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Abstract: In the paper, we investigate the satisfiability and validity problems of a formula in the propositional Godel
logic. Our approach is based on the translation of a formula to an equigiNfone which contains literals of
the augmented form: eitharora — b or (a — b) — b, wherea, b are propositional atoms or the propositional
constant®), 1. A CNF formula is further translated to an equisatisfiable finite order clausal theory which
consists of order clauses, finite sets of order literals of the farmas or a < b. = and< are interpreted by
the equality and strict linear order ¢@, 1], respectively. A variant of th®PLL procedure for deciding the
satisfiability of a finite order clausal theory is proposed. DL procedure is proved to be refutation sound
and complete. Finally, we reduce the validity problem of a formula (tautology checking) to the unsatisfiability
of a finite order clausal theory.

1 INTRODUCTION ing rule forming branches for every truth value. So,
the branching factor equals the cardinality of the truth
A noticeable effort has been made in the develop- value set. The branching factor can be decreased by
ment of SAT solvers (calledSAT solvers for the  a quotient of the truth value set wrt. a suitable equiv-
Boolean satisfiability problem), especially in the last alence. A slight modification of that equivalence en-
decade. Roughly speakingSAT solvers exploit  ables a generalisation to an infinite truth value set as
either complete solution methods, called complete well (Guller, 2009). Another signed variant of the
or systematicSAT solvers, or incomplete or hy- DPLL procedure for a countable clausal theory over
brid ones. Complet&AT solvers are mostly based an arbitrary truth value set is proposed in (Guller,
on the Davis-Putnam-Logemann-Loveland procedure 2009). In some sense, ti#PLL procedure may be
(DPLL) (Davis, 1960; Davis, 1962) improved by var- viewed like "anti-resolution”. Thus, its branching
ious features. Some of the latest overviews of the de-rule, with a finite branching factor, may be consid-
velopment ofSAT solvers, with the underlying com- ered as if a "signed anti-hyperresolution rule”. The
plexity theory, may be found in (Dixon, 2004; Dixon, procedure is refutation complete if the finitary dis-
2004; Kautz, 2007; Gomes, 2007; Biere, 2009). junction condition for the set of signs occurring in the
The research in many-valued logics mainly concerns input countable clausal theory is satisfied. Infinitely-
finitely-valued ones. Thank to the finiteness of truth valued logics have not yet been explored so widely
value sets of these logics, almost straightforward ex- as finitely-valued ones. It is not known any general
tensions of results achieved in classical logic are fea- approach as signed logic one in the finitely-valued
sible. TheDPLL procedure has been firstly gener- case. The solution of th8AT and VAL problems
alised for regular clauses over a linearly ordered truth strongly varies on a chosen infinitely-valued logic.
value set (Hahnle, 1996). In ((anya, 1998), it is de- The same holds for the translation of a formula to
scribed an implementation of this requl2PLL pro- clause form, the existence of which is not guaranteed
cedure with the extended two-sided Jeroslow-Wang in general. The results in this area have been achieved
literal selection rule defined in (Hahnle, 1996). A in several ways, since infinite truth value sets form
signedDPLL procedure over a finite truth value set is distinct algebraic structures. One approach may be
introduced in (Beckert, 2000). It is based on a branch- based on the reduction from the infinitely-valued case
to the finitely-valued one, as it has been done e.g.
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zoli, 2000). Another approach exploits the reduction
of the SAT problem to mixed integer programming
(MIP) (Hahnle, 1994a; Hahnle, 1997). (Baaz, 2001)
investigates th&AL problem in the prenex fragment
of the first-order Godel logic enriched by the rela-
tivisation operaton\, denoted as the pren@&. At
first, a variant of Herbrand’s Theorem for the prenex
G4 is proved, which reduces theéAL problem of a
formula in the prenexzS to the VAL problem of an
open formula inG5. Then a chain normal form is
defined using the formulae< Y, as an abbreviation
for =A(Q — @), and@ =5 Y, as an abbreviation for
A(@— W) AA(Y — @). These formulae express the
strict dense linear order with endpoints and equality
on [0, 1], which is not possible withouk in G.,. Fur-
ther, a meta-level logic of order clauses is defined,
which is a fragment of classical one. An order clause
is a finite set of inequalities of the form eith&r< B

or A < B where<, < are meta-level predicate sym-
bols andA, B are atoms ofG2 considered as meta-
level terms. The semantics of the meta-level logic of

translated t@ < bva=bvb=1or(a—b)—bto
b<aVvb=1. The trichotomy on order literals: either
a<bora=borb < a, naturally invokes proposing

a variant of theDPLL procedure with a trichotomy
branching rule as an algorithm for deciding the sat-
isfiability of a finite order clausal theory. THaPLL
procedure is proved to be refutation sound and com-
plete, Theorem 4.1, Section 4. The set of basic Rules
(37), (38), (39) may be augmented by the admissible
ones(50), (51), (52), (53), (54), (55), which are suit-
able for practical computing and considerably shorten
DPLL trees. In case of solving theéAL problem, we
exploit the fact that a formul@is a tautology (valid)

if and only if the order formulg < 1 is unsatisfiable,
Theorem 5.1, Section 5. At firsfis translated to an
equivalenCNF formulay = A, Vi<m 1}, 1} are lit-
erals. Hencegis a tautology if and only if the order
formulay < 1 = VicpAj<m I'j =< 1 is unsatisfiable.
Further, every order formull < 1 is translated to
an equisatisfiable conjunction of disjunctions of order
literals: e.g.(a— b) < listranslated tbh <anb <1

order clauses is given by classical interpretations on or ((a—»b) — b) < 1to(a< bva=b)Ab= 1. This

[0,1], varying on assigned (truth) values to atoms of yijelds an equisatisfiable finite order clausal thetyy
CBOA0 handled as meta-level terms, which are the strict toP <1 and(p_< 1. SO,(piS a taut0|ogy if and On|y if

dense linear order with endpoints fia1}; < is inter-

preted as the strict dense linear order with endpoints

and< as its reflexive closure o}®,1]. A formulain
the prenexGS is valid if and only if a translation of it

Ty is unsatisfiable.

The paper is organised as follows. Section 2 gives
the basic notions, notation, and useful properties con-
cerning the propositional Godel logic. Section 3 deals

to the order clause form is unsatisfiable with reSpeCt with clause form translation. In Section 4, we propose

to the semantics of the meta-level logic. The chaining
calculi in (Bachmair, 1994; Bachmair, 1998) may be
used for efficient deduction over order clauses.

In the paper, we investigateAT and VAL prob-
lems of a formula in the propositional Godel logic.

Our approach is based on the translation of a formula

to an equivaleniCNF one, Lemma 3.1, Section 3,
which contains literals of the augmented form: ei-
thera or a— b or (a — b) — b, wherea, b are
propositional atoms or the propositional constahts

a variant of theDPLL procedure with a trichotomy
branching rule and prove its refutational soundness,
completeness. Section 5 solves e problem (tau-
tology checking).

2 PROPOSITIONAL G ODEL
LOGIC

1. At this stage, unlike the chain normal form in Throughout the paper, we shall use the common no-
(Baaz, 2001), we do not need to express the lineartions of propositional many-valued logics. The set of
order of truth values by any formulae. We consider propositional atoms of Godel logic will be denoted
a ground fragment of the first-order two-valued logic as PropAtom By PropForm we designate the set
with equality and strict order. The syntax is given by of all propositional formulae of Godel logic built up

a class of order clausal theories. An order clause is afrom PropAtomusing the propositional constarfls
finite set of order literals of the form either= b or the false,1, the true, and the connectives nega-
a<b. The semantics is given by a class of order inter- tion, A, conjunction,v, disjunction,—, implication.
pretations. An order interpretation is a first-order two- We shall assume that Godel logic is interpreted by the
valued interpretation such that its universunfsl], standardz-algebra

= is interpreted as=j5 1, and < as <jp,. For the -G

purpose of solving trgé,]ATproblem, a[CN]F formula G=([0,1,<,v,A=e, 7,0,1)

is translated to an equisatisfiable finite order clausal wherev and A denote the respective supremum and
theory, Lemma 3.3, Section 3. The basis is the trans-infimum operators of0, 1],

lation of a literal to an order clause: e.gq.— b is

32



A DPLL PROCEDURE FOR THE PROPOSITIONAL GODEL LOGIC

on G. v is a (partial) propositional model af, in

lifa<b symbols? = g, iff |¢|” = 1. ¥ is a (partial) propo-
a=cb= {belse_ ’ sitional model ofT, in symbols? = T, iff for all
Qe T, v | @ @is a propositional consequenceTaf
G lifa=0, in symbolsT =p ¢, iff for every propositional model
ar= {Oelse v of T, ¥ = @. @is equivalent tog/, in symbols

o= ¢, iff for every valuation, ||¢|” = ||¢||". @| T

is satisfiable iff there exists a propositional model of
@|T. @| T is equisatisfiable tap | T' iff @ | T is
satisfiable if and only ify’ | T’ is satisfiable.

We recall thatG is a complete linearly ordered lat-
tice algebra; the supremum operatolis commuta-
tive, associative, idempotent, monotone, O is its neu-
tral ele_zm_ent;.the infimum operatoris cqmmutative, LetX,Y, ZbesetsZC X, andf:X — Y a
assocg;\tlve, |de_mpotent, monotone, 1 is its neutral el- mapping. ByX C, Y we denoteX is a finite subset
emer_1t_, the reS|_duun_1 operates¢ of A satisfies the of Y. We designater (X) = {x|x C X}, 2(X) is the
condition of residuation: power set oiX; 2, (X) = {x|xC, X}, 2, (X) is the

foralla,b,ce G,aAb<c<=a<b=gc, (1)  setofallfinite subsets ok; f[Z] = {f(2)|z € Z},
f[Z] is called the image of with respect tof; and

forallac G,a® = a=O: ) Z. f:w—Yisasequence of iff f is a bijection.
and the following properties, which will be exploited
later, hold?
3 TRANSLATION TO CLAUSAL
Foralla,b,ce G, FORM
avbAac=(avb)A(ave),
(3) (distributivity of v overA) We propose translation of a formula to an equivalent
aA(bvc)=anbvanc, CNF formula, Lemma 3.1. In contrast to two-valued
(4) (distributivity of A over\v) logic, we have to consider an augmented set of literals
by c) — by b 5 appearing irCNF formulae. Let, @ € PropForm | is
a=g(bve)=a=cbva=eb, ©) aliteraliffeitherl =aorl =a—borl=(a—b)—b
a=gbAc=(a=ch)A(a=ch), (6)  wherea € PropAtomand b € PropAtomuU {0}. @
(avb)=cc=(a=cc)A(b=cC), 7 is a conjunctive disjunctive normal form, in sym-
aAb=gc=a=ccVb=gc 8) bols CNF | DNF, iff either g=0or@=1o0r =
a=¢(b=cC)=anb=gcC (9) /\i%{‘vjém” | @= Vi<nAj<m |} wherelj are liter-
’ als!
((a=gb)=cb)=cb=a=¢h, (10)

(@=cb) =eC=((a=cbh) =cb)A(b=sc) Ve Lemma 3.1. Let @ € PropForm. There exists a CNF
(11) =

(@=cbh)=c0=((a=c0)=c0)Ab=¢0. (12) Proof. It is straightforward to prove that there ex-
ists & = @ without any occurrence of. The proof
is by induction on the structure af using (2); ev-
ery subformula of the form¢ of @ is replaced with
¢ — 0= —¢. We further prove the statement:

A valuation % of propositional atoms is a map-
ping 7 : PropAtom— [0,1]. A partial valuation”’
of propositional atoms with the domagom(v) C
PropAtomis a mapping : dom(%) — [0,1]. Let
atomg@),atomgT) C dom(% ) in case of¥ being a There exists €NF ) = 3. (13)
partial valuation. The truth valugin 7, in symbols ] ] .
|@l|”, is defined by the standard way; the proposi- The proof is by mdu_ctlon on the structure df all
tional constant®, 1 are interpreted by 0, 1, respec- € occurrences of; in 9 are pushed down and the

tively, and the connectives by the respective operators'€SUiNGCNF W is recursively built up. The obvious
cases ar® € PropAtomuU{0,1} andd =381 A32. In
2Using the commutativity, associativity, idempotence, the case} = 91V &,, the distributivity ofv over A,
monotonicity, neutral elements of and A will not be ex- (3), is exploited.
plicitly referred to.
3We assume the decreasing operator priority sequence 4Associativity of A, V will not be explicitly referred to,
“CA, =, V, which enables writing order clauses without and hence)\«, @, Vi<, @ € PropFormare written without
parentheses. parentheses. a
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Letd =91 — 92. Then, by induction hypothesis,
there existCNF's Y1 = 81, Y2 = 92, and we distin-
guish three cases fdr;, Y. Case 1: eithetp; =0or
W2 = 1is obvious;y; — Yo =1. Case 21 =1is
also obviousyp; — Y2 = Y. Case 3: neithep; =0
nor Y, =1noryis =1 Thenyi = Ni<nVij<m I},

I} are literals, and we get two cases fps: either

W2 = Ar<v Vsey, K ks are literals, onz = 0. Using
(6), (5), (8), (7), (3), in both the cases, there exists

0 0 (IH)
AV N=2K=ti20h=91-9,=9, (14)
0<Og<=zq
)\g are literals, eithng are literals om? =0, We
show that
forall 8 < © andg < =g, (15)
there exists DNF 69 = )\9 — KE
LetB < © and¢ < =g. We then distinguish nine cases
for )\g and Kg. Case 3L )\? —a and Kg =D, ac
PropAtom b € PropAtomu{0}. Hencep? =a— b=
)\g = Kg is aDNF. Case 2; )\g —a—b anng =,
a € PropAtom b, ¢ € PropAtonmu {0}. Hence,
11
& = ((a—b) > b)A(b—c) Ve =2 (a—sb) =sc

_ 16 )
=A £ 7Kg

is aDNF. Case 33: A} = (a— b) — bandki =,
a € PropAtomb,c e PropAtomJ {0}. Hence,
& =(a—=b)A(b—c)vce

0
29 ((a—b)—b) = b)A(b—c) Ve
2 (@a=sb)—b) s c=A =k’
is aDNF. Cases 3!— 3.9: either)\e:aor)\e:

a—borA!=(a—b)—b andk{=¢ —d where
eitherd = c ord =c—d, a,c e PropAtom b,d €
PropAtomU {0}. By Cases 3 — 3.3, there exists a
DNFA? =A{ —d, and

8
E—Avod=A > dve—dZA NG d

)

=N = (0 —>d) =\ k¢

is aDNF. So, the claim15) holds. We get that there
exists aCNF

SAVEZSA VN
6<G)E< ) 6<G)E< )
Thus, the claim(13) holds. The induction is com-

13
pleted. We conclude that there existCaIF g

I =0Q.
O
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Using Lemma 3.1, we translata — b) — ((b —
¢) — (a—c)) € PropForm a,b, ¢ € PropAtom to an
equivalenCNF:;

(a—=b)— ((b—c)— (a—0))

I
G

(a—=b)—= ((b—=c)ra)—c)

—
ul
~

I
G

(a—=b)— ((b—c)—c)v(a—b)— (a—c)

I
s

(@—=b)A(b—c)) —cv((a—b)ra)—c

(a—b)—cv(b—c)—cVv
(a—b)—cva—c

,\
=
R’

(a—b)—cv(b—c)—cva—c

I

((@—=b)—=b)A(b—cC))V

I
s

cvV(b—c)—cva—c

((@—=b)—=bvecv(b—c)—cva—c)A
(b—cvev(b—c)—cva—c).

In Lemma 3.1, we have laid no restrictions on the
use of the distributivity law(3), during translation to
conjunctive normal form. Therefore the size of the
outputCNF may be exponential in the size of an in-
put formula. To avoid this disadvantage, we propose
translation taCNF via interpolation using new atoms,
which produce€NF formulae in linear size. A sim-
ilar approach exploiting the renaming subformulae
technique can be found in (Plaisted, 1986; Boy, 1992;
Hahnle, 1994b; Nonnengart, 1998; Sheridan, 2004).
By pj € PropAtomwe denote atoms not yet occur-
ring |n the set of formulae in question. The empty se-
quence of symbols is denotedsad et ¢ € PropForm
We define the size ap by recursion on the structure
of @

1 if @ € PropAtonmu {0,1},
ll+1  ife=—q,
|1l + 2| + 1if o= Qro @y

whereo € {A,V,—}.

Let ¢; € PropFormand p‘j € PropAtom We denote

o =

i [ if @; € PropAtom
5= Pj if ¢j & PropAtom
o if @; € PropAtom
1 pJ — @ if @; & PropAtom

,nj_:

{s if ¢; € PropAtom
j

@ — plif ¢; ¢ PropAtom
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Table 1: Interpolation rules.

Size of antecedent

Case: Positive interpolation Laws - -
Maximum size of consequent
Negative interpolation
P AR || + 92| +3 6
ane (7= 00 A (P — @) ® o0+ 102/ +5 (16)
QLAG P |1| + 2| +3
@ PV 05— Py A Th AT ® o1 + 2]+ 13 an
Po— (V@) |y |+ || +3
e P = 9L o 05 A oA 7 © @ +102] 13 4
(@V )~ Py @ |ou| + |2 +3 (19)
@ = P AQ— Py @]+ |@2| +5
Po— (AG—0) |1 |+ [ +5
o0 (T = 07, 0V 8 = 0 A AT 0 Toi + @l +17 0
(@AQ—0) =Py |1| + 2| +5
(@0 =P A (B0 F)) (8),() ol + 0] 9 @
Po— (V@) = 0) |1 |+ || +5
(@ Ve) =0 CETEIRACEICET) (0. (®) o0+ 02/ 5 9 (22)
(@ V) = 0)= p, |1 |+ 92| +5
(¢} — 0) =0V (¢} = 0) — 0OV ph) ATTH ATTE (11),(7).(8) 1]+ || +19 (23)
Po— (A —0)=0) |u| + 2| +7
®AR=0=0 (P = (@1 0) > 0)) A (Pp — (@ — 0) 5 0) ©). ) o1+ 2]+ 13 @4
(g Ag—0)—0) —pp |y |+ || +7
(6, — 0V, —0Vph) ATh AT (L0, ) @]+ [qe] +15 (e2)
P = (V@) = 0) »0) o] + || +7
() =0 =0 =0V @, 0~ 0v @0~ o (OO 0+ 62l 21 9
(V) 2 0)=0) —py |u| + @2 +7
({0 —0) > 0) = Py) A (@~ 0) — 0) > pp) .@, () o1l +102] +13 @)
b = (((pr — 0) = 0) > 0) || +8
(g —0)—0)—0 p})a(cplao) (10 o4 (28)
(= 0)—>0) > 0) = pp || +8
(@ —0)—pj (19 o] +4 (29)
Po— (1= @) = 0)—=0) |y |+ [ | +7
(= @) =0 =0, #0 (pio—>OV(I:ti1—>0\/((|:ti2—>O)—>0)/\*Tl"1/\+rl"2 (9),(8),(12),(8),(10) m (30)
(L= @) = 0) = 0) = || + @2 +7
CEUED(CECECEDY (12,800, oul 7100/ 7 11 3D
Po— (¢ = @) = 0) ||+ 2| +5
(@ @)= 0040 (7= (@ —0) > 0 A (B (@ = 0)) (2.6 o0l +10p| 11 (32)
(¢ = @) = 0) = |1 |+ [ +5
@10V (% 0) 5 0V A TG/ T 00200 1T g 517 9
Po— (01— @) o] + |2 +3
o @ e 70 (P = 8V @ — B A TEATTE ©.® o1+ 2]+ 13 34
(o — @) — 1) |1| + 2| +3
(L 85 5 05V P A (8 o) AT AT (0.3 o]+ 102 117 (39)
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Let @1, € PropFormand pij € PropAtom In Ta-

ble 1, we introduce interpolation rules. Lete
PropForm (s is a CNF of @ iff  is a CNF ob-
tained fromp' A (p' — @) for somei by a finite deriva-
tion using the interpolation rules. We denote the set
of all CNF's of ¢ asCNF(¢). Let f,g: M — N.

f € O(g) iff there existsk such that for allme M,
f(m) < kg(m).

Lemma 3.2. Let ¢ € PropForm. CNKg) # 0, and

for all Y € CNF(@), W is equisatisfiable tap, @] €

O(l¢h)-

Proof. The proof of CNF(¢) # 0 is by induction on
the structure ofp. It is straightforward to prove that
p'A(p' — @) is equisatisfiable tg; for every interpo-
lation rule, its antecedent is equisatisfiable to its con-
sequent; if for every, Y is equisatisfiable t@, then

so isA; Wi to A; @; there existk such that for every
interpolation rule, the size of its consequent is less
than or equal td times the size of its antecedent. Let
J € CNF(@). Then there exist, n, a finite derivation
Co=p'A(P = 0);...,{n = W, andk such that for all

j <n, ¢ is equisatisfiable topand |{;| < k.|@|. The
proof is by induction om using the previous state-
ments. O

Using Lemma 3.2, we translat@ — b) — ((b —
c) — (a— c)) € PropForm a, b, c € PropAtom to an
equisatisfiabl&€NF:
0, (0
Po A (Po — (,aj b) —
P1

(b—c)—(a—0)), (34)

P

PA (P — PV ) — P A
((a—Db) = p)) A
0
(P2~ ((b—c)—(@a—0)), (35),(34
Pt
PA (P — PV p) = P A
((@a—b) = bvpd)A(b— pd)A
(P2 — P53V P1 — P3) A
(b—c) — pi) A

Pz

(p3 = (a—©)), (35),(34)

PoA (P — PV P) = pI)A
((@a—=b) = bvpd)A(b— pd)A
(P — P53V PL — P3) A

36

(b—c)—=cvph)A(c— phA

(ps —cva—c).

We further introduce a ground fragment of the
first-order two-valued logic with equality and strict
order. The syntax is given by a class of order clausal
theories. We form order literals and clauses from
PropAtonU {0,1}, regarded as constants, using bi-
nary predicates:, equality, and<, strict orderl is an
order literal iff eithed = a= b =b = a; since equal-
ity is commutative by definition, we identifg = b
andb = a; or | =a < b wherea,b € PropAtomuU
{0,1}. An order clause is a finite set of order lit-
erals. An order clausély,... Iy} is written in the
form Iy Vv --- Vs The order claus® is called the
empty clause and denoted@s An order clausegl }
is called a unit order clause and denotetl && does
not cause the ambiguity with the denotation of the sin-
gle literall in a given context. We designate the set
of order clauses a9rdCl. Letl, I1,...,I, be order lit-
erals andC,C’ € OrdClI. By | vC we denote{l } UC
wherel ¢ C. Analogously, by ;1; V.C we denote
{li}U---U{lptuCwhereforall 1<i#i' <n,l; ¢C
andl;j # l;. By CvC’' we denoteCUC'. C is a sub-
clause ofC’, in symbolsC C C/, iff C C C'. An order
clausal theory is a set of order clauses. A unit or-
der clausal theory is a set of unit order clauses. Let
T,T' C OrdCl. By atomgC) |atomgT) C PropAtom
we denote the set of all the propositional atoms oc-
curring inC | T. The semantics is given by a class of
order interpretations. An order interpretatiorwith
the domaindom( 1) = PropAtomis a first-order two-
valued interpretation such that, = [0, 1], for alla e
PropAtoma’ € [0,1],0' =0,1" =1, and="== 4,
<'=<[0y. A partial order interpretatiom with the
domaindom(1) C PropAtomis an order interpreta-
tion such that for alla € dom(zr), a' € [0,1]. An
(partial) order interpretation is identified with the
(partial) valuationv; : domv;) — [0,1], ¥;(a) =
a’. Let atomgl), atomgC), atomgC’), atomsT),
atomgT’) C dom(1). 1 is a (partial) model of, in
symbols! =1, iff either forl =a=b, a' =y b/,
orforl =a<b,a’ <y b'. 1 is a(partial) model of
C, in symbols! = C, iff there existd € C such that
I E=1. 1 is a (partial) model of, in symbolss =T,
iff forall Ce T, 1 |=C. Note that] andT such that
O e T are unsatisfiable by definitiorC’ is an order
consequence @&, in symbolsC |=¢ C/, iff for every
modelr of C, 1 =C'. Cis an order consequence of
T, in symbolsT |=o C, iff for every modelr of T,

1 EC. T'is an order consequence f in symbols
T o T/, iff forevery modelr of T, 1 =ET. C| T
is satisfiable iff there exists a model®@f| T. C' | T/
is equisatisfiable t&€ | T iff C' | T' is satisfiable if
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and only ifC | T is satisfiable. ByOrdPropFormwe

orl=1=1l1lorl=0<1orl=a=awhereac

designate the augmented set of all order propositionalPropAtom I1 V1, VI3 is a general trichotomy iff; =

formulae built up fromPropAtomusing0, 1, -, A, V,
—, and=<, =. Note thatOrdPropForm2 PropForm

by definition, and all the notions and notation con-
cerned withPropFormare straightforwardly extended

to OrdPropForm

Lemma 3.3. Let ¢ be a conjunctive normal form.

There exists JC, OrdCl such that § is equisatis-
fiable toq.

Proof. By the definition ofCNF, we distinguish three
cases forp. Case 1= 0. Thengis unsatisfiable and

Te = {0} <, OrdClis unsatisfiable as well. So, the

claim holds. Case 2p= 1. Thengis satisfiable and

Ty =0 C, OrdClis satisfiable as well. So, the claim

holds. Case 3p= Ai<nVj<m !, 1} are literals.

Foralli <nandj <m, there exists (36)
C} € OrdCl such thaC} is equisatisfiable tt}.

The proof is by definition. _
lj. Case 3L I} = a, a € PropAtom ' ThenCj =
a=1 Case?2: I} =a— 0, a€ PropAtom Then
Cj=a=0. Case 3: I} =a— b, ac PropAtom
b € PropAtom ThenC} =a<bva=bvb=1. Case
34: 1 =(a—0) — 0, ac PropAtom ThenC;j =
0<a. Case &: |} =(a—b) — b, ac PropAtom
b € PropAtom ThenCj =b<avb=1 So, the
claim (36) holds. By(36), there existdy C; OrdCl
such thaffy = {Vj<n C; |i < n} is equisatisfiable to
Q.

Using Lemma 3.3, we translate tGdNF ((a — b) —
bvev(b—c)—cva—c)A(b—cvev(b—c)—

cVa— c), a,b,c € PropAtom to an equisatisfiable

T C4 OrdClwhere

T={b<avb=1vc=1v
c<bvc=1lva<cva=cvc=1,

b<cvb=cvc=1vc=1V
c<bvc=1lva<cva=cvc=1}.

4 DPLL PROCEDURE

We devise a variant of tnBPLL procedure over finite

order clausal theories. At first, a minimal set of basic

rules is introduced. Ldt, |4, I, I3 be order literals!
is a contradiction iff eithet=0=21orl =0<0or
I=1<1lorl=a<0orl=1<aorl =a<awhere
a € PropAtom | is a tautology iff eithed =0=0

We get five cases for

a<b,l,=a=b,l3=b<awherea,b € PropAtonu
{0,1}. LetT C OrdCl. The basic rules are as follows:
(37) (One literal contradiction simplification ruje
T
Tu{O}
if T is a unit order clausal theoryt € T, and
| is a contradiction

(38) (One literal transitivity rule of= and <)
N
Tu{acc}

=if o1 = 0p ==,

whereo = {< else
if T-is a unit order clausal theoty

ao1b,boyce T, andog,op € {=,<};

(39) (General trichotomy branching ru)e
T
T— {|l\/C} U{|1} |
T —{|1\/C}U{C}U{|2} }
T—{livC}u{C}uU{ls}
ifl,vCeT,C#£0, and
I1 V12V Iz is a general trichotomy.

Rule (39) reflects the linearity ok gy in terms of
general trichotomy. Rulg37) formalises its addi-
tional properties: the endpoints<Qg 4 1 and strict-
ness via contradictions. Ru(88) expresses the mu-
tual transitivity of =g 3 together with<(g ;. Rules
(37), (38), (39) are sound in view of satisfiability:

T andT U {0} in the consequent of Rul@7) (40)
are both unsatisfiable.

T is equisatisfiable td U {acc} in the (41)
consequent of RuUlE38).
Let 7 be a partial order interpretation, (42)

dom(r) D atomgT).
r=Tifandonlyif7 =T —{l1vC}U{l1} or
I ET—{lavC}u{C}u{lz} or
I ET—{lavC}tu{C}u{ls}
in the consequent of Rul&9).

T is satisfiable if and only if
T-— {|l\/C} @] {|1} or
T—{lpvC}u{C}U{l} or
T—{lsvC}u{C}U{ls}

in the consequent of Rul89) is satisfiable.

(43)
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The proofis by assumption and definition. The refuta- there exists a sequendeof atomgT). At first, we
tional completeness argument of the basic rules, The-define partial order interpretatioMod, by recursion
orem 4.%ii), may be provided using the excess lit- ona < w:

eral technique (Anderson, 1970). From this point of )

view, Rules(37) and(38) handle the base cas€:is Modo = 0;

a unit order clausal theory, while Rul89) the induc- Mod. — Mo UL(8(0—1).v. O<d<w
tion one: it subtracts the excess literal measuré& of A Ga-1U{(3( ) Va-1)} )

z(t)lnesa:as(;li)é/ni for every clausal theory in a branch of its My = {”a”Modu,l la=8a—1) €T,
T is closed under Rulg87) and(38) iff for every a € domMod,-1) U{0,1}},
application of Ruleg37) and (38) of the form T Sa-1 ={Modi—1(a)|a<3(a—-1) €T,
T ac€domMody_1)}
T’ =T. By trang(T) C OrdCl we denote the least set v
such thatrans(T) 2 T andtrangT) is closed under Io—1 ={Mody_1(a)|d(a—1) <acT,
Using the basic rules, one can construct a finitely
generated tree with the input theory as the root in - M,Mq_l =0,
the usual manner, so as the classi@BLL procedure sl \V Mg-1, Mg_1 # 0;

does; for every parent vertex, there exists an applica-
tion of Rule(37) or (38) or (39) such that the parent - Mod,, = | | Mod.
vertex is the theory in its antecedent and the children a<w

vertices are the theories in its consequent. A branch

; pl ; It is straightforward to prove the following state-
of a treeis closed iff it contains a vert@x such that 9 P g

; e~ ments:
O e T'. Abranch of a tree is open iff it is not closed.
Atreeis closed iff every its branch is finite and closed. For alla < w, Mody is a partial order (44)
Note that a closed tree is finite by Konig's Lemma. A interpretationdon{Mod,) = 8[a], and

tree is open iff it is not closed. A tree is linear iff it
consists of only one branch, beginning from its root
and ending in its only leaf.

for all B < a, Modg € Mod,.

For alla < wandl € T such that (45)
Lemma4.1. Let T C OrdClI. atomsl) C domMody ), Mody = 1.
i C - .
(i) If T C4 OrdCl, then tran§T) C, OrdCl For alla < o anda e dom(Mody), (46)

(i) If T is a unit order clausal theory andl ¢
trangT), then trangT) is a unit order clausal
theory.

(i) atomgtrang(T)) = atomgT).

(iv) T EotrangT).

(v) If T C, OrdCl, then there exists a finite linear The proofs are by induction oo < w. We put
tree with the root T and the leaf trafi§) con- % = Modw. By (44), 2 = Mod,, is a partial or-
structed using Rule@7) and (38). der interpretationdom(2!) = dom{Modk,) 2 8[cy] =

atomgT). Letl € T. Thenatomgl) C atomgT) =

if Mody(a) =0, thena=0¢T.

For alla < wanda e domMody), (47)
if Mody(a) =1,thena=1€T.

Proof. By assumption and definition. (45)
O domMod,,) = dom®l) and2l = Mod,, —=1. So,
2 = T. We conclude thal is a partial model of,
dom®2() = atomgT).

The following lemma shows that Rul¢87) and
(38) are refutation complete for a (countable) unit or-
der clausal theory, which will be exploited in the base
case of Theorem 4(1). TheDPLL procedure is refutation sound and com-
Lemma 4.2. Let T = trangT) C OrdCl be a count-  plete.

able unit order clausal theory. There exists a partial Theorem 4.1(Refutational Soundness and Complete-

O

modelA of T, donfA) = atomgT). ness of thdPLL Procedure) Let T C; OrdCl.

Proof. By the theorem assumption thgtis a unit or- () If there exists a closed tree Tree with the root T
der clausal theoryd ¢ T = trang(T). In addition, constructed using Rulé87), (38), (39), then T
by the theorem assumption thitis a countable set, is unsatisfiable.
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(i) There exists a finite tree Tree with the root T
constructed using Ruleg7), (38), (39) with
the following properties:

If T is unsatisfiable, then Tree is closed.(48)

If T is satisfiable, then Tree is open and(49)
there exists a partial modéel of T,
dom®l) = atomgT ), related to Tree.

Proof. (i) The proof is by induction on the structure
of Treeusing(40), (41), (42).

(i) We exploit the excess literal technique to con-
struct a finite treeTree with the rootT using Rules
(37), (38), (39). Let TF C, OrdCl. We define
elmeasuréTF) = (Sc.1r |C|) — |TF|. We proceed by
induction onelmeasurér ).

Let elmeasuréT ) = 0. We distinguish two cases:

either0eTorOZT.

Case 1{J € T. ThenT is unsatisfiable antiree=
T is a closed tree with the rodt. So,(48) holds and
(49) holds trivially.

Case 2: 0 ¢ T. Then, by the denotation of
elmeasuréT), T is a unit order clausal theory. By
Lemma 4.1v), there exists a finite linear treEree
with the rootT and the leafrang(T) constructed us-
ing Rules(37) and(38). We get two cases:

eitherd e trang(T) or O & tranyT).

Case 21: O e trangT). ThenTreeis a closed tree
with the rootT; its only branch fronT to trang(T) is
closed. Hence, byi), T is unsatisfiable. So(48)
holds and'49) holds trivially.

Case 2: O ¢ trangT). ThenTreeis an open
tree with the rootT; its only branch fromT to
trangT) is open. Sincd is a unit order clausal the-
ory, by Lemma 4.1ii ), we gettrangT) is a unit or-
der clausal theory, and by Lemma 4.2 teangT),
there exists a partial mod@ll of trangT), dom®2l) =
atomsgtrang(T)). Hence 2l is a partial model off C

trany(T), dom2() = atomgtrangT)) _temma4.4)
atomgT), related tolreeandT is satisfiable. Sq49)
holds and'48) holds trivially.

Let elmeasuréT) = n > 0 and the statement hold
for all TF C, OrdCl such thatelmeasuréTF) <
n. SinceelmeasuréT) > 0, by the denotation of
elmeasurér ), there exist$; vVC € T such thaC # [
Let |, I3 be order literals such that VI, Vizis a
general trichotomy. This yields the application of
Rule (39

-
(T—{lavC}Hu{ls} |
(T—{lavCHU{C}U{lz} |
(T—{lavC})u{C}u{ls}

We denoteT; = (T —{l1 VCH U{l1}, To = (T —
{hvCchu{Ctu{ly}, T3 =(T-{l1vC}H U
{C}U{l2}. Then elmeasurél;) < elmeasurer),
elmeasurél,;) < elmeasuré€T), elmeasurélz) <
elmeasuréT ), and by induction hypothesis, there ex-
ist finite treesTree with the rootT;, Tree with the
root T, Tree; with the rooftT; constructed using Rules
(37), (38), (39) such that(48) and (49) hold for
Treq, Tree, Treg. This yields

T

Tree=
Treg | Treey | Tree

is a finite tree with the roof constructed using Rules
(37),(38), (39). We get two cases:

eitherT is unsatisfiable of is satisfiable.

Case 4:T is unsatisfiable. Then, b2), Ty,
Ty, T3 are unsatisfiable, and 4¢8) for Tree, Tree,
Tree, Tree, Tree, Treeg; are closed trees. Hence,
Treeis a closed tree. Sd48) holds and(49) holds
trivially for Tree

Case 5:T is satisfiable. Then, b§42), there ex-
ists 1<i < 3 such thafj is satisfiable. Hence, H#9)
for Treq, Treq is an open tree and there exists a par-
tial model®l; of Ti, dom(2l;) = atomgT;), related to
Treq. By the definition ofT;, Ti Eo T. As {l1,12,13}
is a trichotomy,atomgl1) = atomgly) = atomgls)
andatomgT;) C atomgT). We getTreeis an open
tree and@=2,,U{(p,0)| p € atomgT)—atomsT;)},
dom2() = atomgT), is a partial model of related to
Tree So,(49) holds and48) holds trivially for Tree
The induction is completed.

O

The set of basic rules has been proposed as a min-
imal one, which is suitable for theoretical purposes;
e.g. not to have a too complicated completeness ar-
gument. For practical computing, it may be aug-
mented by additional rules. Léf I, I2, I3 be or-
der literals andC € OrdCl. |1 VI is a dichotomy
iff eitherly =0=aandl, =0<aorli=a<1
andl, = a= 1 wherea € PropAtom I3 VI Vi3 is
a trichotomy iffly =a<b,lo=a=hb,Is3=b<a
wherea, b € PropAtom C is a tautology iff there ex-
istsC’ € OrdCl such thalC’ C C and eithelC' = {I}
wherel is a tautology oC’ is a dichotomy oC’ is a
trichotomy.

(50) (Contradiction simplification rule
T
(T-{lvC}Hu{C}
if | VvCeT and | is a contradiction

(51) (Tautology simplification rule
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T
2
T_{C] (52)
if C e T and C is a tautology
(53) (One literal positive propagation ruje
T
T-{C}

if,CeT,l €eC,andl is aliterat

(54) (One literal negative propagation rule
T
(T—{l2vC}H)u{C}
if 11,1, vVC € T and there existglsuch that
1 VI2 Vs is a general trichotornmy

(55) (Dichotomy branching rule
T
(T—{lvChHu{ls} | (T={lLvChHu{Cru{lz}
iflpvCeT,C#£0,and h VIz is a dichotomy

(56) (Trichotomy branching rule
T
(T={livC}Hu{li} \
(T—{lavChHu{Clu{lz} |
(T—{lavC})u{C}u{ls}

iflivCeT,C#A0O,and b VI Vs is a trichotomy.
Rules (50), (51), (53), (54), (55), (56) are obvi-

5 TAUTOLOGY CHECKING

One application of thdPLL procedure may be to
tautology checking. Letp € PropForm ¢ is a tau-
tology (valid) iff for every valuation”, v = @. As
explained in Introduction, th&AL problem of a for-
mula @ can be reduced to the unsatisfiability of the
order formulap < 1 consequently translated to an eg-
uisatisfiable finite order clausal theofy. Then the
unsatisfiability ofTy is decided by théPLL proce-
dure. This section provides technical details of the
reduction, Theorem 5.1. In addition to the properties
stated in Section 2, the following ones hold:

For all @, € PropForm and i,y Y3 €
OrdPropForm
(A A@)<1l=@ <1V <1, (59)
(V@) <1l=@m<1r@g =<1 (60)
WV P2 AWz = (W1 VP2) A (W Vids).  (61)

Theorem 5.1 (Reduction Theorem) Let @ €
PropForm. " There existsyIC» OrdCl such that §
is unsatisfiable if and only ipis a tautology.

Proof. By Lemma 3.1, there exists a conjunctive nor-

mal form  such thatp = @ and we distinguish tree

cases:

eitherp=00rp=1oryp= /A \/ I}, 1! are literals.
i<nj<m

Case l:p= @ = 0. Thengis not a tautology and

ously sound and helpful for constructing more com- T, =0 C, OrdClis satisfiable. So, the claim holds.

pactDPLL trees in many cases, however, superfluous

for the completeness argument. ConcerningSA&
problem of a formula, we conclude.

Corollary 4.1. Letge< PropForm. There exist an eg-
uisatisfiable § C, OrdCl to ¢ and a finite tree Treg
with the root T, constructed using Rul€87), (38),

(39) with the following properties:
If @is unsatisfiable, then Trgés closed. (57)

If @is satisfiable, then Treggds open and
there exists a partial modél, of ¢,

dom2ly) = atomg).

(58)

Proof. Animmediate consequence of Lemma 3.3 an

Theorem 4.1.
O

Note that theSAT problem of a finite theory can
be reduced to th8&ATone of a formula in the usual
manner. LefT = {@|i < n} C; PropForm Then
®= Ai<n@ € PropFormis equisatisfiable td.
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d For alli <nandj < m, there exists

Case 2.9= Y = 1. Thengis a tautology and
Te = {0} C4 OrdCl is unsatisfiable. So, the claim
holds. o

Case 3: 9=y = Ai<nVj<m lj, 1} are literals.
Then

@is a tautology if and only if
¢ < 1 € OrdPropFormis unsatisfiable;

P<1=y<1=(/ \/l})<1%\/ Al<1

i<nj<m i<nj<m

(63)

(62)

(64)
a conjunction of disjunctions of order literals
8, € OrdPropFormsuch that
8, is equisatisfiable t§} < 1.
The proof is by definition. We get five cases iéj)r

Case 3l: || = a, a < PropAtom Thend, =a~< 1.
Case 2: |} =a— 0,ac PropAtom Thend, =0<a.
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Case 3: I} =a— Db, ac PropAtom b € PropAtom
Thend; =b~<anb<1 Case 34:lj=(a—0)—0,
a € PropAtom Thend| =a=0. Case &: 1} = (a—
b) — b, a € PropAtom b € PropAtom Then 6'j =

(a<bva=b)Ab=<1. So,the claim64) holds. By
(64) and(63),

\/ A\ 8, is equisatisfiable to
i<nj<m

\V/ A\ li<1landp<1.

i<nj<m

(65)

Hence, there existls € OrdPropFormsuch that

r ((61)) i
p=AVEZVAS

r<vs<ur i<nj<m

(66)

WhereK‘j are order literals. By(66) and (65), there
existsTy €4 OrdCl such that

To={\/ K&|r <V} is equisatisfiable to,

Ss<Ur

V A &, andp=<1.

i<nj<m

(67)

, e (6 , :
We close thaly is unsatisfiable > @< 1is unsatis-

fiableg @is a tautology.
o
Leto=(a—b)— ((b—c)— (a—c)) € PropForm
a,b,c € PropAtom Using Theorem 5.1, we show that
@is a tautology. At first, using Lemma 3.1, we trans-
late @to an equivalenENF
Y= ((a—b)—bvcv(b—c)—cva—c)A
(b—cvev(b—c)—cva—c),
cf. the example after Lemma 3.1. Then, usii5g)
and(60), Y < 1is equivalent to
E=((a—hb)—=b)<1Ac<1A
(b—c)—c)<1Aa(a—c) <1V
(b—c)<1ACc=<1A
(b—c)—c)<1Aa(a—c) <1

Hence, using(64) and (67), & is equisatisfiable to
To €4 OrdClwhere

Tp={a<bva=bvc=<nb, [1]
a<bva=bvc<1, [2]
a<bva=bvb<cvb=c, [3]
a<bva=bvc<a, [4]
b<1vc=<b, [9]

T‘P
I
1
T(P
|
2
T‘P
|
T3
®
N
4.1 4.2 4.3
T‘P T‘P T‘P
| | |
Tq;S.l Tq)5.2 Oe Tq?.3
| |
6.11 6.1.2 6.13 6.2.1 6.2.2 6.2.3
T‘P T‘P T‘P T(P T(P T(P

| | | | | |
7.11 712 7.1.3 721 722 723
OeTytOeT/*0eT, P 0eT* DeT*?0eTy

Figure 1: Closed treéreey,.

b<1lve=<1, (6]
b<1vb=c, (7]
b<1vc=<a, (8]
c=<1lvc=<b, 9]
c=<1, [10]
c=<1lvb=c, [11]
c<1lve=<a, [12]
b<cvb=cvc=<hb,]13
b<cvb=cvc=<1]14
b<cvb=c, [15
b<cvb=cvc<a,lf
c<avc=<b, [17]
c<avc=<1, (18
c<avb=c, [19
c=<ajl. [20]

Finally, using theDPLL procedure rules, we can con-
struct a closed tre@reg, with the rootTy, outlined in
Figure 1.

We close thaf, is unsatisfiable, and by Theorem
5.1,is a tautology.

6 CONCLUSIONS

We have investigated the satisfiability and validity
problems of a formula in the propositional Godel
logic. The satisfiability problem has been solved via
the translation of a formula to an equivaleBNF
one, containing literals of the forma, a — b, or
(a— b) — b. A CNF formula has further been trans-
lated to an equisatisfiable finite order clausal theory,
which consists of order clauses with order literals of
the formsa=b ora < b. = and < are interpreted
by the equality and strict linear order (1], respec-
tively. The trichotomy on order literals: eithar< b
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ora=borb < a, has naturally led to a variant of the
DPLL procedure with a trichotomy branching rule,
which is refutation sound and complete. We have re-
duced the validity problem of a formula to the unsat-
isfiability of a finite order clausal theory.
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