) have proposed an unique approach for 
solving different kinds of function optimization 
problems often encountered in practice. They have 
introduced the Omni Optimizer to the scientific 
community and, as far as the author knows, it was 
the first genetic algorithm that can automatically 
adapt to solving those problems in a single opti-
mization run. This idea has immediately spread out 
(see Coelho and Von Zuben, 2006, Klanac and 
Jelovica, 2007, for example). Later, Deb and Tiwari 
(2008) have published their extended Omni Opti-
mizer: “In this paper, for the first time, we suggest 
an omni-optimizer, in which a single optimization 
algorithm attempts to find one or more near-optimal 
solutions for the following four types of optimization 
problems [single- or multi-objective problems and 
uni-optimal or multi-optima problems] in a single 
simulation run of the algorithm” (p. 1064). 
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Let us present a brief outline of their proposed 
Omni Optimizer. It is a generational genetic algo-
rithm that makes use of Latin-hypercube sampling 
to generate its initial population. Simulated binary 
crossover followed by polynomial mutation are 
being used to produce two child individuals from 
two parent individuals. Basically, the Omni Opti-
mizer works similar to the well-known fast and 
elitist Non-dominated Sorting Genetic Algorithm 
NSGA-II (see Deb, Pratap, Agarwal and Meyarivan, 
2000, 2002) with some improvements resulting from 
restricted selection and a more disruptive mutation 
operator. Thus, excellent multi-objective optimi-
zation performance is out of question as confirmed 
for the NSGA-II by many qualified studies. 

However, if just one objective function is pre-
sent, the Omni Optimizer automatically “degener-
ates” (Deb and Tiwari really call it that way) and 
adapts itself to solving the current single-objective 
optimization problem efficiently. Here, a tournament 
selection method is used with just two candidate 
solutions taking part. 

We refer to Deb and Tiwari (2005, 2008) them-
selves for a detailed description of the Omni Opti-
mizer and its extended version including pseudo-
code. 

4 COMPARISON 
BETWEEN CHEOPS AND THE 
OMNI OPTIMIZER 

Definitely, the Omni Optimizer is a milestone in that 
research topic, but does its extended version also 
mark the end of the road? In this section we discuss 
the single-objective optimization performance of the 
(extended) Omni Optimizer comparing it with 
CHEOPS re-running the original benchmark tests 
now. Let us see whether simple CHEOPS in its basic 
mode of operation can challenge the Omni 
Optimizer successfully or not. 

4.1 First Round of the Comparison: 
Single-Objective Optimization 
Results 

To assess the efficiency of their proposed Omni Op-
timizer algorithm for single-objective optimization, 
Deb and Tiwari (2005) present results of two bench-
mark functions only. Both functions are taken from 
GA literature: the 20-variable Rastrigin function and 
the 20-variable Schwefel function are well-known. 
Table 1 reprints the functions’ definitions of Deb 

and Tiwari. They claim that both functions have 
many local minima, but there is only one global 
minimum  f * = 0.0. Note, however, that this is a mis-
take for the Schwefel function: Using 418.9829 ⋅ n, 
as Deb and Tiwari did, zero cannot be achieved as 
the global minimum. Instead,  f * = 0.000012727566 
2937252135648043992913093849 ⋅ n results for the 
Schwefel function. Anyway, to be comparable with 
their results we use those definitions of Deb and 
Tiwari as reprinted in Table 1 throughout the present 
paper. 

Table 1: Definitions of the two test functions according to 
Deb and Tiwari (2005, 2008). 
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The population size - counting the number of 
candidate solutions therein - is an essential control 
parameter of any genetic algorithm to set a good 
balance between exploitation and exploration. Thus, 
optimization performance depends on the population 
size, but Deb and Tiwari do not explain whether 
they set it arbitrary or intentionally. Using a popu-
lation size of 20 individuals (for the 20-variable 
Rastrigin function) respectively 50 individuals (for 
the 20-variable Schwefel function), they execute 
some optimization runs and present the best, median, 
and worst number of objective function evaluations 
required by their  Omni Optimizer to achieve and 
fall below  f  = 0.01. However, it is hardly compre-
hensible why such a rough approximation solely 
determines their performance criterion? Any 
advanced optimization tool should quickly achieve 
and fall below that predefined threshold value, 
because such an (in-) accuracy of the approximation 
is only worth a low grade 4 of merit according to 
Schwefel (1975, 1995) himself. Afterwards, 
convergence to the true global minimum is often a 
difficult job and much more challenging, because it 
requires very fine tuning of all the xi-variables. 

To assess the optimization performance of the 
extended Omni Optimizer, both the Rastrigin func-
tion  and  the  Schwefel function  are  again used  by 
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Table 2: Single-objective optimization results for the Rastrigin function. 

 Omni Opt CHEOPS Ext Omni Opt CHEOPS Ext Omni Opt CHEOPS 

Test function Rastrigin (n = 20 variables) Rastrigin (n = 20 variables) Rastrigin (n = 10 variables) 

Population size 20 40 40 

Best run 19 260 2 369   24 520 2 570   8 120 1 588 

Median 24 660 3 206   41 760 4 250 15 520 2 336 

Worst run 29 120 5 419 106 440 6 730 53 480 3 117 

 objective function evaluations until f < 0.01 

Table 3: Single-objective optimization results for the Schwefel function. 

 Omni Opt CHEOPS Ext Omni Opt CHEOPS Ext Omni Opt CHEOPS 

Test function Schwefel (n = 20 variables) Schwefel (n = 20 variables) Schwefel (n = 10 variables) 

Population size 50 16 16 

Best run 54 950 3 348 26 128 2 075   6 304 1 244 

Median 69 650 4 290 36 272 3 235 11 360 1 814 

Worst run 103 350 6 069 82 096 4 607 24 704 2 513 

 objective function evaluations until  f  < 0.01 

 

Deb and Tiwari in their second paper (2008) as 
single-objective, uni-optimal benchmark functions 
(but now with 10 and 20 variables). They execute 
some optimization runs - unlike before now with 
different population size(s) without giving the 
reason for that. Again, they present the best, median, 
and worst number of objective function evaluations 
required by the extended Omni Optimizer to achieve 
and fall below  f  = 0.01 as predefined threshold 
value. 

Tables 2 and 3 compare the results of the Omni 
Optimizer and its extended version with the results 
of CHEOPS. Setting the same population size(s), the 
(extended) Omni Optimizer is dramatically out-
performed, because CHEOPS is much more resolute 
and faster when optimizing. Its worst runs required 
only fractions of the objective function evaluations 
of the best Omni Optimizer runs. Remember that 
CHEOPS just uses random uniform sampling to 
generate its initial population, whereas the Omni 
Optimizer makes use of Latin-hypercube sampling 
in all its runs. Due to such a jump start, the poor 
performance of the Omni Optimizer and its extended 
version is disappointing. Sometimes its runs have 
really been long-term requiring a huge number of 
objective function evaluations to achieve and fall 
below that predefined threshold value. 

Let us now compare the Ext Omni Opt columns 
in Tables 2 and 3 with the corresponding Omni Opt 
columns. On the one hand there is a better perform-
ance for the 20-variable Schwefel function; on the 
other hand there is a much worse performance for 

the 20-variable Rastrigin function. Thus, from that 
comparison we cannot draw obvious conclusions 
about the extended Omni Optimizer. 

Let us also compare the CHEOPS columns in 
Tables 2 and 3 for n = 20. CHEOPS runs more effi-
cient in smaller populations keeping only 20 rather 
than 40 respectively 16 rather than 50 candidate 
solutions. This also indicates that the 20-variable 
Rastrigin function and the 20-variable Schwefel 
function both are not too difficult to be minimized 
until achieving and falling below that predefined 
threshold value. 

Setting the original population size of 20 indivi-
duals (for the 20-variable Rastrigin function) respec-
tively 50 individuals (for the 20-variable Schwefel 
function), let us continue the CHEOPS runs beyond 
that predefined threshold value until 19 260 respec-
tively 54 950 objective function evaluations at most. 
Remember that the Omni Optimizer for the first time 
ever has achieved  f  < 0.01 at those moments. In all 
its runs, CHEOPS has approximated the true global 
minimum with a small difference of less than 10−9 
not just at those moments, but thousands of objective 
function evaluations earlier. According to the 
original grades of merit by Schwefel (1975, 1995) 
himself, this is worth a high grade 2. Note that for 
the highest grade 1, the approximation to the true 
global minimum has to be as precise as 10−38. How-
ever, we did not use such an extended floating-point 
precision when compiling CHEOPS. 

Please note that the Rastrigin function and the 
Schwefel function are the only single-objective, 
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uni-optimal benchmark functions used by Deb and 
Tiwari (2005, 2008) to assess the optimization 
performance of the (extended) Omni Optimizer. It 
follows from the definitions in Table 1 that both 
functions are separable in all of their variables. Each 
function can be re-formulated by a sum 

∑
=

=
n

i
ii xfxf

1
)()( r

 

of one-dimensional sub-functions. Thus, every xi-
variable may take its best value (without regard to 
the others) to optimize by itself its contribution to 
the desired objective function value. Usually, such 
separable functions are of low or medium difficulty 
for any advanced optimization tool, and they are 
rarely coming across in real-world optimization 
practice. 

4.2 Second Round of the Comparison: 
Further Single-Objective 
Optimization Results 

So far, optimization performance is assessed by how 
many objective function evaluations are being 
required until achieving and falling below a pre-
defined threshold value. Alternatively, how precise 
does the optimization tool approximate the global 
minimum within a limited number of objective 
function evaluations? 

Such tests are furthermore examined by Deb and 
Tiwari only in their second paper (2008). They have 
collected the objective function value of the best 
candidate solution achieved within 10 000 objective 
function evaluations at most, and then they have 
averaged over 99 executed runs. Unfortunately, they 
do not state the population size(s) used in the runs 
when collecting their results of the extended Omni 
Optimizer. Did it remain constant throughout all the 
executed runs, or did it change from one test 
function to another (as in the previous tests), or did it 
vary for all the test functions with the number of 
variables increasing (as not in the previous tests)? 
Note that there are now 10 to 100 variables (at steps 
of 10). We have opted for the second case in the 
corresponding CHEOPS runs, and a population size 
of 26 (for the Rastrigin function) respectively 24 (for 
the Schwefel function) seem to work well for 
n = 100. However, we did not execute numerous 
pre-runs to find out the best population size(s) for 
all n < 100 specifically. If we had done such tuning, 
then we would have opted for the third case, because 
the test functions are obviously more difficult to 
minimize in high dimensions rather than in low 
dimensions. Thus, as a rule of thumb, the population 

size may also increase somewhat with increasing n 
to achieve the very best optimization performance. 

Table 4: Further single-objective optimization results for 
the Rastrigin function. 

 Ext Omni Opt CHEOPS 

Test function Rastrigin 

Population size ?? 26 

n = 10 variables 1.65 ⋅ 10−3   1.071 ⋅ 10−10 

n = 20 variables 1.71 ⋅ 10−2 4.398 ⋅ 10−6 

n = 30 variables 6.71 ⋅ 10−2 6.884 ⋅ 10−6 

n = 40 variables 1.44 ⋅ 10−1 3.520 ⋅ 10−5 

n = 50 variables 2.51 ⋅ 10−1 3.833 ⋅ 10−3 

n = 60 variables 3.75 ⋅ 10−1 2.144 ⋅ 10−3 

n = 70 variables 5.00 ⋅ 10−1 2.979 ⋅ 10−2 

n = 80 variables 6.40 ⋅ 10−1 6.672 ⋅ 10−2 

n = 90 variables 7.85 ⋅ 10−1 4.090 ⋅ 10−1 

n = 100 variables 9.37 ⋅ 10−1 2.195 ⋅ 10−1 

 averaged  f  after 10 000 objective 
function evaluations 

Note, however, that Deb and Tiwari (2008) have 
narrowed the variables’ range for the Rastrigin func-
tion by almost 50 % to − 5.12 ≤ xi

 ≤ 5.12 now with-
out giving the reason for that. It was only recently 
noticed by the author when writing this paper. That 
is why CHEOPS did run with the original variables’ 
range − 10 ≤ xi

 ≤ 10 for the Rastrigin function when 
collecting the results in the above Table 4. 

Remember that the definition of the Schwefel 
function by Deb and Tiwari is used throughout this 
paper (see Table 1). Thus, its global minimum is not 
zero, but ~ 1.273 ⋅ 10−5 ⋅ n instead - which has really 
been achieved for n = 10 and n = 20 variables in all 
CHEOPS runs within 10 000 objective function 
evaluations at most. 
Furthermore, Deb and Tiwari (2008) use another ten 
single-objective, uni-optimal benchmark functions 
(with 10 to 100 variables at steps of 10) and present 
results of how precise does the extended Omni 
Optimizer approximate their global minimum within 
10 000 objective function evaluations at most. 
However, six out of them are again separable in all 
of their variables. As mentioned before, such func-
tions are commonly inappropriate for assessing the 
performance of optimization tools, because the so- 
called curse of dimensionality only strikes linearly 
with increasing n, rather than exponentially. Thus, 
their statement “that the omni-optimizer is ideally 
suited for solving large-scale optimization problems 
and its performance does not degrade significantly 
by increasing the dimension of decision space” (p. 
1074) is not sincerely justified. Rather than re-
running further tests with only limited significance,
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Table 5: Further single-objective optimization results for 
the Schwefel function. 

 Ext Omni Opt CHEOPS 

Test function Schwefel 

Population size ?? 24 

n = 10 variables 2.00 ⋅ 10−2 1.273 ⋅ 10−4 

n = 20 variables 7.98 ⋅ 10−1 2.546 ⋅ 10−4 

n = 30 variables 2.73 ⋅ 100   3.846 ⋅ 10−4 

n = 40 variables 5.90 ⋅ 100   1.397 ⋅ 10−3 

n = 50 variables 7.74 ⋅ 100   5.747 ⋅ 10−3 

n = 60 variables 9.62 ⋅ 100   5.847 ⋅ 10−2 

n = 70 variables 1.16 ⋅ 101   2.654 ⋅ 10−1 

n = 80 variables 1.37 ⋅ 101   1.231 ⋅ 100   

n = 90 variables 1.48 ⋅ 101   1.092 ⋅ 100   

n = 100 variables 1.63 ⋅ 101   1.798 ⋅ 100   

 averaged f  after 10 000 objective function 
evaluations 

the author refers to the very stringent benchmark 
functions for single-objective optimization compiled 
by Nieländer (2009), and to the excellent CHEOPS 
results presented therein. 

5 CHEOPS’ ADVANCED 
MODES OF OPERATION 

Remember that CHEOPS simultaneously uses many 
different selection methods as well as genetic op-
erators in its basic optimization cycle. Hence, the 
selective pressure varies and the genetic diversity 
within the population is long-term maintained: Even 
if the same parent individuals are being selected, 
different child individuals will usually be produced 
from them. 

If some genetic operator turns out to be well-
suited for the current optimization problem, because 
it frequently or even regularly produces still better 
child chromosomes, then it would make sense to ap-
ply it more often - likewise the selection methods 
involved. This may speed up the evolution process 
and / or increase robustness. Reflecting the evolution 
of the population, CHEOPS builds up a dynamic pe-
digree and uses reinforcement learning (systematic 
reward and penalty) to adjust the probabilities of 
applying each genetic operator and each selection 
method adaptively while the algorithm is running. 
Note, unfortunately, that this does not suspend the 
No Free Lunch theorem of Wolpert and Macready 
(1995, p. 24): “It should be noted that this applies 
even if one considers ‘adaptive’ search algorithms 
which modify their search strategy based on pro-
perties of the population of  [ candidate solution - its 
objective function value ]  pairs observed so far in 

the search, and which perform this ‘adaptation’ 
without regard to any knowledge concerning salient 
 features of  f.” 

Someone might argue that simultaneously using 
many different selection methods as well as genetic 
operators would not be enough against the risk of 
inbreeding with steady state genetic algorithms. That 
is why further counter-forces for advanced modes of 
operation are implemented in CHEOPS: 

 After being selected for reproduction, a candi-
date solution may get older by automatically 
making its objective function value a little bit 
worse. Thus, any especially good, but maybe 
just locally optimal candidate solution cannot 
determine the evolution process forever. 

 Since all the selection methods are imple-
mented both ways, CHEOPS may occasionally 
revert the current optimization direction 
(maximization vs. minimization) for a short 
time to find its way back from local optima not 
being stuck therein forever. 

 Once in a while, CHEOPS can re-initialize 
some good, or bad, or randomly picked candi-
date solutions thus stimulating the evolution 
process again by bringing new individuals 
(random uniform sampling within the search 
space) into the population. 

 Multiple populations can evolve simultaneous-
ly in parallel with occasional exchange / migra-
tion of candidate solutions. 

When separately or in combination activating 
those advanced modes of operation and running, 
unfortunately, CHEOPS’ optimization performance 
is difficult to analyze both theoretically as well as 
systematically. There are many control parameters to 
set-up initially, but no obvious relationship between 
parametrization and current optimization per-
formance could be established yet. General rules for 
automatic optimal, at least reasonable set-up would 
be nice to have to avoid numerous pre-runs prior to 
actual optimization. Thus, there is a lot of on-going 
research on each of these advancements and their 
particular usefulness. 

6 FUTURE WORK: SOLVING 
MULTI-OBJECTIVE 
PROBLEMS 

Many mathematical, techn(olog)ical, or economic 
optimization problems from scientific, industrial, 
and commercial practice do not involve just one 
objective function. Instead, several objectives have 
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to be fulfilled simultaneously. Generally, these 
objectives will be independent of each other and 
conflicting as well as incommensurable with some 
of them to be maximized and the other(s) to be 
minimized. However, in a Cost Benefit Analysis for 
example, minimum expenses cannot yield maximum 
profits due to economic reasons. Hence, a unique 
and perfect solution meeting all the objectives’ 
optimal values does hardly exist. Instead, improve-
ment in one objective can only be achieved by some 
other objective’s deterioration. That is why the 
requirements to the optimization tools and their 
search and solution procedures are more challenging 
for multi-objective optimization compared to usual 
single-objective optimization. 

6.1 Appropriate Selection Methods 

In single-objective optimization, all candidate solu-
tions can be compared and sorted according to their 
objective function value. The selection methods of 
evolutionary algorithms rely on such a comparison 
and ranking. In multi-objective optimization, how-
ever, two candidate solutions are incomparable if the 
first is better than the second for some objective(s) 
whereas the second is better than the first for another 
objective(s). Thus, the two candidate solutions do 
not dominate each other. Consequently, appropriate 
selection methods are particularly necessary for an 
evolutionary algorithm not only to handle single-
objective optimization problems, but also to tackle 
multi-objective optimization problems and to solve 
them successfully in a single run. The usual weight-
ed sum approach might not be adequate. 

As mentioned before, a unique and perfect solu-
tion meeting all the objectives’ optimal values does 
hardly exist. Instead, the optimization tool should 
output lots of such candidate solutions that cannot be 
dominated by any other(s), thus spanning the trade-
off surface for the current optimization problem in 
the objective space. That is known as Pareto-
optimality, and according to that Pareto ranking of 
all candidate solutions within the population is 
commonly used by the selection methods of multi-
objective evolutionary algorithms. More than twenty 
years ago, Goldberg (1989) outlined the basic idea 
which is implemented in the Omni Optimizer, too: 
All non-dominated candidate solutions within the 
current population are identified, top-ranked and 
temporarily suspended. Thereafter, all non-
dominated candidate solutions within the remaining 
population are identified, next-ranked and 
temporarily suspended. This process continues until 
the entire population is ranked. Finally, selection 

methods can be applied based on that ranking. An-
other population ranking can be defined by counting 
how many other individuals each candidate solution 
dominates and / or is dominated by within the current 
population. 

According to Hughes (2005), however, 
optimization tools using selection methods based on 
Pareto ranking to sort the population will be very 
effective only for optimization problems with few 
objectives. Coello Coello, Lamont and Van Veld-
huizen (2007) also explain that Pareto ranking 
becomes inappropriate when dealing with a large 
number of objectives. For such optimization 
problems, all the individuals within the population 
will soon become non-dominated and selective 
pressure decreases. That is why the CHEOPS 
selection methods for multi-objective optimization 
should not rely on Pareto ranking of all the candidate 
solutions with-in the population. Remember that 
they have to be implemented both ways, selecting 
preferably good candidate solutions to reproduce 
and rather bad ones to die. 

6.2 Elite Population Archiving 
Strategies 

In single-objective optimization, elitism was simply 
keeping track of the best candidate solution(s) found 
so far while the evolutionary algorithm is running. 
However, in multi-objective optimization all such 
candidate solutions should be kept that are not 
dominated by any other(s). That is why a separate 
elite population must be reviewed continually and 
updated accordingly. Eventually it may contain hun-
dreds even thousands of non-dominated candidate 
solutions being as close as possible to the true trade-
off surface for the current optimization problem. 

Hence, some archiving strategy would make 
sense to implement in CHEOPS not keeping all but 
only a limited number of such candidate solutions. 
Of course, they should cover the trade-off surface as 
widespread as possible within the objective space. 
This can be achieved by maximizing the inner 
distances between the candidate solutions kept in the 
elite population, or by maximizing the area / (hyper-
) volume they dominate. According to Corne and 
Knowles (2003), however, this essentially leads to 
Free Lunch results for archived multi-objective 
optimization. 
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7 SUMMARY 
AND CONCLUSIONS 

This paper has introduced the Chemnitz Hybrid 
Evolutionary Optimization System to the scientific 
community. Being a non-standard genetic algorithm 
framework, CHEOPS allows simple as well as ad-
vanced modes of operation. 

In the present paper we have restricted ourselves 
to single-objective optimization, because CHEOPS 
is still under construction. It will be enhanced to 
solve multi-objective problems as well. Thus, an-
other paper might take up the comparison in the near 
future. Surprisingly, steady state genetic algorithms 
like CHEOPS are rather unusual in multi-objective 
optimization practice - without any justification and 
perhaps unaware of their main advantage. The 
proposed enhancement to solve multi-objective 
problems simply by appropriate selection methods 
and elite population archiving strategies is indeed 
quite straightforward. Furthermore, CHEOPS does 
not need any other modifications such as variable 
space and objective space crowding, or niche and 
speciation methods. 

In their pioneering papers, Deb and Tiwari 
(2005, 2008) have argued that multi-objective, 
multi-optima optimization problems are the most 
generic ones. They have concluded that, if designed 
carefully, an algorithm capable of solving such 
problems should also solve single-objective and / or 
uni-optimal problems in a straightforward, so-called 
“degenerated” manner. However, due to the 
disappointment of their (extended) Omni Optimizer 
with regard to its single-objective optimization 
results as assessed in the present paper, a high-
performance genetic algorithm well-suited for solv-
ing both single- and multi-objective optimization 
problems is still a matter of serious research. It 
might be acknowledged by the scientific community 
in the near future and should find increasing use in 
real-world optimization practice, too. 

Let us finally think about that reasoning of Deb 
and Tiwari in more detail. In multi-objective 
optimization, the optimization tool should output 
lots of such candidate solutions that cannot be 
dominated by any other(s), thus spanning the trade-
off surface for the current optimization problem in 
the objective space. That is known as Pareto-
optimality, but being a pareto-optimal candidate 
solution does not require getting close to extreme in 
one or more objective function(s). Unlike, getting 
close to extreme is what single-objective 
optimization is all about! In multi-objective 
optimization, there are usually infinitely many 

pareto-optimal candidate solutions - in single-
objective optimization, the optimization tool has to 
push the objective function to its very extreme to 
find the true, one and only global optimum. Thus, it 
is the author’s opinion, that single- and multi-
objective optimization are two different jobs, and 
you cannot perform well in one job just by “de-
generation” of the skills you have trained for and 
practiced in another job. 
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