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Abstract: Processing and analysis of images are implemented in the multidimensional space of visual information 
representation. This space includes the well investigated dimensions of intensity, color and spatio-temporal 
frequency. There are, however, additional less investigated dimensions such as curvature, size and depth 
(for example - from binocular disparity). Along these dimensions, the human visual system (HVS) enhances 
and emphasizes important image attributes by adaptation and nonlinear filtering. It is interesting and 
possible to emulate the visual system processing of images along these dimensions, in order to achieve 
intelligent image processing and computer vision. Sparsely connected, recurrent adaptive sensory neural 
network (NN), incorporating non-linear interactions in the feedback loops, are presented. Such generic NN 
exhibit Automatic Gain Control (AGC) model of processing along the visual dimensions. The results are 
compared with those of psychophysical experiments exhibiting good reproduction of visual illusions. 

1 INTRODUCTION 

The perceived image is quite different from the 
original image projected onto the retina. Some of the 
image features are enhanced, while others are being 
adapted to or even ignored. Some features are of 
great importance, while other are barely noticed. 

Understanding the organization and functioning 
of visual systems is obviously of great interest and 
importance to brain scientists and engineers because 
of its potential use in the design of technological 
systems. By matching image presentations (or 
storage) with the known performance of the visual 
system, more meaningful and efficient 
communication can be achieved. After all, most 
information generated for human use, is 
communicated with the human observer via the 
visual system as the final receiver. In yet another 
way, image processing modelled after the visual 
system may prove to be important in machine vision. 
And of course, if visual prosthetics are to become a 
workable reality, this understanding is essential.  

Each cone in the central fovea is connected to 
about 4000 cortical neurons (Zeevi & Kronauer 
1985). The challenge is to determine what the 4000 
or so different processes are, and then how they are 
ordered in the tissue volume. Orientation and ocular 

dominance (OD) (Hubel & Wiesel 1979) can 
account for 40 different processing units (20 
different orientations for each ocular projection). 
This leaves an unexplained factor of 4000/40=100! 
There are several candidates for the remaining 
functions, such as color, intensity, texture, curvature, 
range of field sizes and binocular disparity (for 
depth perception).  

Gibson (1937) had claimed that adaptation and 
negative after-effect are to be conceived as a process 
of adjustment and readjustment of the physical-
phenomenal correspondence of a certain type of 
sensory dimension, under the influence of a 
tendency for sensory activity to become normal, 
standard or neutral. He noticed that this similarity 
cuts across the sensory modalities of our world, 
including pressure, size, distance, temperature, 
brightness, curvature (convex-concave), etc. 

Zeevi & Mangoubi (1978) showed that 
Adaptation plays an important role in the 
suppression of quantal and receptor internal noise. 
Wainwright (1999) proposed that visual adaptation 
in orientation, spatial frequency, and motion can be 
understood from the perspective of optimal 
information transmission. 

Automatic Gain Control (AGC) has been widely 
used to account for intensity adaptation (Shefer 
1979) contrast adaptation in the primary visual 
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cortex (Weltsch-Cohen 2002), contrast adaptation 
for “cyclopean” image (Ding & G. Sperling 2006), 
contrast adaptation for motion detection (Lu & 
George Sperling 1996) chromatic adaptation (Du 
Croz & Rushton 1966) and (Krauskopf & Mollon 
1971), and sound adaptation (Schwartz & Simoncelli 
2001). It is, therefore, natural and tempting to 
implement AGC NN which incorporates some other, 
less investigated dimensions of adaptation, such as 
size, depth and curvature in processing of images. 
Likewise, such an investigation may facilitate our 
understanding of how adaptation along these 
dimensions takes place in the visual system (or other 
sensory modalities for this matter).  

The purpose of this study is to analyze adaptation 
along these image dimensions and process these 
image attributes by means of the AGC model in 
order to mimic the human visual system (HVS), and 
to propose a unified model for biological sensory 
processing. Likewise, the AGC mechanism 
considered in the context of visual systems 
(biological and ANN-based alike), can be also 
implemented in advanced image processing 
algorithms that highlight various image structures 
and feature. The performance of the proposed AGC 
NN is tested by computer simulations, using Matlab, 
for each dimension separately. 

2 VISUAL AGC MODEL 

The proposed AGC model of visual adaptation is 
based on the original work of Shefer (1979), and on 
the subsequent development of the adaptive 
sensitivity camera that mimics the eye (Ginosar et al. 
1992) and (Zeevi et al. 1995). The model has been 
motivated by the structure and function of the eye 
and, in particular, by its high spatio-temporal 
sensitivity to small changes in intensity 
accomplished over extremely wide dynamic range. 
According to this nonlinear adaptation model, the 
output of a cell in location “ i ” is adjusted by 
subtracting from its input a nonlinear function of its 
input and a weighted sum of the outputs, fed back 
into the nonlinear synaptic operator (Fig. 1): 

( , )Ti i i ir s s fα= ⋅ − ,    (1)

where ir  is the output, is  is the input, W  is a 
feedback operator (matrix), if is the feedback (see 
Eq. 2), α is a constant and T  is a nonlinear function. 
The crucial ingredient of this AGC model is the 
nonlinearity within the feedback loop (i.e. the 
function T). This is a fundamental extension of the 

lateral inhibition recurrent NN into the nonlinear 
regime, presumed to be mediated biologically by the 
retinal interplexiform cells and/or similar structures 
in other sensory neural networks, such as the 
synaptic depression (Abbott et al. 1997). It is 
important to note that qualitatively T  may assume a 
wide range of nonlinear functions and, yet, the 
neural feedback loop in which such nonlinear 
synaptic interactions are embedded will exhibit 
functional AGC. 

In a specific embodiment of this general 
conceptual model, the nonlinearly component is a 
multiplier (Fig. 2a). The model is then comprised of 
a series of static multipliers, one for each foveal 
receptor channel that multiply the input of the 
channel with the output of the feedback. The 
feedback is calculated by subtracting the output of 
the operator "W" from a constant value. The 
operator "W" is an averaging operator (in space). 

The analytic domain of the model, in which we 
will be interested, is the upper right handed quarter 
of the multiplier. It is possible to choose the operator 
"W" so the model will operate at the analytic domain 
for an input i changing in a defined known range. 
We will assume that this is the case. 
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Figure 1: AGC model. 
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Figure 2: Gain control device. (a) Schematic drawing; (b) 
Hypothetic explicit implementation. 

The presented AGC NN necessitates the existence of 
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controlled gain device. One option for such a device 
is shown in Fig. 2b. Bruckstein and Zeevi (1979) 
showed that the gain control of Fig. 2 can be 
implemented by a neural coding scheme with 
threshold control. 

Each of the functions of the model is of an image 
dimension (curvature, size and depth). The feedback 
is obtained by: 

i ji j
j

f w r= ∑ .     (2)

Therefore the AGC model output is given by: 

( )i i ji j
j

r s w rα= −∑ .    (3)

The function of the feedback is to position 
symmetrically the oparting curve around the 
operating point. W can be chosen as exponent, 
gaussian, triangle, rectangular or any other 
symmetric kernel without effect on the main 
characters of the model. 

The model has a unique solution for 
10 max{ }i ii W

s i and s S≥ ∀ < ,     (4)

where WS  is: 

W ji
j

S w= ∑ .    (5)
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Figure 3: Flow chart for calcuating the visual AGC 
response to some arbitrary input. 

2.1 Small Signal Analysis 

Although we are concerned with “large signal” 
behaviour of the visual AGC, it is still useful to 
perform small signal analysis of the model. For that 
we assume that both the output and the input of the 

model are composed of a ‘local DC’, sC (where 
local is defined on the scale of effective W) 
modulated by a small AC signal component: 
 

i s iS C s= + ,     (6)

0i
i

s =∑ ,     (7)

i r iR C r= + ,     (8)

0i
i

r =∑ .     (9)

 
For simplicity, we assume also that W is a 

rectangular function. Under these assumptions, (2) 
yields: 

 
i ji j r

j

f w R C= =∑ ,  (10) 

 
substituting (6),(7),(8),(9) and (10) in (3), we get: 
 

;
1 1

s
i i r

s s

C
r s C

C C
αα ⋅

= =
+ +

.   (11)

 
Equation (11) expresses a sigmoidal function, which 
is closely related to Weber law. The latter implies 
that the system gain is inversely proportional to the 
input’s average.  

Weber law is characteristic for many sensory 
modalities, including weight, vision and sound. 
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Figure 4: AGC model step response. 

2.2 Simulation Method 

In its discrete form, Eq. (3) exhibits the complexity 
of a manybody problem. To obtain a closed form 
solution for some arbitrary input is a major 
challenge, not yet dealt with. Therefore, we use a 
numeric solution of an iterative process. In the 
discrete final case, the solution is unique if the 
process converges (Shefer 1979). Fig. 3 presents the 
flow chart of the algorithm for numeric solution of 
the AGC model. 
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Figure 5: Ramp responses for various input slopes. 

2.3 Step Response for AGC Model 

Fig. 4 depicts step response of the non-linear AGC 
model, superimposed on the step. This example 
highlights the main characteristics of the model: 
 The adapted response to a locally-constant input 

is being decreased, while high values are more 
affected than lower values. This is, in a way, 
compression of a wide dynamic range of the 
input. 

  An edge enhancement – the relative contrast is 
increased. This is caused by the overshoot and 
undershoot of the model response. Note that due 
to the nonlinearity of the model, the overshoot is 
stronger than the undershoot. Fig. 5 shows 
another nonlinear effect – the 
overshoot/undershoot are depended on the slop 
of the input step. The response is stronger for 
steeper slopes. When the input represents 
intensity, this phenomenon is the well known 
"Mach Bands" (Ratliff 1965). 

2.4 AGC NN 

The adaptive, non-linear, recurrent NN which 
exhibits multidimensional AGC characteristics 
constitutes in its functional complexity a case of a 
many-body problem. Yet, due to the local 
characteristics of W in the case of visual information 
processing, the network is sparsely connected and 
the implementation is simple and efficient with only 
one layer of a recurrent neural network (RNN). Fig. 
6 depicts a schematic structure of such a RNN. One 
should keep in mind that each neuron represents a 
nonlinear function, as shown in Fig. 7. This is 
biologically feasible (as discussed above). It can be 
implemented in NN by other types of nonlinearities 
and architechtural embodiments. 
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Figure 6: AGC NN. 

3 BACKGROUND 

3.1 Localness and Parallelism 

A key fact regarding the structural-functional 
organization of the HVS (which support our AGC 
NN model) is that processing along the image 
dimensions of size, curvature, depth and/or other 
dimensions is performed locally and in parallel over 
the entire image (Hochstein & Ahissar 2002). These 
image dimensions are believed to be part of the 
"Elementary Features" (Cavanagh et al. 1990), 
(Wolfe et al. 2003) of the image representation in 
the HVS. In this case, the image is decomposed 
along a number of dimensions and into a number of 
separable components, and some specific cells 
represent that local information (a concept 
introduced by Hubel and Wiesel (1968) within the 
context of retinotopic representation). 

i ji j
j

f w r=∑

( , )i i i ir s s fα= ⋅ −T
 

Figure 7: Nonlinear function of each neuron. 

This concept had been tested in many 
psychophysical experiments such as “pop-ups”. In 
these experiments, there is a target with a unique 
feature which is not shared by the distractors.  
If the feature is coded early in the visual processing 
and is performed locally and in parallel, the target 
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tends to “pop-up” from the distractors with little 
effect of the number of distractors. The features may 
either be discrete and categorical elements (e.g., 
terminators) that can be only present or absent, or 
they may be values on a continuous dimension that 
activate nonoverlapping populations of functional 
detectors and that, therefore, also mediate 
categorical discriminations. Treisman & Gormican 
(1988) showed that such "pop-up"s are asymmetric 
in that some features are detected more easily when 
they are present rather than when they are absent. 
Fig. 8 (adopted form (Treisman & Gormican 1988)) 
presents an example of such experiment for a target 
defined by curvature, while Fig. 9 presents an 
example of such experiment for target defined by 
depth cues (See Enns & Rensink (1990a), (1990b)). 

Thus, we may conclude that size, curvature and 
depth are processed locally and in parallel. 

 
Figure 8: Examples of displays testing search for targets 
defined by curvature or ‘straightness’. 

 
Figure 9: Two examples of display, testing search for 
targets defined by depth cues. 

3.2 Adaptation and Feature Detectors 

It is well known that prolonged inspection of a 
curved line causes adaptation to curvature (e.g. the 
curvature after-effect (Gibson 1937) and (Coltheart 

1971)). Such after-effects are believed to reflect a 
change in the sensitivity of neurons that encode the 
adapted feature and, thus, imply the existence of 
neurons that act as detectors of that feature 
(Hancock & Peirce 2008). 

Indeed, most of the investigators agree that 
curvature detectors are present along the early stages 
of the visual pathway (Riggs 1973), (Stromeyer & 
Riggs 1974). Some investigators even showed how 
such curvature calculations can be achieved by 
convolution with certain reasonable receptive fields 
of neural cells (Koenderink & Doorn 1987), 
(Dobbins et al. 1987). 

Sutherland (1968) concluded that many species 
have the capacity to classify a shape as the same 
shape regardless of changes in size, at least over a 
considerable range, and that this capacity is innate. 
This ability can be addressed as irrelevance of the 
DC component of the size information (adaptation) 
and relevance of changes only. 

Blakemore and Campbell (1969) suggested that 
the human visual system may possess neurons 
selectively sensitive to size. They also suggested that 
this neural system may play an essential preliminary 
role in the recognition of complex images. Carey et 
al (1996) suggested that size, motion and orientation 
measures are processed in parallel by the dorsal 
stream mechanisms. 

The visual system perceives depth based on 
several cues such as stereoscopic views, motion-
parallax, object size, object translation and rotation 
(Bruno & Cutting 1988), (Dijkstra et al. 1995), 
(Rogers & Graham 1979), (Bradshaw & Rogers 
1996) and (Bradshaw et al. 2000). Hubel and Wiesel 
(1962), (1970) have identified the cells that are 
involved in depth information representation from 
stereoscopic vision (“complex cells”). Inui et al 
(2000) have discovered that an area involved in 
monocular depth processing in the bilateral 
occipitotemporal region. 

It, therefore, seems reasonable to assume that 
curvature, size and depth information are calculated 
over the entire image (in parallel), wherein each of 
the cells contains the feature information of a 
specific location - each cell represents the feature 
information of a specific part of the image and 
together they create a projection of the image into a 
specific image dimension, where the location of the 
cells matches the location of the feature in the 
image. Based on this reasoning, it is natural to use 
AGC NN in processing of these image dimensions 
in vision. 
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3.3 Overview of Differential Geometry 

It is useful to review a few elementary notions of 
differential geometry to establish the context in 
which the curvature processing is formulated.  The 
review is focused on curves in the plane, although 
generalizations to higher dimensional curves exist. 

Let I  be an interval in one-dimensional 
Euclidian space 1E .  A curve C is defined as a 
continuous mapping 2:x I E→   from the interval to 
the plane where 
 

( ) 1 2( ( ), ( ))x x xλ λ λ= ,   (12)
 
with Iλ∈  being a parameter running along the 
curve, and 1 2,x x are continuous functions ofλ . The 
curve is said to have order of continuity k, denoted 
by kC , where all derivatives up to and including the 
kth derivative of 1x  and 2x  are continuous.  A curve 
may be reparameterized in terms of its arc length s, 
equivalent to a particle travelling at constant unit 
velocity along the curve. In this case, the tangent 
vectors are unit length vectors:  
 

( ) 1 2' ( ) ( '( ), '( ))x s t s x s x s= = ,   (13)
 
where ( )s f λ= is a reparameterization of the curve, 
and ' 1x = . The interesting aspect of the tangent is 
its orientation. The geometric interpretation of the 
tangent to a curve is depicted in Fig. 10(a). Letting P 
be a point on a curve, and A a neighboring point, the 
tangent T at P is the limit of the line AP as A 
approaches P along the curve.  The tangent yields 
the orientation of a curve at a point. Taking the 
second derivative with respect to s everywhere along 
C, we obtain 
 

( ) 1 2'' ( ''( ), ''( ))x s x s x s= , (14) 
 
where the vector ''( )x s is normal to the vector '( )x s  
and the magnitude of ''( )x s is the curvature of C: 
 

( ) 2 2
1 2'' '' ( ) '' ( )x s x s x sκ = = + . (15) 

 
Curvature is a measure of the rate of change of 
orientation per unit arc length. The geometric 
interpretation for the curvature is depicted in Fig. 
10(b). Let P be a point on a curve, T the tangent at 
that point, and A a neighboring point on the curve.  

 
Figure 10: (a) Tangent T is the limit of segment PA as A 
approaches P along C. (b) The curvature κ of C at P is the 
limit of the ratio α /AB as A and B approach P 
independently along C. (c) The osculating circle 0 at P is 
the limit of the circle that passes through A, P, and B, as A 
and B approach P. 

 
Figure 11: Signed curvature. 

Let α denote the angle between the line AP and T, 
and AB the arc length between A and B. The 
curvature κ  at P is the limit of the ratio α /AB as A 
approaches P along the curve. Related to this 
interpretation of curvature is the osculating circle. 
Referring to Fig. 10(c), let A, P, and B be three 
neighboring points on a curve, and let U be a circle 
through these points.  As A and B independently 
approach P along the curve, the circle O converges 
towards a limit, whose radius is precisely the inverse 
of the curvature κ at P. 
 

1R
κ

= .   (16)

 
Since the curve is a plane curve (that is, ( )x I  is 
contained in a plane), it is possible to associate a 
sign with the curvatureκ . To this end, let { }1 2,e e be 

the natural basis of 2R , and define the normal 
vector ( ),n s s I∈ , by requiring the basis and might 
be either positive or negative. It is clear that |κ | 
agrees with the previous definition and that 
κ changes sign when we change either the 
orientation of x or the orientation of 2R (see Fig. 11). 
In this work, we use the signed curvature notation. 
The signed curvature indicates the direction along 
which the unit tangent vector rotates as a function of 
the parameter along the curve.  
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{ }( ), ( )t s n s to have the same orientation as the 

basis{ }1 2,e e . The signed curvature κ is then defined 
(instead of (15)) by 
 

'( )t s nκ= ,  (17)
 
If the unit tangent rotates counter clockwise, then 

  0κ > . If it rotates clockwise, then   0κ < . 
The signed curvature depends on the particular 

parameterization chosen for a curve.  

4 PSYCHOPHYSICAL 
EXPERIMENTS 

For illustrative purpose, two psychophysical 
experiments are presented as an example. The first is 
for size contrast effect (the Ebbinghaus illusion). 
The second is for depth contrast effect. The AGC 
model reproduces the illusions. 

4.1 Size Contrast 

The Ebbinghaus illusion is commonly used as an 
example of a simple size-contrast effect. In this 
illusion, the apparent size of a central target is 
changed by a ring of surrounding inducers. Fig. 12 
illustrates its most popular form, as it most often 
appears in general textbooks. In this form, it is 
typically used to illustrate a simple size-contrast 
effect,  in which  large  inducers  make the  target  
appear  smaller  whilst small  inducers make  it  
appear larger. 

Roberts et al (2005) have further investigated the 
above effect and concluded that it probably arises 
from a number of factors that are:  
 The relative size and number of the inducers 

(comparing to the target): For a given  distance 
between the target and the inducers, the 
magnitude of the Ebbinghaus  illusion is 
governed by the relative size  and  number of the 
inducers 

 The distance between the central target and the 
inducers: For a given number and size of 
inducers, the magnitude of the Ebbinghaus 
illusion is governed by the distance between the 
central target and the inducers. 

 The completeness of the inducing annulus: 
Keeping the number of the inducers constant, 
and changing their size (or distant), provides a 
change in the completeness of the inducing 

annulus. This confounding effect can be 
removed (the inducing annulus can be kept 
constant) by changing also the number of the 
inducers.  

The authors performed several experiments, and the 
main findings were: 

4.1.1 Experiment 1 

Varying the relative size of the inducers in the 
Ebbinghaus illusion produces changes in the 
apparent size of the target, consistent with a size-
contrast effect. Increasing inducer distance causes a 
decrease in apparent target size irrespective of 
inducer size. [Distance is measured from the centre 
of the target to the centre of the inducers.] 

Fig. 13 shows, separately for each inducer 
distance, the average illusion magnitude, as a 
function of inducer radius. Based on these results, 
the authors concluded that “inducers generally 
reduce apparent target size and that small inducers 
are simply less effectual in doing this”, and that 
“Inducer distance also has an effect, so that the 
reduction in target size tends to be more pronounced 
at greater distances”. 

To summarize, the apparent size of the target is 
reduced more efficiently when the inducers get 
bigger and at greater distances. 

 
Figure 12: The Ebbinghaus illusion. 

 
Figure 13: Results of experiment 1 from (Roberts et al. 
2005). 
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Figure 14: Results of experiment 3 from (Roberts et al. 
2005). 

4.1.2 Experiment 3 

Here, The authors kept the inducing annulus and 
inducer size constant and study the effect of inducer 
distance. The results are given in Fig. 14. The 
authors conclude that the data can be modelled by 
the equation exp( / )a b x c+ −  and that the effect is 
governed mainly by two terms – inducers distance 
from the target (which described by decaying 
exponential), and by the inducers size which 
modulate this function. 

 
Figure 15: Bar A appeared to lie in front of bar B, 
although are physically at the same depth.  

4.2 Depth Contrast 

Graham and Rogers (1982) have shown depth-   

contrast effect perceived from motion parallax and 
stereoscopic information. Their results are shown in 
Fig. 15. The perceived depth is affected by the 
surrounding, and so, even though bar A and bar B 
are at the same physical depth, they are perceived as 
though bar A is in front of bar B. 

5 SIMULATION RESULTS 

We assume that the features information is 
represented, and we are not concerned with the issue 
of how this information was acquired. This 
assumption is quite valid because many techniques 
of depth/size/curves (and therefore – their curvature) 
estimation are available today. An example for such 
technique for curves is presented by Parent & 
Zucker (1989) and Zucker et al (1988). 

In order to simulate a feature processing and see 
its effect on a human observer, a tool (Matlab 
function) that draws image corresponding to its 
feature information input was created. The image 
was then drawn according to its original feature 
information, and according to its processed feature 
information. 

  original curve

 
  original curve filtered with AGC

 
Figure 16: AGC of constant curvature. 
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5.1 AGC of Curvature Processing 

In this section two curves are presented. The first 
one is a curve with constant curvature – part of a 
circle (Fig. 16). The second is a combination of 
straight lines and parts of circles with an opposite 
curvature (Fig. 17). 

The AGC parameters for both curves are:  
 

 
( ) ; 20; 0.2

2
iW i k e kγγ γ−= = = , (18) 

 
with W having 5 elements. 

 
Figure 17: AGC of fragmented curvature. 

The first result represents spatial adaptation – the 
curvature decreased (the radius of the curved 
increased according to (16)), whereas the second 
result represents curvature enhancement (or 
emphasis). For presentation and comparison 
purposes only, the result of the second curve is 
multiplied by 1.87, to “compensate” for the 
adaptation phenomenon – in order to correct 
comparison between the original curve and the 
filtered curve. Red circles have been added to Fig. 
17 to emphasis the changes between the original 
curve, and the result. According to (16), points that 
are inside the circles have larger curvature than 
points that are on the  circle. T herefore,  the   edge 
points (where a change in the curvature occurs) are 
emphasized in the same way as at Fig. 4. 

5.2 AGC of Size Processing 

The two experiments of Roberts et al. were 
reconstructed using Matlab and simulating the 
perceived target size by using the AGC algorithm 
presented in section 2 using parameters of: 

2( ) ( ) : 5, 0.00007
121

W i k i when kγ γ= − = = ,   (19)

meaning that the lateral effect of W is a triangular 
function with width of 121 elements.  

First, experiment 1 was reconstructed. Target 
was surrounded by 8 inducers at different radii 
(varying from 5 to 20 pixels). This was checked for 
near (30 pixels away from target), medium (40 
pixels away from target) and far (50 pixels away 
from target) inducers. Target radius was 10 pixels. 
Target size (in pixels) as a function of inducer radius 
and distance is shown at Fig. 18. 

Second, experiment 3 was reconstructed. Target 
was surrounded by variant number of inducers in 
order to occupy an approximately constant 
proportion (about 0.75) of the surround 
circumference. Inducers were kept at a constant 
radius and their distance from the target was 
changed from 30 to 60 pixels. Target radius was 10 
pixels. Target size (in pixels) as a function of 
inducer distance is shown in Fig. 19. The solid line 
in this figure is the best fit for the data. 
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Figure 18: Results of experiment 1 using AGC model. 
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Figure 19: Results of experiment 3 using visual AGC 
model. 
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Figure 20: AGC processing of depth information. Input and output visual signals are displayed in the top and bottom rows, 
respectively. 

5.3 AGC of Depth Processing 

We reconstruct Graham and Rogers’s experiment 
using the visual AGC NN, implemented along the 
visual dimension of depth, with: 
 

 
( ) ; 1; 0.2

2
iW i k e kγγ γ−= = = , (20) 

 
where W has 11 elements.  

For each point of the 3D original image the 
depth is calculated relative to a point in the middle 
of the image and with height of 50 pixels. Fig. 20 
shows the results in both 3D and cross sections 
view. As a result of the AGC, the left bar, which is 
at the same depth as the right bar, is now perceived 
closer. 

6 DISCUSSION 

Qualitatively speaking, important and interesting  
events  along  curves, for example, consist only  of  
abrupt  changes  of  orientation  and  curvature, as is 
the case with other image attributes (dimensions). 
Local maxima  of  curvature,  and  inflection  points 
(i.e. zero crossings of curvature) identify in this case 
such events (see (Hoffman & Richards 1984), 

(Koenderink & Doom 1982), (Richards et al. 1986) 
and (Fischler & Bolles 1986)). 

Therefore, it is reasonable to assume that visual 
systems emphasize these changes and adapt to the 
locally-constant value. This is indeed an important 
feature of processing curvature (or other image 
attributes) by adaptive NN endowed with the 
characteristic of AGC. Curvature emphasis (as is 
demonstrated in Fig. 17) and adaptation (as is 
demonstrated in Fig. 16) occur simultaneously and 
their extent can be controlled by varying the 
parameter k of the NN hardwired connectivity. 
Further, the effective range of interaction, 
characterized in the hardwired network by 1 γ , 
becomes, due to the AGC of the nonlinear NN a 
function of the slow rate of change (‘local DC’, i.e. 

sC of Eq. 6) along the image dimension processed 
by the AGC NN, i.e. in the examples of Fig. 16 and 
Fig. 17 the curvature.  

Inspecting the results of size processing indicates 
a good correspondence between the adaptive NN 
response (Fig. 18 and Fig. 19) and the 
psychophysical experimental results (Fig. 13 and 
Fig. 14), both for the distance parameter and for the 
size parameter. Such results should be expected due 
to the dependency of AGC NN on these two 
parameters as well, i.e. cells proximity and 
specificity (in this case, objects’ size). 

It is clear why increasing the inducer size 
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decreases the target perceived size. This is discussed 
in section 2, and represents the size contrast effect of 
the model. It is less obvious why farther positioned 
inducers have stronger effect on target perceived 
size, than that of the closer inducers (i.e. decreasing 
the target size more effectively). The latter is due to 
the mutual relation between the inducers. According 
to the model of AGC visual processing, the cells 
have a limited influence on their neighbors. If the 
distance between cells is greater compared with W’s 
effective width, then those cells will have a 
minimum effect on each other (if any). When an 
inducer is at a given distance x from the target, its 
distance from the other inducers varies from 0 to 2x . 
Thus, when distance increases, more and more 
inducers are beyond the ‘influence zone’ of the other 
inducers. This causes the perceived size of each 
inducer to increase when the distance is increased. 
Fig. 21 shows this phenomenon on the data of 
experiment 1. Since the target is still inside the 
‘influence zone’ of the inducers, and the size of the 
inducers is now larger, the target seems smaller (the 
size-contrast effect is enhanced). 

When we add inducers while increasing the 
distance (as in experiment 3), the target size is 
reduced since each one of the inducers contribute to 
the size-contrast effect. 

Note that here we modelled only the target and 
the inducers as objects with size. But, it is also 
possible that the visual system treats the space 
between the target and the inducers as an object with 
size. In this case, if the space between the target and 
the inducer is large, the inducer size has only a 
secondary effect, and the target size is determined 
mainly by the nearest object (for example see Fig. 
22 - Delboeuf illusion. In this illusion, the target gets 
smaller when the inducer diameter increases). This 
model can explain also the moon size illusion.  
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Figure 21: Results indicating that inducers perceived size 
is increased at greater distances. 

 
Figure 22: Delboeuf illusion. 

7 CONCLUSIONS 

Understanding the HVS and modelling certain 
characteristics of it by adaptive NN is of a 
considerable interest because of its potential use in 
the design of intelligent computer vision and image 
processing NN and systems. Because of the 
complexity of the processes involved, and in order to 
account for the vast volume of available 
experimental data, there is need for relatively simple 
models. As shown, the recurrent nonlinear adaptive 
NN that exhibits AGC is relatively simple (only few 
parameters) and versatile. It does not call for 
postulating any components of neural circuitry more 
complex than those well known to exist in biological 
neural networks. It is important to stress that these 
networks are sparsely connected. This fact allows 
also to implement them sequentially by using Peano 
– Hilbert scan for a quick and efficient processing 
‘on the fly’ (for a review see (Jagadish 1990)). The 
sparse NN proposed by us is in contrast to Hopfield-
type networks that are fully connected. The sparsely 
(locally) connected NN can be also analyzed 
theoretically (Shefer 1979). 
Using the AGC model for all of the image base 
dimensions (or other modalities for this matter) 
provides great advantages. It constitutes a universal 
and parsimonious model that explains how our 
visual system processes visual information along its 
various dimensions, before the later stage of 
sequential “visual routines” is implemented. Having 
this model allows us to process an image not only in 
the intensity/spatio-temporal domain, but also along 
all other dimensions as well. For example, given a 
noisy curve, we can reduce the noise along the 
curvature dimension with standard filters, such as 
non-linear diffusion filter (Fig. 23).  

The proposed visual AGC mechanism can 
enhance existing schemes of intelligent image 
processing with reference to enhancement of various 
image attributes and features, i.e. curvature, size and 
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other image attributes. The decomposition of the 
image into separable components is by no means the 
only possible model of representation and 
processing of images, and definitely not always the 
optimal one. An alternative approach, introduced in 
the context of image processing and computer vision 
(Kimmel et al. 2000), (Sochen & Zeevi 1998), 
considers an image to be a manifold embedded in 
higher dimensional combined position (spatial)-
feature space. The features are the image attributes 
or dimensions, such as color, curvature and size 
mentioned above. Adaptation by means of nonlinear 
gain control is executed in this case in the 
multidimensional space in a unified manner. Such 
manifolds of adaptive NN are yet to be further 
investigated. 
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Figure 23: Filtering a noisy curve with non-linear 
diffusion filter (15 iterations) along the curvature 
dimension. 
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