TOWARDSFUZZY GRANULARITY CONTROL IN
PARALLEL/DISTRIBUTED COMPUTING

T. Trigo de la Veg4 P. Lopez-Garcie? and S. Mufioz-Hernandéz
1IMDEA Software, Madrid, Spain
23panish Research Council (CSIC), Madrid, Spain
3School of Computer Science, Technical University of Madrid (UPM), Madrid, Spain

Keywords: Fuzzy logic application, Parallel computing, Automatic parallelization, Granularity control, Scheduling, Com-
plexity analysis.

Abstract: Automatic parallelization has become a mainstream research topic for different reasons. For example, mul-

ticore architectures, which are now present even in laptops, have awakened an interest in software tools that

can exploit the computing power of parallel processors. Distributed and (multi)agent systems also benefit
from techniques and tools for deciding in which locations should processes be run to make a better use of

the available resources. Any decision on whether to execute some processes in parallel or sequentially must
ensure correctness (i.e., the parallel execution obtains the same results as the sequential), but also has to take
into account a number of practical overheads, such as those associated with tasks creation, possible migration
of tasks to remote processors, the associated communication overheads, etc. Due to these overheads and if the

granularity of parallel tasks, i.e., the “work available” underneath them, is too small, it may happen that the
costs are larger than the benefits in their parallel execution. Thus, the aim of granularity control is to change

parallel execution to sequential execution or vice-versa based on some conditions related to grain size and
overheads. In this work, we have applied fuzzy logic to automatic granularity control in parallel/distributed
computing and proposed fuzzy conditions for deciding whether to execute some given tasks in parallel or se-
quentially. We have compared our proposed fuzzy conditions with existing (conservative) sufficient conditions

and our experiments showed that the proposed fuzzy conditions result in more efficient executions on average
than the conservative conditions.

1 INTRODUCTION ness (i.e., ensuring that the parallel execution obtains
the same results as the sequential one) and (ii) (the-
Automatic parallelization is nowadays of great inter- oretical) efficiency (i.e., ensuring that the amount of
est since highly parallel processors, which were pre- work performed by executing some tasks in para-
viously only considered in high performance comput- llel is not greater than the one obtained by executing
ing, have steadily made their way into mainstream the tasks sequentially, or at least, there is no slow-
computing. Currently, even standard desktop and down). Solutions to these problems have already
laptop machines include multicore chips with up to been proposed, such as (Chassin and Codognet, 1994;
twelve cores and the tendency is that these figuresHermenegildo and Rossi, 1995). However, these so-
will consistently grow in the foreseeable future. Thus, lutions assume an idealized execution environmentin
there is an opportunity to build much faster and even- which a number of practical overheads such as those
tually much better software by producing parallel pro- associated with task creation, possible migration of
grams or parallelizing existing ones, and to exploit tasks to remote processors, the associated commu-
these new multicore architectures. Performing this by nication overheads, etc, are ignored. Due to these
hand will inevitably lead to a decrease in productiv- overheads and if thgranularity of parallel tasks, i.e.,
ity. An ideal alternative is automatic parallelization. the “work available” underneath them, is too small,
There are however some important theoretical and it may happen that the costs of parallel execution are
practical issues to be addressed in automatic para-darger than its benefits. In order to take these practi-
llelization. Two of them are: (i) preserving correct- cal issues into account, some methods have been pro-

Trigo de la Vega T., Lopez-Garcia P. and Mufioz-Hernandez S..

TOWARDS FUZZY GRANULARITY CONTROL IN PARALLEL/DISTRIBUTED COMPUTING. 43
DOI: 10.5220/0003066100430055

In Proceedings of the International Conference on Fuzzy Computation and 2nd International Conference on Neural Computation (ICFC-2010), pages

43-55

ISBN: 978-989-8425-32-4

Copyright ¢ 2010 SCITEPRESS (Science and Technology Publications, Lda.)

ICFC 2010 - International Conference on Fuzzy Computation

posed whereby the granularity of parallel tasks and with a fuzzy variant that is able to handle partial truth.
their number are controlled. The aim gfanularity Most of these systems implement the fuzzy resolu-
control is to change parallel execution to sequential tion introduced by Lee in (Lee, 1972): the Prolog-Elf
execution or vice-versa based on some conditions re-system (Ishizuka and Kanai, 1985), the FRIL Prolog
lated to grain size and overheads. Granularity control system (Baldwin et al., 1995) and the F-Prolog lan-
has been studied in the context of traditional (Krua- guage (Li and Liu, 1990).

trachue and Lewis, 1988; McGreary and Gill, 1989), One of the most promising fuzzy tools for Prolog
functional (Huelsbergen, 1993; Huelsbergen et al., was the “Fuzzy Prolog” system (Guadarrama et al.,
1994) and logic programming (Kaplan, 1988; Debray 2004). Fuzzy Prolog adds fuzziness to a Prolog com-
et al., 1990; Zhong et al., 1992; Lépez-Garcia et al., piler using CLP{) instead of implementing a new
1996). Taking all these theoretical and practical is- fuzzy resolution method, as other former fuzzy Pro-
sues into account, an interesting goal in automatic pa-logs do. It represents intervals as constraints over
rallelization is thus to ensure that the parallel executi- real numbers andggregation operatoras operations

on will not take more time than the sequential one. In with these constraints, so it uses the Prolog built-in
general, this condition cannot be determined before inference mechanism to handle the concept of partial
executing the task involved, while granularity con- truth.

trol should intuitively be carried out ahead of time.

Thus, we are forced to use approximations. One clear1.1.1 RFuzzy

alternative is to evaluate a (simple) sufficient condi-

tion'to ensure that the parallel execution will not take Besides the advantages of Fuzzy Prolog (Vaucheret
more time than the sequential one. This was the ap-et al., 2002; Guadarrama et al., 2004), its truth value
proach developed. in (Lopez-Garcia et al., 1996). It representation based on constraints. is too. general,
has the advantage of ensuring that whenever a givenwhich makes it complex to be interpreted by regular
group of tasks are executed in parallel, there will be users. That was the reason for implementing a sim-
no slowdown with respect to their sequential execu- pler variant that was called RFuzzy (Pablos-Ceruelo
tion. However, the sufficient conditions can be very et al., 2009a; Mufioz-Hernandez et al., 2009; Pablos-
conservative in some situations and lead to some tasksgCeruelo et al., 2009b; Strass et al., 2009). In RFuzzy,
being executed sequentially even when their parallel the truth value is represented by a simple real number.
execution would take less time. Although not pro- RFuzzy is implemented as a Ciao Pro-
ducing slowdown, this causes a loss in parallelization log (Hermenegildo et al., 2008) package because
opportunities, and thus, no speedup is obtained. AnCiao Prolog offers the possibility of dealing with a
alternative is to give up strictly ensuring the no slow- higher order compilation through the implementation
down condition in all parallel executions and to use of Ciao packages.

some conditions that have a good average case beha- The compilation process of a RFuzzy program has
vior. Itis in this point where fuzzy logic can be suc- two pre-compilation steps: (1) the RFuzzy programis
cessfully applied to evaluate “fuzzy” conditions that, translated into CLPX) constraints by means of the
although can entail eventual slowdowns in some exe- RFuzzy package and (2) the program with constraints
cutions, speedup the whole computation on averageis translated into ISO Prolog by using the C&P(
(always preserving correctness). package.

It is remarkable the originality of this approach ~As the motivation of RFuzzy was providing a tool
that is betting for the expressiveness of fuzzy logic to for practical application, it was loaded with many nice
improve the decision making in the field of program features that represent an advantage with respect to
optimization and, in particular, in automatic program previous fuzzy tools to model real problems. That is
parallelization, including granularity control. why we have chosen RFuzzy for the implementation

of our prototype in this work.

1.1 Fuzzy Logic Programming

Fuzzy logic has been a very fertile area during the 2 THE GRANULARITY

last years. Specially in the theoretical side, but also CONTROL PROBLEM

from the practical point of view, with the development

of many fuzzy approaches. The ones developed in We start by discussing the basic issues to be addressed
logic programming are specially interesting by their in our approach to granularity control, in terms of the
simplicity. The fuzzy logic programming systems generic execution model described in (Lopez-Garcia
replace their inference mechanism, SLD-resolution, et al., 1996). In particular, we discuss how conditions

44

TOWARDS FUZZY GRANULARITY CONTROL IN PARALLEL/DISTRIBUTED COMPUTING

for deciding between parallel and sequential execu-3 THE CONSERVATIVE (SAFE)
tion can be devised. We consider a generic executi- APPROACH
on model: letg = gs,...,0n be a task such that sub-
tasksgs, .. .,0n are candidates for parallel execution.
Ts represents the cost (execution time) of the sequen-
tial execution ofg andT; represents the (sequential)
cost of the execution of subtagk

There can be many different ways to execgte
in parallel, involving different choices of scheduling,
load balancing, etc., each having its own cost (exe-
cution time). To simplify the discussion, we will as-
sume thafllp represents in some way all of the possi-
ble costs. More concretel¥, < Ts should be under-

The approach proposed in (Lépez-Garcia et al., 1996)
consists on using safe approximations, i.e., evaluating
a (simple) sufficient condition to ensure that the para-
llel execution will not take more time than the sequen-
tial one. Ensuringdl, < Ts corresponds to the case
where the action taken when the condition holds is to
run in parallel, i.e., to a philosophy were tasks are ex-
ecuted sequentially unless parallel execution can be
shown to be faster. We call this “parallelizing a se-

)) quential program.” The converse approach, “sequen-
stood as Ts is greater or equal than any possible value tializing a parallel program,” corresponds to the case

for ;rp ; o A where the objective is to detect whether the sufficient
n a first approximation, we assume that the points ¢onitionT, < T, holds.

of parallelization ofg are fixed. We also assume, for
simplicity, and without loss of generality, that no tests o :
— such as, perhaps, “independence” tests (Chassin anfar allelizing a Sequential Program. In order to
Codognet, 1994; Hermenegildo and Rossi, 1995) — derlvea_suffluent condition fort_he mequalil’yg_ Ts,
other than those related to granularity control are nec-We obtain upper bounds for its left-hand-side and
essary. Thus, the purpose of granularity control willower bounds for its right-hand-side, i.e., a sufficient
be to determine, based on some conditions, whethercondition forT, < Tsis Ty < T{, whereT' denotes an
the gi’s are going to be executed in parallel or se- upper bound ol andT, a lower bound ofs. We
quentially. In doing this, the objective is to improve will use the superscriptsandu to denote lower and
the ratio between the parallel and sequential executi-upper bounds respectively throughout the paper. The
on times. discussion about how these upper and lower bounds
Performing an accurate granularity control at on the sequential and parallel execution times can be
compile-time is difficult since most of the informa- estimated are outside the scope of this paper. We refer
tion needed, as for example, input data size, is only the reader to (Mera et al., 2008) and (Lépez-Garcia
known at run-time. An useful strategy can be to do as et al., 1996) for a full description of compile-time
much work as possible at compile-time and postpone analysis that obtain lower and upper bounds on se-
some final decisions to run-time. This can be achieved quential and parallel execution times respectively as
by generating at compile-time cost functions which functions of input data sizes.
estimate task costs as a function of input data sizes,
which are then evaluated at run—t_ime when such SizeSSequentiaIizing aParallel Program. Assume now
are known. .Then, aft_er comparing costs c_)f parallgl that we want to detect wheTy < T, holds, because
and sequential executions, it can be determined wh|c_hWe have a parallel program and want to profit from
of these types of executions must be performed. This herforming some sequentializations. In this case, a

scheme was proposed by (Debray et al., 1990) in the g fficient condition folTs < Ty is TV < T,'J.
context of logic programs and by (Rabhi and Manson,

1990) in the context of functional programs. An inter-

esting goal is to ensure th@g < Ts. In general, this

condition cannot be determined before executjng 4 THE FUZZY APPROACH

while granularity control should intuitively be carried o

out ahead of time. Thus, we are forced to use approx- N some scenarios, it is not allowed to perform para-
imations. The way in which these approximations can llelizations if it does not ensure any speedup. How-

be performed, is the subject of the two following sec- €ver, in most environments it is justified to sacri-
tions. fice efficiency in some cases in order to improve the

speedup on average or in the majority of the cases.
Thus our approach is to give up strictly ensuring that
Tp < Ts holds and to use some relaxed heuristics using
fuzzy logic able to detect favorable cases.

We use as a decision criteria the formiijp< Ts.
It is easy to transform the formula ind Ts/Tp, or the

45

ICFC 2010 - International Conference on Fuzzy Computation

equivalenfls/Tp > 1. We are implicitly using a crisp gram, otherwise it executes the sequential one.
criteria in the sense that we use an operator whose
truth values are defined mathematically.

If we move to classical logic and want to rep- § EXPERIMENTAL RESULTS
resent the condition of parallelizing or not a set of
subtasks using a logic predicate, we could define \we have developed a prototype (Section 5.1) of a
greater/2as a predicate of two arguments that is SUC- fyzzy task scheduler based on the approach described
cessful if the first one is greater than the second onej, section 4. We have prepared a common frame-
and false otherwise. We could check the condition \york to test the behavior of a set of different heuristics
greater(%/Tp,1) or rename this condition to a logic (section 5.2) and we have compared them also with
predicategreater1/] of arity 1 that compares its ar- the rules of the conservative approach (Section 3) in
gument with 1, succeeds if it is greater than 1.and order to be able to select the best results (Section 5.3).
fails otherwise (i.e.greater1(1.8psucceeds, whereas For a better understanding of these experiments, we
greater1(0.8)ails). With the boolean condition rep- present the behavior of our prototype for a progres-
resented by the predicageeaterl/litis easy to fol- sjon of execution time data (Section 5.4). Finally, we
low the conservative approach presented in Section 3.nave tested our prototype with real programs (Sec-

For a gentle intuition to fuzzy logic, we continue tjon 5.5) in order to demonstrate that it can be suc-
talking about this predicate. We can see that the con-cessfully applied in practice.
cept of being “greater than” is very strict in the sense
that'some cases in which the value is close to 1 are51 Prototype | mplementation
going to be rejected. Let us introduce the concept of

truth value. Till now we have been-using two truth - Al the granularity control methods have been imple-
valuestrue andfalse or 1 and 0. But if we intro- mented inCiao Prolog The classical logic rules have
duce levels of truth we could for example provide for peen implemented using the Cl@®(package and the

a logic predicate intermediate truth values in between fyzzy |ogic rules using th&fuzzypackage.

0 and 1. We have defined other predicates similarto. . we have decided to use logic programming for im-
greaterl/lthat are more flexible in their semantics. p|ementing our approach because of its S|mp||c|ty and
They arequite_greater/landrather_greater/1Their for taking the advantage of some useful extensions
definition is clearer in Figure 1 (and described in Sec- provided by theCiao Pro|og framework. In partic_
tion 5.1). With this set of predicates we are going to ylar, Ciao Prologhas integrated static analysis tech-
define a fUZZy framework for the eXperimental pOSSi- niques for obtaining upper and lower bounds on exe-
bilities of using a fuzzy criteria to take decisions about cuytion times and a fuzzy library for the calculation of

parallelization of tasks. certainty factors.
As explained before, in our new approach to gran-
4.1 Decision Making ularity control, the decision of how to execute is based

on the certainty factors associated to both, sequential
and parallel executions. So that, first of all, we have
to quantify such certainty and then decide how to exe-
cute. The value to the certainty factors is provided by
fuzzy rules that are able to combine fuzzy values us-
ing aggregation operators. According to RFuzzy syn-

Instead of deciding about the goodness of the para-
llelization depending on a crisp condition as in the
conservative approach, in this paper we are going to
make the decision attending to a couple of certainty
factors:SEQ the certainty factor that is going to rep-
resent the preference (its truth value) for executing ‘&

the sequential variant of a program, &P4R the cer- SEQP.Vs) : op cond (V1),conc(V2), -+, conch(Vn).
tainty factor that is going to represent the preference PARP\Vp): op cond (V]),condy(Vy),---,condh(Vy).

(its truth value) for executing the parallel variant of The truth valué/s represents how much executing the
such program. Both certainty factors are real num- programP in a sequential way is adequaé is ob-
bers SEQ PARe [0,1]. The way of assigning avalue tained by combining the truth values of the partial
to each certainty factor is not unique. We can de- conditionsvy, ...,V,, with the aggregation operatop.
fine different fuzzy heuristics for their calculation. In - Symmetrically,V, represents how much adequate is
Section 5.2 we are going to compare a set of them to the parallel execution for the progran

choose (in Section 5.3) our selected model. The bigger factor (SEQ or PAR) will point out the
Once the values c8EQand PAR have been al- selected execution (sequential or parallel).
ready assigned, PAR > SEQthen our task schedul- In order to test the behavior of our method we

ing prototype executes the parallel variant of the pro- have developed a set of conditions comparing a group

46

TOWARDS FUZZY GRANULARITY CONTROL IN PARALLEL/DISTRIBUTED COMPUTING

1r 1r

i
0.8f 1 0.8F 0.8F
0.6 1 0.61 0.61
0.4t 1 0.4+ 0.4+
0.2 1 0.21 0.21
0 1 0 0
20 15 -10 5 _0. 5 10 15 20 20 15 10 5 _0. 5 10 15 20 20 15 10 5 _0. 5 10 15 20
Ratio Ratio Ratio
Greater. Quite greater. Rather greater.

Figure 1: Fuzzy sets for greater.

of values of executiontimes{:T',TQ‘,T;,TS',TS”‘,TS“} CiaoPP (Hermenegildo et al., 2005; Mera et al.,
by pairs. The comparison that makes each condition 2008). Table 2 contains the description of the bench-
is calculated with the fuzzy relatiorguite_greater marks. Each row shows the information of one pro-

andrather_greater(represented in Figure 1), whose gram. The first column contains the name of the pro-

definitions are: _ gram and, under it and between brackets, the name of
0 if X<-7 the figure which contains the graphical representation
quite greater(X) = ¢ XL if —7<X<8 of the benchmark. This figure allows to identify the
2 if X>8 optimal execution in a graphic way. The following
rather greater(X) _ columns show T/ (lower bound on sequential execu-
0 if X < —14 tion time), T (average sequential execution timgy,
X+14 it _14< X <15 (upper bound on sequential execution tinT%)(Iower
29 . bound on parallel execution timel)" (average para-
1 if X >15 p

llel execution time) and g (upper bound on parallel

experimental relation described in (Mera et al., 2008) execution time). Each execution time is in microsec-

as follows: ond;. .
harmonic dif f(X,Y) = (X —Y) # (1/X+1/Y)/2. Figures 2, 3, 4, 5, 6 and 7 describe the benchmarks

We have selected this relation because it comparesin a graphic way. In horizontal we find both (parallel

two numbers in a relative and symmetric way, i.e.: andhsequer:_'ual)tﬁxe.cgtmnls. In V?rt'g%l ‘;VG f'nd.t’ for
harmonic dif f (X,Y) = —harmonic dif f (Y, X). each execution, the interval comprised between its up-

per and lower bound on execution time.

To make things simpler, we refer to the fuzzy set
asgt, and to theelative harmonic differenceelation
ashd.

The rules ofuzzy logidor calculating each condition

We also use theelative harmonic differencean

Theharmonic differencenly works well for positive
numbers, but as we are working with execution times,
it is enough for our purposes.

These fuzzy relations can be redefined with differ-
ent bounds, although in this prototype we have only
used the values 0, 7 and 14. These bounds have been

selected according to the magnitude of the execution Table 1: Aggregation operators execution time.
times that we provide for the programs (see Table 2) Aggregation Operatof
in order to obtain significant results depending on the Program ==~ dprod | diuka
selected fuzzy relation. pl 1.23 111 1.04

- . p2 0.42] 051 | 0.45
5.2 Heuristic Comparison 3 0931 088 | 0.88
In this section we discuss the evaluation of our pro- Eg ggg 8?613 822
totype with different aggregation operators. A suite PG 0561 062 | 057

of benchmarks to test the prototype has been devel-
oped. Each benchmark has been defined in terms of | _average | 0.70] 0.73 | 0.67
its execution times (average, upper and lower bounds

on parallel and sequential execution times) in order PAR or SEQ, 1<i <7 (see Table 3), have been com-
to see if the new approach provides better results posed using several aggregation operators but the re-
than the conservative one. Obviously, in real cases, sults have shown that only the t-conorms marag),
these values will need to be estimated at compile- Lukasiewicz @luka) and sumdprod) are correct (i.e.,
time using a program analyzer like, for example, always suggest the optimal execution) so we do not

47

ICFC 2010 - International Conference on Fuzzy Computation

Table 2: Benchmark program execution times (in microsespnd

Time | m u | m u
Program Ts | Ts Ts To | Tp Tp
pl 400 | 600 | 800 | 100 | 175 250
(Figure 2)
p2 50 | 175 | 300 | 350 | 550 | 750
(Figure 3)
p3 250 | 525 | 800 | 300 | 375 | 450
(Figure 4)
p4 50 | 150 | 250 | 100 | 325 | 550
(Figure 5)
p5 200 | 400 | 600 | 200 | 325 | 450
(Figure 6)
p6 150 | 325 | 500 | 100 | 275 | 450
(Figure 7)
show the rest of the tested operatibits the results. Time (us)
We have seen how the three t-conorms menax), .

Lukasiewicz @lluka) and sum @prod) have the same

behavior. Thus, in order to chose one of these aggre- * .
gation operators, we have followed the criteria of the 700 |
one more efficiently evaluated. In this sense, we have 4,
measured the execution time of evaluating the condi-

tion PAR, for each program using the three operators. —
These execution times have been obtained overan In- 40 | T
tel platform (Intel Pentium 4 CPU 2.60GHz). They -
are shown in Table 1. The first column shows the
name of the program (see Table 2) and the three next

ones, the aggregation operators. Each row shows the 100 L p
execution time (in microseconds) of the evaluation of o

the conditionPAR, (see Table 3) for the program us- Sequental Parallel
ing the three mentioned operators. The last row con- _

tains, for each operator, an average value on the exe- Figure 2: Program p1.

cution time of evaluating such condition for all the

programs. As we can see, the results are very simi-]
lar for the aggregation operatarsaxanddlukawhile 900 |
for dprodare almost always bigger. Althoughaxis 800 |

a little bit less efficient (on average) thdiuka, max
seems to be the best option due to its simplicity.
The whole set of proposed certainty factors and 600 |
the results for each approach are shown in Table 3. swo
They correspond to the case of parallelizing a sequen-

700 |

T™"

tial program (i.e., where the action taken by default] | -
when there is no evidence towards executing is pa- ¥4 T

rallel is to execute sequentially). The first column 200 |

shows the name of the program. The second col- 100

umn shows what would be the right (optimal) deci-] -

sion about the type of execution that should be per- 0 ST —
formed (either parallel or sequential). The rest of the execution execution
columns contain the results of evaluating the condi- Figure 3: Program p2.

tions. Columns 3 and 4 contain the results obtained

1The rest of the tested operations amain, luka and
prod.

48

TOWARDS FUZZY GRANULARITY CONTROL IN PARALLEL/DISTRIBUTED COMPUTING

Table 3: Selected executions using the whole set of rules.

Classical Logic Fuzzy Logic
Program| Optimal (GreaFer) (Quite greater)
Classical Fuzzy 1 Fuzzy 2 Fuzzy 3 Fuzzy 4 Fuzzy 5 Fuzzy 6 Fuzzy 7

PAR. | SEQ | PAR | SEQ | PAR | SEQ | PAR | SEQ | PAR, | SEQ | PARs | SEQ | PARs | SEQ | PAR, | SEGQ
pl Parallel 1 0 0.73| 0.48 | 0.73| 0.48 | 0.73 | 0.48 | 0.57 | 0.35 | 0.57 | 0.35 | 0.57 | 0.35 | 0.57 | 0.36
p2 Sequentiall 0 1 048 | 093 | 0.49| 093 | 049 | 0.93 | 0.34| 0.58 | 0.33 | 0.59 | 0.34 | 0.58 | 0.31 | 0.58
p3 Parallel 0 0 0.56 | 0.54 | 0.58 | 0.54 | 0.58 | 0.54 | 0.48 | 0.44 | 048 | 0.44 | 0.48 | 0.44 | 0.47 | 0.44
p4 Sequentiall 0 0 05| 061| 05| 061| 05 | 061 041| 052 | 041] 052 | 041 | 0.52 | 0.41 | 0.52
p5 Parallel 0 0 054 | 053 | 0.55| 053 | 055 | 0.53 | 0.47 | 0.45 | 0.47 | 0.45 | 0.47 | 0.45 | 0.47 | 0.45
p6 Parallel 0 0 056 | 0.52 | 0.56 | 0.52 | 0.56 | 0.52 | 0.48 | 0.45 | 0.48 | 0.45 | 0.48 | 0.45 | 0.48 | 0.45

Classical Logic Fuzzy Logic

Program| Optimal (GreaFer) (Rather greater)
Classical Fuzzy 1 Fuzzy 2 Fuzzy 3 Fuzzy 4 Fuzzy 5 Fuzzy 6 Fuzzy 7

PAR. | SEQ | PAR | SEQ | PAR | SEQ | PAR | SEQ | PAR, | SEQ | PARs | SEQ | PAR | SEQ | PAR, | SEGQ
pl Parallel 1 0 062 | 049 | 0.62| 049 | 062 | 049 | 0.53 | 0.42 | 053 | 0.42 | 0.53 | 0.42 | 0.54 | 0.42
p2 Sequentiall. 0 1 0.49 [0.72 | 0.49 | 0.72 | 0.49 | 0.72 | 0.41 | 0.54 | 0.41 | 0.55 | 0.41]| 0.54 | 0.4 | 0.54
p3 Parallel 0 0 0.53| 0.52 | 0.54 | 0.52 | 0.54 | 0.52 | 0.49 | 0.47 | 0.49 | 0.47 | 0.49 | 0.47 | 0.48 | 0.47
p4 Sequentiall 0 0 05 | 055 | 05 | 0.55| 05 | 055 | 045 | 0.51 | 0.45 | 0.51 | 0.45| 0.51 | 0.45 | 0.51
p5 Parallel 0 0 052 | 051 | 052 051 [052 | 051 | 048 | 0.47 | 0.48| 0.47 | 0.48| 0.47 | 0.48| 0.47
p6 Parallel 0 0 053 | 051 | 0.53| 051 053 | 051 | 049 | 0.47 | 049 | 0.47 | 0.49 | 0.47 | 0.49 | 0.47

Conditions:
PARis Ty < T!
SEQIisTY < T,

PAR, is ma)(@lt(/T8, Gt(TE/Th), gt(T/TEM)

SEQ is max(gt(Th/T"), gt(Th/Td), gt(TI"/TM)

PAR is max(gt(Td /Ty, gt(T. /T')ygt(T“/T“))

SEQs ma>(9t<T'/T“) gt(Ty/Td), Gt(TY/T)

PAR; is max(gt(Td /Ty, gt(T. /T') gt(Ts"/To"). ot(T'/T5))

SEQ is max(gt(T)/Te"), ot(Tp/Td), gt(Tg"/ T, gt(TS/T)

PAR; is rel_hd (0.5 hd(T{", T") +0.25x hd(T¢, T¥) 4+ 0.25xhd(T!, T;)
SEQ is rel_hd(0.5xhd(T", T") + 0.25 hd(Ty, Td) + 0.25x hd(T}, '))
PAR; is rel_hd((hd(T{", T;") + hd(T&, T) + hd(T¢, T'))/3)

SEQ is rel_hd((hd(T", T") + hd(TY, T“)+hd(T')/3)

PAR; is rel_hd(0. zs*hd(Tsm,Tpm)+05*hd(TS“,T;)+025*hd(T' T'))
SEQ is rel_hd(0.25+hd(T", T") + 0.5 hd(Ty, T&) + 0.25x hd(T}, TJ))
PAR; is rel_hd(0. 25*hd(Tsm,Tpm)+025*hd(T“ T“)+05*hd(T' T'))
SEQ is rel_hd(0.25+ hd(T", T") + 0.25x hd(Ty, T¢) + 0.5 hd(T}, TJ))

using the conservative approach, while columns 5- efficient than the sequential one. In this case, both
18 contain the results obtained using our proposedthe conservative approacfclassical logiy and the
conditions based on fuzzy logic. Each column in fuzzy logicapproach agree in that the executiorpaf
the later group of columns corresponds to a differ- should be parallel. The converse conditid®f € T;)

ent fuzzy condition. The selected type of execution holds for progranp2 (see Figure 3), and thus, the op-
(using the process explained in Section 4.1) are high-timal action is executing it sequentially. In this case,
lighted. SEQ andPAR are the truth values obtained also both approaches agree in that the executi@2 of
for the certainty factors of the sequential and para- should be parallel.

llel executions of the program. We have performed For programs 3-6, the classical logic truth values
the experiments for two different levels of flexibility (PAR andSEQ) are always zero, which means that
using quite_greaterandrather_greaterrespectively. the suggested type of executionsequentiaffor all

The decisions made by using the fuzzy conditions are of these programs (i.e., the default type of executi-
always the optimal ones for these experiments. How- on). However, from Figures 4, 5, 6 and 7, we can see
ever, the conservative approadtassical logi¢ dis- that in some cases the optimal decision is to execute
agrees with the optimal ones in half of the cases. For these programs in parallel. For example, consider
example, the conditiofy < TJ holds forp1 (see Fig- programp3 (see figure 4). We have that' = 450us

ure 2). Thus, the parallel execution pi is more

49

ICFC 2010 - International Conference on Fuzzy Computation

Table 4: Progression of decisions using the fuzzy set quéatgr.

Classical Logic| Fuzzy Logic
Execution Optimal (Greater) (Quite greater)
Classical Fuzzy 2
PAR | SEQ | PAR | SEQ
p3_executionl| Parallel 1 0 0.68 | 0.49
p3_execution2| Parallel 0 0 0.64 0.5
p3_execution3| Parallel 0 0 0.61 | 0.52
p3_execution4| Parallel 0 0 0.6 0.53
p3_execution5| Parallel 0 0 0.58 | 0.54
p3_execution6| Parallel 0 0 0.57 | 0.56
p3_execution7| Sequential] 0 0 0.56 | 0.57
p3_execution8| Sequential] 0 0 0.55 | 0.58
p3_execution9| Sequential] 0 0 0.54 0.6
p3_execution1(Sequentiall 0 0 0.54 | 0.61
p3_executionll Sequentiall O 0 0.53 | 0.62
p3_executionlZ Sequentiall 0 0 0.53 | 0.64
p3_execution1l3 Sequentiall 0 0 0.52 | 0.65
p3_execution14 Sequential| -0 0 0.52 | 0.66
p3_execution1y Sequential| 0 1 0.52 | 0.68
Conditions:
PAR;is TS < T{
SEQisTY<T,
PAR is max(gt(Td /T'). Gt(Td /Tp), Gt T/ T§))
SEQ is maxgt(Ty/T¢), 9t(Th/Ts), O(T5/TSh)
Time (ps) Time (ps)
900 | 200 |
800 | T 800 |
700 | 700 |
600 | 600 |
500 | 500 | ™
400 | TP“ 400 |
300 | L r 300 |
200 | T 200 | L
100 | 100 | [[N
0 0 Ti'

Sequental
execution

Parallel
execution

Parallel
execution

Sequental
execution

Figure 4: Program p3. Figure 5: Program p4.

and T = 250 us and thusTg' < T! does not hold. p4(see figure 5) represents the opposite case. In this
The decision of executing3 sequentiallymade by casely = 25OusandTF') =100ussoTy < TF') does not
classical logicis safe. However, in this case, since hold. But in this casd ' = 550pusandTg' = 250 us

Ts' = 800 us assuming thap3 is run a significant ~ Thus, the best choice seems to be execupfge-
number of times, we have that on average, executingquentially. This is the type of execution suggested
p3in parallel would be more efficient than executing by our fuzzy conditions. However, using classical
it sequentially. In contrast, our proposed fuzzy ap- logic, the selected execution is sequential (the one se-
proach selects the optimal type of executiond8rits lected by default when none of the sufficient condi-
two subtasks should be executed in parallel. ProgramtionsPAR: nor SEQ hold). However, our fuzzy logic

50

TOWARDS FUZZY GRANULARITY CONTROL IN PARALLEL/DISTRIBUTED COMPUTING

Time (%) going to belong to an interval whose limits are big-
900 | ger than the limits of the parallel execution. Thus,
400 is it more likely that the execution time of the para-

] llel execution be less than the execution time of the
700] sequential one, so that the right decision seems to ex-
600 | - ecutep6 in parallel. We can see that our proposed
500 ‘ fuzzy conditions also suggests the parallel execution.

N ™ Finally, we can see that in those cases in which
400 ‘ classical logic suggests a type of execution (with truth
300 | value 1), our fuzzy logic approach suggests the same
200 | - . type of execution (sequential or parallel).

1o 5.3 Selected Fuzzy Model
0
oxetn exccuion Table 3 shows that all the fuzzy conditiorugzy 1-

7) select the same type of execution, sequential or
parallel (independently of the fuzzy set used, either
quite_greateror rather_greate}j. Our goal is to de-

Figure 6: Program p5.

Time () tect those situations where the parallel execution is
900 | faster than the sequential one, such that a conserva-
400 tive (safe) approach is not able to detect it but the

] fuzzy approach is. Approachdzauzzy 4 5, 6 and
o 7 suggest parallel execution with less evidence than
600 | Fuzzy 1 2 and 3 for both fuzzy setsquite_greater
500 - andrather_greate). As we are interested in suggest-
] . - ing to execute in parallel with evidences as bigger as
40 ’ possible we rule out this subset of conditions and we
300 | focus our attention in the first set. Bd#uzzy 2and3
200 obtain the same values in all cases. Furthermore they
B - provide higher evidences for parallel execution than
10 ' - the conditionFuzzy 1 This fact can be seen in pro-
0 _ gramsp3, p5andpb. As Fuzzy Zs a subset oFuzzy
Sxecuon erecution 3, evaluating the first one is more efficient than the

second one (thBuzzy 3condition has one more com-
parison). Thus, the condition that we have selected is
Fuzzy 2

Figure 7: Program p6.

conditions provide enough evidences that support the
decision of executing in parallel. PAR is makgt(T, /T;)jgt(Tsl /T,'J),gt(TS”/Tg‘))
In the situations illustrated by the last two pro- - — -
grams it is not so clear what type of execution should | NiS condition obtains a better average case behav-
be selected. For prograpswe have thaT ¥ — 45045 ior by _relaxmg decision conditions (_and Ic_)smg some
and T = 200us Thus, since the sufficient condi- precision). There may be cases in which our ap-
tion Ts“ < T! for executing in parallel does not hold proach will select the slowest execution, however it
it Fns_cht the proaram should be executed se u’en_/wll select the fastest one in a bigger number of cases.
Itiaslﬁ/e However s?ncgl" _ 200psandTY — 600“;‘ This tradeoff between safety and efficiency makes this
o PR s new approach only applicable to non-critical systems,
the sufficient conditiorg' < Ty for executing in pa- \here no constraints about execution times must be
rallel does not hold either. Now, using our fuzzy logic met, and a wrong decision will only cause a slow-

- | e =t :
approach, taking the four valudg, Ty Ts and T gown which is admissible. In the same way that it
into account, a certainty factor of nearlyp(suggests pappens in the conservative approach, the fuzzy ap-
that the best choice is to execy®in parallel. proach for sequentializing a parallel program is also

For programpé (see figure 7), none of the suffi- symmetric to the problem of parallelizing a sequen-

i iti | | i . o
cient conditionsTy < Ts andTg' < T, (for selecting 3] program. The condition that we have selected for
parallel and sequential execution respectively) hold. sequentializing a parallel program is:

However, sincd < T¢ andT,, < T hold, it is clear _ — — —
that the execution time of the sequential executionis | SEQ is matgt(Tp/Ts'), gt(Ty/Ts). gt(T,'/Ts))

51

ICFC 2010 - International Conference on Fuzzy Computation

5.4 Decisions Progression Table 5: Real programs for experimental assessment.

)) Qsort gsort(n) sorts a list of n random elements.
Focusing on progranp3 and using the fuzzy set | i, fib(n) obtains the nth Fibonacci number
q_une_greaterWlth the selected fuz_zy model (in Sec- | Hanoi hanoi(n) solves Hanoi puzzle with 3 rods
tion 5.3) we have developed an incremental experi- and n disks.

ment whose results are shown in Table 4. The main
goal is to see how with this fuzzy logic approach

we can select the optimal execution in those cases in
which the conservative approach is not able to give a
conclusion, and also, how our fuzzy logic approach
detects all situations (safely) detected optimal by the
conservative approach. Figure 8 shows all the exe-

Egggn vsv%(ialgatrriloe& ;T;lesleg;sg&?éﬁxgﬁggo dnetirgr:ads g;emeasured directly the time of creatipghreads. The
' ne p P second-one has been obtained by using the expression
each scenario. The later are represented by palrs(s/z) P, whefeS.and P are the measured execu
I (i u(; b
(TP('>’TP (i) wherei is the concrete gase. The pa- tion times of a program consisting of two perfectly

rallel execution times of each scendfio are the times balanced tasks running with one and two threads re-
of the previous one plus 50 units, in order to appre- spectively

ciate the progression. The times of the first scenario d : :
. There are different ways of executing a task in pa-
| _ u _d
2{:Tp£;1a)| E)lgzouZig%Tpe(?r;)%gnﬁs Aﬁgggl”g tlo rallel depending on the scheduling. The highest pa-
>3l giew s W only W - rallel execution time will be the one with the worst

or SEQ@=; d=we)obtain a_jystiiied ansyer (that the scheduling (i.e., the one in which the cores are idle as

program must be executed in parallel or sequentially m
. uchas pOSSIb|e) Consider atask gi,...,0, such
respectively). In the rest of the cases the selected type, that subtaskgy. .. , gn are candidates for parallel exe-

of execution issequentiaby default, sincogusmmlg cution. Assume thak s represents the cost (execution

forl(l)ovrv;r:g tgﬁ dp?;:gfg F;?Z c;]fopg/?(ljlglr:zclgsg 3) \?vz?gserg:t?:e time) of the execution of subtagk Assume also that
prog Tsl T9,...,Ts are in descending order of cost and

\tzgesosfeelégfsutt;]oeno ?irr;geegéii;igmgufuzozr)t/elg%lc :\I/i— that an ideal parallel execution environment has no
Y P PP y parallel execution overheads. Then, we can estimate

dences). Tr|> andT}' as follows:

ing n parallel tasks, calle@reate(n) and (b) an upper
bound on the time taken from the point in which a pa-
rallel subtaslg; is created until its execution is started
by a processor, denoted 8gsOverhead Both types

of overheads have been experimentally measured for
the execution platform. For the first one, we have

5.5 Experimentswith Real Programs To=Te/p (1)

The former experiments (Section 5.2) have shown that
our fuzzy granularity control framework is able to
capture which is the optimal type of execution on av-
erage. Moreover, in order to ensure that our approach
can be applied in practice, we have performed some Table 6 shows the experimental results. The first
experiments with real programs (and real execution four columns show the same information as in Ta-
times). The experimental assessment have been madéle 3, although in this tabl®rogram refers to the
over an UltraSparc-T1, 8 cores x 1GHz (4 threads per benchmarks in Table 5. For space reasons, Table 6
core), 8GB of RAM, Sun0S 5.10. only shows results for a subset of inputs. In particu-

We have tested thiizzy modebelected in Sec- lar, FibonacciandHanoihave been tested with the set
tion 5.3, so that only upper and lower bounds on (pa- of inputs {1,18} and {1,14} respectively. The assess-
rallel and sequential) execution times were needed.ment of the fuzzy approach proposed in this paper is
Sequential execution times have been measured di-similar for the whole set of tested inputs. The last row
rectly over the execution platform (executing the shows thespeedupf ourfuzzy approach Wlth respect
worst and best possible cases) while the parallel onesto the conservative approachpeedup= ¢, where
have been estimated. T. is the time of the selected execution usmg the con-

The number of cores of the processor is denoted servative approach ang is the time of the selected
asp, the number of tasks (candidates for parallel or execution using our fuzzy approach. A positive value
sequential execution) as and the relatiorin/p] is of speedumeans that the execution selected with our
denoted ak. We consider two different overheads approach is faster than the one selected by the conser-
of parallel execution: (a) the time needed for creat- vative approach.

k
= Creatdp) + Z(SySoverheadr) ©@

52

TOWARDS FUZZY GRANULARITY CONTROL IN PARALLEL/DISTRIBUTED COMPUTING

Time (ps)

T (15)
' T (14)
700 " T (13)

400 T, (5)

™ 4

300 T, (3)

T (2 T, (4)

200 T () T (3)
T (2)

100 @

Sequential Parallel
execution execution

Figure 8: Progression of executions of the example program p

Our fuzzy conditions obtain, in the worst case, the formation about the cost of tasks and parallel executi-
same resultsgpeedup= 1.0) than the conservative on overheads.
one. In the rest of the cases, it improves the perfor- We have performed an experimental assessment of
mance of the conservative approach. the fuzzy conditions and identified the ones that have
We can distinguish two main sets of cases in Ta- the best average case behavior. We have also com-
ble 6: one set made up géortand the other set made pared our proposed fuzzy conditions with existing
up of fib andhanoi In the first set thaipper bound sufficient (conservative) ones for performing granu-
on the sequential execution time is different from the larity control. Our experiments showed that the pro-
lower boundwhile in the second set both bounds are posed fuzzy conditions result in better program opti-
the same. Our approach improves the conservativemizations (on average) than the conservative condi-
one in the first set of cases, whereas in the second settions. The conservative approach ensures that exe-
it provides the same performance than the conserva-cution decisions will never result in a slowdown, but
tive approach. This is understandable, since the exe-loses some parallelizations opportunities (and thus,
cution time for the first set of cases not only depends no speedup is obtained). In contrast, the fuzzy ap-
on the length of the input list, but also on the values of proach makes a better use of the parallel resources
its elements. Thus, for a given list length, there may and although fuzzy conditions can produce slowdown
be different execution times, depending on the actual for some executions, the whole computation benefits
values of the lists with such length. However, in the from some speedup on average (always preserving
second set of cases, the execution time only dependsorrectness). Of course, the fuzzy approach is appli-
on the size (using the integer value metric) of the in- cable in scenarios where the no slowdown property is
put argument, and all executions for the same input not needed, as for example video games, text proces-
data size take the same execution time. sors, compilers, etc.
Experiments performed with real programs (and
real execution times) have demonstrated that our ap-
6 CONCLUSIONS proach can be successfully applied in practice. We
intend to perform a more rigorous and broad assess-
ment or our approach, by applying it to large real life
programs and using fully automatic tools for estimat-
ing execution times.
Although a lot of work still remains to be done,
the preliminary results are very encouraging and we

We have applied fuzzy logic to the program optimiza-
tion field, in particular, to automatic granularity con-
trol in parallel/distributed computing. We have de-
rived fuzzy conditions for deciding whether to exe-
cute some tasks in parallel or sequentially, using in-

53

ICFC 2010 - International Conference on Fuzzy Computation

Table 6: Selected executions for real programs.

Classical Logic| Fuzzy Logic
Execution | Optimal (Greater) (Quite greater)| Speedup
Classical Fuzzy 2
PAR. | SEQ | PAR [SEQ
gsort(250) | Parallel 0 0 0.6 0.53 1.66
gsort(500) | Parallel 0 0 0.6 0.53 1.74
gsort(750) | Parallel 0 0 0.6 0.53 1.74
gsort(1000)| Parallel 0 0 0.6 0.53 1.75
gsort(1250)| Parallel 0 0 0.6 0.53 1.71
fib(1) Parallel 1 1 0.53 | 0.53 1.0
fib(3) Sequentiall -1 0 0.6 0.5 1.0
fib(5) Parallel 1 0 0.6 0.5 1.0
fib(7) Parallel 1 0 0.6 0.5 1.0
fib(12) Parallel 1 0 0.6 0.5 1.0
hanoi(1) Parallel 1 1 0.53 | 0.53 1.0
hanoi(2) | Sequential| 1 0 0.6 0.5 1.0
hanoi(3) | Sequential| 1 0 0.6 0.5 1.0
hanoi(4) | Sequential| 1 0 0.6 0.5 1.0
hanoi(5) | Sequential] 1 0 0.61 0.5 1.0
Conditions:

PARis T§ < T
SEQisTY<T,

PAR, is max(gt(Td /T8), gt(Td /), gt(Te/T8))
SEQ is max(gt(T}/T), gt(Th/Td). gt(TS /T&)

believe that it is possible to exploit all the potential
offered by multicore systems by applying fuzzy logic

to automatic program parallelization techniques.

ACKNOWLEDGEMENTS

This research has been partially funded by the EU

7th. FP NoES-Cube215483, FET IST-231620ATS
MICINN TIN-2008-05624DOVESand CM project
P2009/TIC/1465PROMETIDOS Teresa Trigo has
been supported by CAM grant CP1/0621/2008.

REFERENCES

Baldwin, J. F., Martin, T., and Pilsworth, B. (1995ril:
Fuzzy and Evidential Reasoning in Artificial Intelli-
gence John Wiley & Sons.

Chassin, J. and Codognet, P. (1994). Parallel Logic Pro-

gramming SystemsComputing Survey<6(3):295—
336.

Debray, S. K., Lin, N.-W., and Hermenegildo, M. (1990).
Task Granularity Analysis in Logic Programs. In

54

Proc. of the 1990 ACM Conf. on Programming Lan-
guage Design and Implementatiopages 174-188.
ACM Press.

Guadarrama, S., Mufioz, S., and Vaucheret, C. (2004).

Fuzzy Prolog: A new Approach Using Soft Con-
straints Propagation.Fuzzy Sets and Systems, FSS
144(1):127-150. ISSN 0165-0114.

Hermenegildo, M., Puebla, G., Bueno, F., and Lopez-
Garcia, P. (2005). Integrated Program Debugging,
Verification, and Optimization Using Abstract Inter-
pretation (and The Ciao System Preprocess&@gi-
ence of Computer Programming8(1—-2):115-140.

Hermenegildo, M. and Rossi, F. (1995). Strict and Non-
Strict Independent And-Parallelism in Logic Pro-
grams: Correctness, Efficiency, and Compile-Time
Conditions.Journal of Logic Programming22(1):1—
45,

Hermenegildo, M. V., Bueno, F., Carro, M., Lopez, P,
Morales, J., and Puebla, G. (2008). An Overview
of The Ciao Multiparadigm Language and Program
Development Environment and its Design Philosophy.
In Festschrift for Ugo Montanari number 5065 in
LNCS, pages 209-237. Springer-Verlag.

Huelsbergen, L. (1993). Dynamic Language Parallelization
Technical Report 1178, Computer Science Dept. Univ.
of Wisconsin.

Huelsbergen, L., Larus, J. R., and Aiken, A. (1994). Using

TOWARDS FUZZY GRANULARITY CONTROL IN PARALLEL/DISTRIBUTED COMPUTING

Run-Time List Sizes to Guide Parallel Thread Cre- Zhong, X., Tick, E., Duvvuru, S., Hansen, L., Sastry,

ation. InProc. ACM Conf. on Lisp and Functional
Programming

Ishizuka, M. and Kanai, N. (1985). Prolog-ELF incorporat-
ing fuzzy logic. InlJCAI, pages 701-703.

Kaplan, S. (1988). Algorithmic Complexity of Logic Pro-
grams. InLogic Programming, Proc. Fifth Interna-
tional Conference and Symposium, (Seattle, Washing-
ton), pages 780—793.

Kruatrachue, B. and Lewis, T. (1988). Grain Size Determi-
nation for Parallel ProcessintEEE Software

Lee, R. (1972). Fuzzy logic and the resolution principle.
Journal of the Association for Computing Machinery
19(1):119-129.

Li, D. and Liu, D. (1990) A Fuzzy Prolog Database System
John Wiley & Sons, New York.

Lépez-Garcia, P., Hermenegildo, M., and Debray, S. K.
(1996). A Methodology for Granularity Based Con-
trol of Parallelism in Logic Programdournal of Sym-
bolic Computation, Special Issue on Parallel Symbolic
Computation21(4—6):715-734.

McGreary, C. and Gill, H. (1989). Automatic Determina-
tion of Grain Size for Efficient Parallel Processing.
Communications of the ACN32.

Mera, E., Lopez-Garcia, P., Carro, M., and Hermenegildo,
M. (2008). Towards Execution Time Estimation in
Abstract Machine-Based Languages. 1@th Int'l.
ACM SIGPLAN Symposium on Principles and Prac-
tice of Declarative Programming (PPDP’08pages
174-184. ACM Press.

Mufioz-Hernandez, S., Pablos-Ceruelo, V., and Strass, H.
(2009). Rfuzzy: An expressive simple fuzzy compiler.
In IWANN (1) pages 270-277.

Pablos-Ceruelo, V., Mufioz-Hernandez, S., and Strass,
H. (2009a). Rfuzzy framework. Paper pre-
sented at the 18th Workshop on Logic-based Methods
in Programming Environments (WLPE2008), CqRR
abs/0903.2188.

Pablos-Ceruelo, V., Strass, H., and Muioz Hernandez,
S. (2009b). Rfuzzy—a framework for multi-adjoint
fuzzy logic programming. Ifruzzy Information Pro-
cessing Society, 2009. NAFIPS 2009. Annual Meeting
of the North Americanpages 1-6.

Rabhi, F. A. and Manson, G. A. (1990). Using Complexity
Functions to Control Parallelism in Functional Pro-
grams. Res. Rep. CS-90-1, Dept. of Computer Sci-
ence, Univ. of Sheffield, England.

Strass, H., Mufioz-Hernandez, S., and Pablos-Ceruelo, V.
(2009). Operational semantics for a fuzzy logic pro-
gramming system with defaults and constructive an-
swers. INFSA/EUSFLAT Confpages 1827-1832.

Vaucheret, C., Guadarrama, S., and Mufioz, S. (2002).
Fuzzy Prolog: A Simple General Implementation us-
ing CLP(R). In9th International Conference on Logic
for Programming Atrtificial Intelligence and Reason-
ing, Thilisi, Georgia.

A., and Sundararajan, R. (1992). Towards an Effi-
cient Compile-Time Granularity Analysis Algorithm.
In Proc. of the 1992 International Conference on
Fifth Generation Computer Systenpages 809-816.
Institute for New Generation Computer Technology
(lcom.

55

